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Knee Bone Models From Ultrasound
Benjamin Hohlmann , Peter Broessner , Lovis Phlippen, Thorsten Rohde, and Klaus Radermacher

Abstract—The number of total knee arthroplasties
performed worldwide is on the rise. Patient-specific
planning and implants may improve surgical outcomes
but require 3-D models of the bones involved. Ultrasound
(US) may become a cheap and nonharmful imaging
modality if the shortcomings of segmentation techniques
in terms of automation, accuracy, and robustness
are overcome; furthermore, any kind of US-based
bone reconstruction must involve some kind of model
completion to handle occluded areas, for example, the
frontal femur. A fully automatic and robust processing
pipeline is proposed, generating full bone models
from 3-D freehand US scanning. A convolutional neural
network (CNN) is combined with a statistical shape model
(SSM) to segment and extrapolate the bone surface. We
evaluate the method in vivo on ten subjects, comparing
the US-based model to a magnetic resonance imaging
(MRI) reference. The partial freehand 3-D record of the
femur and tibia bones deviate by 0.7–0.8 mm from the MRI
reference. After completion, the full bone model shows an
average submillimetric error in the case of the femur and
1.24 mm in the case of the tibia. Processing of the images
is performed in real time, and the final model fitting step
is computed in less than a minute. It took an average of
22 min for a full record per subject.

Index Terms— Convolutional neural network (CNN), knee, model completion, segmentation, statistical shape model
(SSM), ultrasound (US).

I. INTRODUCTION

REPLACING the knee joint surface with an implant is one
of the most frequently conducted surgeries worldwide

[1]. Statistically, one in four people in the United States
will receive a total knee arthroplasty (TKA) in their lifetime
[2], [3], [4]. The main indication for knee replacement is
osteoarthritis, which affects 13% of women and 10% of men
over the age of 60 in the United States [5].

The shape, size, and positioning of the implant are crucial
factors for a functional knee replacement and acceptable
patient satisfaction [6], [7]. Different anatomical structures
require different implant sizes, whereas a linear scaling of a
one-shape implant is not sufficient for a satisfactory result [8],
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[9], [10]. Individual implant shapes have been developed with
the motivation of achieving optimal results for each patient
[11]. Studies show advantageous factors of patient-specific
implants compared to off-the-shelf implants, such as reduced
blood loss during surgery, fewer adverse event rates, and
lower rates of being discharged to rehabilitation facilities.
In comparison to off-the-shelf implants, the total costs of
care for patient-specific implants are even lower [12], [13].
Another impact on the outcome is the implant placement, and
different approaches exist: navigation [14], robotics [15], and
patient-specific instrumentation [16], [17], [18]. A previous
image acquisition of the knee is required for patient-specific
instrumentation and implants in order to generate 3-D bone
models for surgical planning.

According to the literature, 3-D planning has advantages
even for off-the-shelf implants, for example, for correct rota-
tion of the femoral components [19], [20]. The state of the
art for acquiring 3-D bone models is computed tomography
(CT). The CT scans of current systems achieve an in-plane
voxel spacing of 0.3–0.5 mm [21]. The drawbacks of CT are
exposure of the patient to radiation and high costs. The CT
scans may be associated with an increased risk of cancer [22],
and the costs are approximately ten times higher for a CT scan
than for an ultrasound (US) examination, according to health
insurance billing lists in Germany [23].
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Highlights
• The first in-vivo evaluation in a near clinical setting of a real-time capable method for generating knee bone models

from ultrasound.
• The proposed methods can reconstruct the surface of the distal femur and proximal tibia with an average surface

distance error of 0.96 and 1.24 mm, respectively.
• Ultrasound may become a cheap and widely available point-of-care imaging alternative to computed tomography

and magnetic resonance imaging in orthopedics.

Apart from lower costs, US as an alternative medical
imaging technique has the advantage of being nonharmful
[24]. Moreover, it offers the possibility of visualizing vari-
ous tissues or bones and real-time capability, which enables
functional diagnosis [21], [25]; however, US also has some dis-
advantages: noise due to diffuse deflections, imaging artifacts,
blurred bone surfaces, and bone shadowing [26], [27]. Probes
for acquiring 2-D images can be combined with a localizer
system, which can be optical, electromagnetic, or mechanical,
for the 3-D imaging of large anatomical areas, such as the
knee [26]. This approach is called “freehand 3-D US.” Given
the drawbacks mentioned above, every knee bone US scan will
lack information on the inner tibiofemoral and patellofemoral
joint space, which is occluded by the patella. As such, some
kind of model completion is necessary to provide full bone
models to the clinician.

II. RELATED WORK

The reconstruction of complete bone surface models from
US data is mostly approached by a two-stage concept: first,
US images are segmented for the derivation of a partial surface
point cloud. Second, the partial surface scan is completed
to a full bone model using statistical shape models (SSMs).
Accordingly, we first present related work on US image
segmentation, followed by related work on US-based model
completion.

A. US Image Segmentation
Bone surfaces need to be segmented in US images for the

extraction of partial bone surface points. In addition to charac-
teristics of US images, such as noise and artifacts, one of the
most challenging aspects of US segmentation is the distinction
of bone interfaces from other tissue interfaces. The survey of
Pandey et al. [25] provides a comprehensible introduction to
the topic and gives an overview of US segmentation to the
year 2019.

Ronneberger et al. [28] established a standard for medi-
cal image segmentation in 2015 based on learned features.
They introduce a convolutional neural network (CNN)-based
encoder-decoder architecture with skip connections called
“U-Net.” Subsequent publications introduce extensions, such
as the 3-D U-Net [29], the U-Net++ with redesigned skip
connections [30] or the nnU-Net framework for the automated
configuration of architecture and training processes [31].

Most works on bone segmentation in US images rely on
the original U-Net [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41] and the U-Net++ [42]. Several works introduce

dropout during inference [43], [44] or training [45] to incorpo-
rate segmentation uncertainty. Other approaches use auxiliary
hand-crafted features, such as phase symmetry or bone shadow
[46], [47], [48]. Banerjee et al. [49] extended the U-Net
with depthwise separable convolution and residual connections
for their LDS-U-Net, similar to [50], who added depthwise
separable convolution next to an attention mechanism in their
BoneNet. Rahman et al. [51] introduce graph convolution to
a U-Net-like architecture in order to use the characteristic
connectivity of bone surfaces in US images. Dunnhofer et al.
[52] used the information of neighboring slices using two
encoders in a Siam-U-Net architecture for the segmentation
of volumetric US images.

In addition to U-Net and its variants, other architectures
employed for US bone segmentation include the Mask
R-CNN [53], Pyramid Attention Network [54], and
DeepLabv3+ [55], [56], [57]; further approaches include the
use of conditional generative adversarial networks, such as
the pix2pix architecture introduced by Isola et al. [58] for
image-to-image translation. Zhou et al. [59] employ pix2pix
for direct segmentation and the improvement of U-Net
segmentations. Similarly, Alsinan et al. [60] condition a
conditional generative adversarial network for the generation
of bone shadow maps, which are then fused with CNN-based
features.

B. Reconstruction
The SSMs allow the incorporation of morphological statis-

tics for the creation of new shapes as a linear combination
of mean shape x̄ and modes matrix P . Approaches for US-
based model completion to date rely mostly on SSMs for shape
generation but differ in the methods of building the SSM and
adapting it to US data. Morooka et al. [61] and Sarkalkan
et al. [62] give an overview of US-based model completion;
we refer to [63] for a survey and comprehensible introduction.

Hacihaliloglu et al. [64] propose a statistical model of the
shape and pose of the spine and fit it to local phase features
extracted from 3-D US data for reconstruction. Regarding
model adaption, they employ a method based on Gaussian
mixture models combined with an expectation-maximization
schemeKlicken oder tippen Sie hier, um Text einzugeben. or a
quasi-Newton optimization [65], [66], which bypasses the need
for correspondences.

Anas et al. [67] propose a very similar concept, using
a statistical model of pose and shape for the intraoperative
reconstruction of carpal bones from US. They, first adapt pose
and shape components to preoperative CT data, and then only
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Fig. 1. General workflow of the proposed method. US images are acquired with a wireless probe, segmented by a CNN, and combined with
tracking data to a partial point cloud of the bone. The SSM is then fit to the partial scan to obtain a full model of the target bone.

adapt pose components for the subsequent reconstruction from
segmented US images. The implementation of the model adap-
tion is again based on correspondence-free Gaussian mixture
models, initialized with landmark-based registration.

As opposed to previous methods, some approaches rely
on point correspondences for SSM adaption to US: Hänisch
et al. [68] adapt an SSM to segmented 3-D US images for
the reconstruction of knee bones. They employ a variant of
the iterative closest point algorithm for establishing point
correspondences. In a subsequent publication, correspondences
are established by searching for high-intensity pixels along
vertex normals in the original 3-D US image [54], [69].

The recent work of Mahfouz et al. [70] is most closely
related to our work: they employ 3-D freehand US with elec-
tromagnetic tracking for image acquisition. Bone surfaces are
segmented in the frequency-range data acquired and combined
into a 3-D partial point cloud based on tracking information.
After the outlier removal on the partial point cloud, they match
it to an SSM for the completion of the distal femoral and
proximal tibial bone models; however, essential details, such as
the fitting method of their implementation, remain unknown.

Compared to related work, the objectives of our work are
as follows.

1) The development of a new SSM adoption algorithm
based on a general-purpose optimizer (GPO).

2) The evaluation of the GPO approach against the state of
the art.

3) The proposal of a fully automated workflow with real-
time capability.

4) The presentation of an entire pipeline, including all the
algorithms.

5) Open access to test samples and results.
6) The first in vivo evaluation in a near-clinical setting.

III. METHODS

The workflow proposed is a multistep procedure,
as demonstrated in Fig. 1: landmarks were acquired using a
freehand 3-D setup with a 2-D probe and a tracking system
for the prepositioning of the image volume relative to the
mean shape of the SSM. Next, two partial scans of the knee
were acquired using the US probe. The 2-D images were
segmented fully automatically in real time by a CNN. After
the acquisition, the partial scans of the knee were combined
with the SSM to reconstruct a full bone model of the proximal
femur and distal tibia.

A. Experimental Setup
We used a Clarius L15 HD (Clarius, Vancouver, BC,

Canada) probe to acquire the US images. The Clarius system

Fig. 2. Experimental setup. The subject’s leg is fixated by an adjustable
boot. The subject’s leg and the wireless probe are tracked by an optical
tracking system. Our custom user interface shows the current US image
and the recorded 3-D point cloud. Left: anterior scan with the subject
in a sitting position and 90◦ knee flexion. Right: posterior scan with the
subject in a prone position and the knee in extension.

provides an advanced programming interface, which we use
to feed the image data into our custom software. The imaging
depth was adjusted according to the approximate depth of the
bone. The Clarius software provided fully automatic adjust-
ment of imaging parameters, such as the frequency, easing the
acquisition process.

The FusionTrack500 (Atracsys, Puidoux, Switzerland)
localizer system, which comes with its own advanced pro-
gramming interface, was used for tracking. We tracked the
position of the probe and a dynamic reference base attached
to the subject’s lower leg by Velcro braces at 300 Hz. Tracking
data were matched with image data based on the acquisition
time recorded by our software. The beamforming and image
transfer process of the US images induced a latency, which we
determined in preliminary experiments to be 175 ms. Given
the time stamps, we matched the image and tracking data and
constructed the following transformation chain:

TTotal = Tmodel ∗ T −1
DRB ∗ TProbe ∗ TCalib

where TCalib was determined from computer-aided design data
of the 3-D-printed adapter connecting the tracking body to the
probe and validated using a sphere-based method. TProbe was
the pose of the probe, TDRB was the pose of the dynamic refer-
ence base and Tmodel was the transformation of the anatomical
landmarks on the mean shape of the SSM to the anatomical
landmarks of the subject acquired prior to the record.

The subject was put in a sitting position with the leg in 90◦

flexion. The patella is moved distally in this pose, minimizing
the occlusion of the femur. The optical tracking camera
was positioned at the subject’s feet area. The clinical expert
sonographer was standing to the side of the subject, enabling
free movement and providing a view of the knee and our
custom software simultaneously (see Fig. 2). The approximate
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Fig. 3. One of the US images used for training the CNN architecture.
Note how soft-tissue and bone interfaces resemble each other. The
actual bone surface is just the lowest bright ridge indicated by the blue
arrows.

position of the femur was determined by acquiring the anatom-
ical landmarks, namely, the medial and lateral epicondyle,
as well as a point on the distal femoral shaft. The tibial
landmarks were medial and lateral points on the proximal
crest, as well as a point on the proximal shaft. Note that
the rather ambiguous points on the shafts were chosen due
to the requirement that all points are accessible in both the
prone and seated position. Alternative registration methods
include pair-wise surface-based registration and registration
onto the SSM mean shape. After the frontal femur and tibia
had been recorded, the subject was asked to lie down in a prone
position, and the scanning of the posterior femur and tibia was
performed. During this acquisition process, the sonographer
tried to optimize the probe orientation to the bone surface
in order to obtain a distinct bone response and tried not to
include bones other than the respective target anatomy in
the record. After the record had been completed, both point
sets were registered to the SSM mean shape using a custom
MATLAB (MathWorks, Natick, MA, USA) implementation of
the iterative closest point algorithm that is robust to outliers.
The point sets acquired by this process were still partial point
sets, as the inner parts of the knee joint spaces cannot be
imaged due to bone shadowing.

B. Datasets

Prior to the experiment described above, training data for
the individual pipeline components were acquired as follows.

1) US Segmentation: A separate set of 4565 images was
acquired and annotated beforehand. The images depict all parts
of the knee joint, including areas showing no bone surface at
all. Only the thin bone response was annotated and not the
bone shadow. The dataset included ten subjects, ages 26–38,
seven male and three female.

The dataset was split 10:1 into a train and a validation
dataset. Image height varied from 150 to 750 pixels, and image
width 420–650 pixels. Accordingly, the pixel spacing varied
from 0.08 to 0.12 mm per pixel. See Fig. 3 for an example
image.

2) Statistical Shape Model: Two SSMs of the tibia and
femur, respectively, were built from 414 anonymized bone

Fig. 4. Segmented femur of one of the 414 surface models used to
build the SSM.

Fig. 5. One slice of the MRI of one of the subjects. The manual ground
truth annotation of the tibia is overlayed.

surface datasets of patients that had undergone TKA. All
patients underwent CT imaging, which was subsequently
manually segmented and freed from osteophytes by experts.
The mean shape surface models were aligned according to
anatomical landmarks. See Fig. 4 for an example mesh of the
distal femur. We refer the reader to our previous publication
for additional details [54].

3) Reference: MRI: Magnetic resonance imaging (MRI)
was used as a reference to evaluate the accuracy of the
US-based reconstruction. Nine subjects of age 28–58 were
recruited, five males and four females. A 3-D water-selective
cartilage scan was recorded, and the femur and tibia were
manually segmented by medical engineering students. The
segmentation was validated by an expert with more than five
years of clinical experience. All volumes have an image size
of 720 × 720 × 266. The slice thickness is 0.75 mm, and
the in-plane pixel spacing is 0.25 mm. See Fig. 5 for an
example image and its annotation performed with 3-DSlicer
[71]. A recent high-resolution CT image was available for
one subject.

C. Segmentation by CNN

We opted for the Deeplabv3+ for image segmentation as
it combines a fast processing speed with high accuracy. The
lightweight MobileNetV2 backbone was chosen as its low
model capacity enabled better generalization of our small
dataset. At the same time, this enabled fast inference. We refer
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to our previous publication [57] and the article by Chen et al.
[72] for implementation details. We did not find any benefit
from employing more recent CNN or vision transformer
architectures on the task of bone segmentation [57], [73]. The
network was trained on a separate dataset for the experiment
at hand, described in Section III-B. Hyperparameter tuning
involved the learning rate and loss function. The bone sur-
face areas inferred were skeletonized to a single pixel-wide
centerline during the US image acquisition.

D. Bone Model Completion by SSM

All methods were implemented with MATLAB. Several
algorithms were applied to adopt the SSM to the incomplete
point set: 1) the active shape model (ASM) search, origi-
nally introduced by Cootes et al. [74], alternates between
establishing correspondences by nearest-neighbor search and
updating the rigid transformation and modes by projecting the
vertex position deltas into mode space; 2) a simultaneous least-
squares (LSO) optimization of pose and shape, as suggested
by Blanz et al. [75]; and 3) direct optimization of pose and
shape by minimizing an objective function on the average
surface distance between the shape model and the incomplete
point cloud. A GPO, namely, “fminsearch” by MATLAB,
was used to minimize the objective function. Hyperparameter
optimization, for example, regarding the number of modes
predicted or the number of iterations that were tuned in
preliminary in silico studies.

E. Evaluation

The performance of the methods was evaluated in terms
of speed and accuracy. Computation times for segmenting
2-D image slices and the adoption of the shape models are
reported, as well as total times for image acquisition of the
individual bones and subjects. Regarding accuracy, the average
surface distance error (SDE) directed from 1) the partially
recorded point set and 2) the full reconstructed model to the
reference MRI mesh is reported. See (1) for the definition,
where X and Y are the source and target point sets, respec-
tively, N the size of the source point set and dist(x, y) the
Euclidean distance between two points in R3

SDE(X, Y ) =
1
N

N∑
i=1

min
u∈Y

dist(xi , y). (1)

As the partial set only represents part of the bone, a directed
distance from the partial scan to the ground truth mesh was
computed. It should be noted that errors in terms of bone
surfaces not segmented by the algorithm are not quantified
by this evaluation. A directed distance from the adapted
model to the ground truth mesh was computed for the full
reconstruction. Only those parts of the bones that are relevant
for TKA planning were evaluated (see Fig. 6). In contrast to
the partial scan, the adapted model is guaranteed to include
the entire bone surface of the knee.

Additionally, we provide the overall anterior-posterior (AP)
and medial-lateral (ML) sizes of both the MRI reference and
the US-based reconstruction of the femur and tibia.

Fig. 6. Parts of the reconstructed bones on which the metrics are
computed.

TABLE I
DIRECTED MEAN SURFACE DISTANCE FROM THE PARTIAL

RECONSTRUCTION TO THE GROUND TRUTH, AVERAGED

OVER ALL TEN SUBJECTS. EITHER JUST THE FRONT OR

THE COMBINATION OF THE FRONTAL AND BACK

RECORD IS REPORTED FOR EACH BONE. THE

RATHER HIGH VALUES INDICATE NEIGHBORING

BONES BEING VISIBLE IN THE RECORDS

IV. RESULTS

Table I presents the evaluation of the partial US records.
The mean distance from the recorded frontal femoral surface
to the ground truth ranges from 0.81 to 2.68 mm. The high
value of 2.68 mm is due to the tibia being visible in the record,
with all other values being well below. See Fig. 7(a) and (b)
for two examples. In the case of the frontal tibia, the distance
ranges from 1.4 to 3.83 mm, which appears to be much worse;
however, the fibula is part of the scan in all records, as shown
exemplarily in Fig. 7(c). Note that this does not affect the
reconstruction quality, as these points are outliers and far from
the reconstructed geometry. When adding the posterior scan
to the partial point clouds, the error increases strongly. In the
case of the femur, it ranges from 1.14 to 3.86 mm, and in the
case of the tibia, from 2.49 to 6.72 mm. Again, this high error
is mostly due to other bones being part of the records. Several
cases, however, show a clear geometry mismatch; see, for
example, the medial posterior femoral condyles in Fig. 7(d).

In order to isolate the surface mismatch from the false
positive detection of neighboring bones, we manually cleaned
the scan of subject #2 from the latter. Note that this step is
not part of the regular pipeline. See Table II for the evaluation.
Both the femur and tibia show errors <1 mm; however, the
error increases when including the posterior part.

The directed mean surface distance of the masked recon-
struction is reported in Tables III and IV. Because of the
bone model being evaluated, the false positive errors of
neighboring bones are no longer present in this evaluation.
All three algorithms are evaluated on frontal and combined
partial scans of the femur and tibia, respectively. In the case
of the femur, the GPO method yields the best surface errors
of 0.62–1.51 mm. The mean surface errors of all ten subjects
is 0.96 mm. Both the LSO and the ASM methods fail to
reconstruct subject #1. Their surface reconstruction errors
are an average of 1.57 and 1.72 mm, respectively. A similar
result is found for the tibia. Again, the GPO method yields
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Fig. 7. US record (red) compared to the ground truth (green). (a) Average performing example record of the frontal femur. (b) Typical case
where neighboring bones, in this case, the tibia, are part of the record. (c) Parts of the fibula are present. This occurs for all records of the tibia.
(d) Combined front and back record of one femur. Notice the neighboring bones (bottom right) and a mismatch in the medial posterior condyle
(bottom left).

TABLE II
SAME DISTANCE COMPUTED FOR JUST A SINGLE SUBJECT, AFTER

THE MANUAL REMOVAL OF ALL NEIGHBORING BONE DETECTIONS.
REGARDING ONLY THE FRONTAL SCAN, THE ERROR IS WELL BELOW

1 mm, BUT THE QUALITY DECREASES WHEN THE POSTERIOR PART

IS INCLUDED. NOTE THAT THE MANUAL OUTLIER REMOVAL IS NOT

PART OF THE REGULAR PIPELINE, WHERE THIS

PROBLEM IS SOLVED BY THE SSM

TABLE III
SDE ERROR OF THE MASKED RECONSTRUCTION COMPARED TO THE

GROUND TRUTH FOR EACH INDIVIDUAL SUBJECT USING GPO. NOTE

THAT SUBJECT #4 WAS EVALUATED USING

A CT GROUND TRUTH

the lowest errors, ranging from 0.87 to 1.7 mm, with an
average error of 1.24 mm. The LSO and ASM methods achieve
an average of 1.84 and 2.21 mm, failing to reconstruct two
and three subjects, respectively. Surface distance heatmaps for
subjects #2 and #9 are given in Fig. 8, for which the best
and worst reconstructions were found, respectively. A closer
investigation of all ten subjects reveals that errors are mainly
located in the lateral posterior condyle, as can be seen from
the example. Similarly, in the case of the tibia, the largest
deviations can be found on the posterior part; furthermore,

TABLE IV
DIRECTED MEAN SDE FROM THE MASKED RECONSTRUCTION TO THE

GROUND TRUTH, AVERAGED OVER ALL TEN SUBJECTS. BEST

PERFORMING ALGORITHMS ARE HIGHLIGHTED IN BOLD

the tibial plateau shows a noticeable variation. See Fig. 9 for
a heatmap visualization.

When the records of the posterior parts are included,
mixed results are found. All algorithms perform worse for
the femur. Their rank order, however, remains the same, with
the GPO being the best-performing algorithm, achieving a
mean error of 1.29 mm. By contrast, performance gains can
be observed for the tibia. While the ASM algorithm still
fails to reconstruct several subjects, and even the error of the
GPO method increases to 1.39 mm, the LSO method slightly
outperforms the GPO method applied to only the frontal scan.
It achieves the lowest errors of 0.71–1.66 mm, with an average
of 1.18 mm.

Finally, we evaluated the overall AP and ML size as defined
by [76]. The results are presented in Table V.

Regarding the computation time, all methods meet the
required criteria. The CNN processes an image in 27 ms,
achieving a frame rate of 37 Hz. No drops in the frame rate
were observed, even with the simultaneous graphical load of
the 3-D view.

The total time spent per subject lies in the range of
14 to 33 min, with 22 min spent on average. This time includes
the subject getting seated, fixation of the leg, recording of two
scans, repositioning and -fixation of the subject in a prone
position, and recording of yet another two scans. Investigating
only the time spent on recording the frontal femur, which is
the largest of all four records, the time spent ranges from
62 to 142 s, with 96.4 s on average.

Exemplary results of subjects #2, #6, and #9 will be
provided on request, including the ground truth model, the
partial surface scan, and the full bone reconstruction.
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Fig. 8. Heatmap visualization of the SDE after reconstruction. From left to right: frontal, distal, medial and posterior view of the distal femur.
Only the masked area is evaluated. Top row: worst reconstruction of subject #9. Note the large mismatch in the lateral condyle. Bottom row: best
reconstruction of subject #2.

Fig. 9. Heatmap visualization of the SDE after reconstruction based on
only the frontal scan for subject #6. High errors occur at the posterior and
frontal crest, indicating insufficient information on the overall AP size.
Similarly, the intercondylar eminence shows a rather high mismatch.
Scale according to Fig. 8.

TABLE V
MEAN OF THE OVERALL AP AND ML SIZES, BASED ON EITHER MRI

OR US. RESULTS FOR RECONSTRUCTIONS USING THE GPO
ALGORITHM AND ONLY THE FRONTAL SCAN AS INPUT. OVERALL,

A TENDENCY TO OVERSIZING CAN BE OBSERVED

V. DISCUSSION

A visual comparison of the bone surface obtained from
US and the reference MRI surface shows high agreement.

Neighboring bones were also, however, recorded, leading
to false positive segmentation and high quantitative errors,
especially in the case of the tibia, where the fibula is visible in
every record. The actual surface match, investigated separately
for one subject, shows an accurate surface reconstruction
with errors well below 1 mm. This does not hold true when
the frontal and posterior scans are combined, indicating an
inadequate registration.

Investigating the accuracy after reconstruction of the full
bone, an error threshold of 1 mm was be achieved in the case
of the femur but not of the tibia. This may be due to a large
part of the tibia evaluation mask, the tibial plateau, not being
imageable using US. The high errors seen in the evaluation of
the original US scan could be reduced greatly, as the model
is able to remove false positive segmentation of neighboring
bones. In fact, even when false positive segmentation is
removed manually, the reconstruction step reduces the overall
error, as can be seen from the example of subject #2: the aver-
age SDE on the frontal femur scan decreases from 0.83 mm
in the manually cleaned partial scan to 0.62 mm after model
fitting. We hypothesize that this is due to the averaging of
noise caused by segmentation errors and movement artifacts.
This finding underlines that our CNN-based segmentation does
not suffice for high-quality reconstruction and that a second
model-fitting step is necessary.

Regarding the model-fitting method, the ASM and LSO
approaches perform worse than the GPO approach on average
and completely fail in some cases. The inclusion of the
posterior surface scan showed only a small benefit in one
evaluation and had a noticeable negative impact on all the
others. As mentioned beforehand, this indicates inadequate
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registration. Landmark-based registration was insufficient and
ruled out early. Registering the scans on the basis of overlap-
ping surfaces was not robust either. We, therefore, registered
both scans onto the mean shape, which, of course, differs in
geometry; furthermore, the information on the AP size cannot
be retained by this approach. We identify this as the biggest
weakness of the proposed method. Although the posterior part
may be extrapolated from only the frontal scan with surprising
accuracy, it remains the area of the largest surface mismatch.
Apart from the difficulties when registering the posterior part,
scanning the objects in a prone position also turned out to
be difficult. In extension, the soft tissue covering the knee is
under tension, making it hard to orient the probe orthogonally
to the bone surface; furthermore, the maximum imaging depth
of 7 cm was insufficient for some subjects.

Investigating the AP and ML size, a geometrical mismatch
may occur on both sides (AP and ML). Accordingly, the
error is expected to exceed the average SDE. The results
confirm this hypothesis, especially for the tibia. Surprisingly,
although no information about the posterior bone is provided
to the algorithm, the AP error does not exceed the ML error.
Given typical step sizes of at least 2 mm for off-the-shelf
implant components, the method only based on frontal scans
is sufficiently precise for implant templating in the case of the
femur but not of the tibia.

Apart from the femoral ML size, the reconstructions tend
to be larger than the MRI reference. One reason could be an
underestimation of the average speed of sound. Salehi et al.
[77] found an up to 4% mismatch in an ex vivo study, which
could cause a shift up to 2.8 mm.

Comparing the errors computed for subject #4 to the average
performance, we see a persistent and noticeable gap of about
0.24–0.6 mm lower errors for the CT-based evaluation. This
may indicate accuracy issues in the MRI-based ground truth
and an even better actual performance of our method.

In comparison to closely related previous work by Mahfouz
et al. [70] and our group [54], this is the first report achieving a
reconstruction of submillimetric accuracy on average; further-
more, to the best of our knowledge, it is the first small-scale
in vivo evaluation. This is highly relevant, as motion arti-
facts may compromise accuracy, especially for larger scans.
Regarding our setup, we were not able to benefit from the
posterior records as their relative position to the frontal scan
could not be recovered with sufficient accuracy. The main
reasons for this are the low repeatability of landmark-based
registration and insufficient overlap for surface-based regis-
tration. Although the setup by Mahfouz et al. [70] using
electromagnetic tracking and scanning the knee in flexion
could remove the need to reposition the patient, and thus,
the need for registration, errors reported for electromagnetic
tracking devices also have to be taken into account. Kral et al.
[78] report an 0.25 mm increase in the target registration
error when using an electromagnetic as opposed to an optical
tracking system in a laboratory environment mimicking the
operation room. Elfring [79]; however, reports up to 2.69 mm
in a similar. We hypothesize that the lower reconstruction
errors observed in our investigation compared to the work of
Mahfouz et al. [70] were achieved by superior segmentation

and model fitting methods; however, since Mahfouz et al. [70]
have not disclosed their algorithms, this must remain an
assumption.

In conclusion, we proposed the first fully automatic
US-based workflow that is able to achieve submillimetric in
vivo reconstruction, averaged over all subjects. In future work,
we will investigate the EM-based scanning procedure, as well
as an automated robotic scanning approach, and quantify the
individual contributing error sources to identify the potential
for improvement.
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