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Abstract—Deep learning (DL) powered biomedical ultra-
sound imaging is an emerging research field where
researchers adapt the image analysis capabilities of DL algo-
rithms to biomedical ultrasound imaging settings. A major
roadblock to wider adoption of DL powered biomedical
ultrasound imaging is that acquisition of large and diverse
datasets is expensive in clinical settings, which is a require-
ment for successful DL implementation. Hence, there is a
constant need for developing data-efficient DL techniques to
turn DL powered biomedical ultrasound imaging into reality.
In this work, we develop a data-efficient DL training strategy
for classifying tissues based on the ultrasonic backscattered
RF data, i.e., quantitative ultrasound (QUS), which we named
zone training. In zone training, we propose to divide the com-
plete field of view of an ultrasound image into multiple zones
associated with different regions of a diffraction pattern and
then, train separate DL networks for each zone. The main
advantage of zone training is that it requires less training
data to achieve high accuracy. In this work, three different
tissue-mimicking phantoms were classified by a DL network.
The results demonstrated that zone training can require a
factor of 2-3 less training data in low data regime to achieve
similar classification accuracies compared to a conventional
training strategy.

Index Terms— Biomedical ultrasound imaging, deep learn-
ing (DL), tissue classification.
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I. INTRODUCTION

EEP learning (DL) powered biomedical ultrasound imag-
Ding is becoming more advanced and coming closer to
routine clinical applications in recent years [1]. DL is the
process of learning a hierarchy of parameterized nonlinear
transformations to perform a desired function. Therefore,
DL algorithms extract a hierarchy of features from raw input
images and image data automatically rather than extracting

Manuscript received 10 January 2023; accepted 10 February 2023.
Date of publication 15 February 2023; date of current version
26 April 2023. This work was supported by the National Institutes of
Health (NIH) under Grant R01CA251939, Grant R01CA273700, Grant
R21EB023403, and Grant R21EB030743. (Corresponding author:
Ufuk Soylu.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Institutional Animal Care and Use Committee at the University of
lllinois at Urbana—Champaign under Protocol No. 20087.

The authors are with the Department of Electrical and Computer
Engineering and the Beckman Institute, University of lllinois at Urbana—
Champaign, Urbana, IL 61801 USA (e-mail: usoylu2@illinois.edu;
oelze@illinois.edu).

Digital Object Identifier 10.1109/TUFFC.2023.3245988

features manually. Due to rapid increase in computational
power and large datasets, DL and machine learning algorithms
have emerged as leading tools and have achieved impressive
results in various research fields. Among DL algorithms, con-
volutional neural networks (CNNs) use convolutional layers
to embed structural priors of translational invariance, which
make them parameter and data-efficient learners for image
analysis tasks. Respectively, CNNs are the most popular and
successful DL structure for ultrasound biomedical imaging [2].
Common DL applications that have provided notable results in
the context of biomedical ultrasound imaging are classification
[2], [31, [4], [5], [6], [7], detection [2], [8], segmentation [2],
[9], [10], [11], [12], image reconstruction [13], [14], [15], [16],
[17], [18], [19], [20], [21], and ultrasound elastography [22],
[23], [24], [25], [26]. Furthermore, DL algorithms have been
employed in advanced ultrasound imaging applications such
as super-resolution imaging of microvasculature structure via
ultrasound localization microscopy [27], [28].

Even though DL is promising for biomedical ultrasound
imaging, there are certain roadblocks to wider adoption.
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For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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Highlights

« The most significant element of novelty: The proposed method trains separate deep learning networks for different
zones of the ultrasound images by dividing the complete field of view into regions with varying diffraction patterns.

« An executive summary on the main results: The results showed that the proposed method requires 2-3 times less
training data in low data regimes while achieving similar accuracy to conventional training strategies.

« Highlight the implications and importance of the reported findings to the research field: The paper developed a
data-efficient deep learning training strategy, a step towards the development of deep learning-based ultrasound

imaging for wider clinical adoption.

A major roadblock is that acquiring large and diverse datasets
is expensive. Hence, it is important to develop data-efficient
DL algorithms to overcome this limitation. Another roadblock
is that there are large variations in ultrasound images due
to operator, patient or machine dependent factors. Therefore,
improving the robustness of DL algorithms against variations
in ultrasound images is necessary. Overall, to turn DL powered
biomedical ultrasound imaging into reality, there is a constant
need for developing DL algorithms, which are data efficient
and more robust against variations in ultrasound images.

In this paper, we examine DL techniques for classifying
samples based on ultrasonic backscattered RF data simi-
lar to the work of Nguyen et al. [5]. Classifying tissues
has recently evolved from model-based approaches such as
quantitative ultrasound (QUS) techniques to model-free, DL-
based techniques. Nguyen et al. [29] demonstrated that QUS
techniques are able to detect the presence of steatosis in
a rabbit model of fatty liver with a classification accuracy
of 84.11%. In a later study, Nguyen et al. [5] compared a
DL-based classifier to a QUS-based classifier for the problem
of fatty liver classifier and found that the DL-based classifier
outperformed the QUS-based approach with the accuracy of
74% versus 59%. While the traditional spectral-based QUS
approach does not utilize the phase information in the RF
signal, DL-based approaches can extract additional classifi-
cation power from the lost phase information from the RF
data. Furthermore, the DL-based approach does not require a
model like the QUS approach, which means that features of
the backscattered signal that are missed by the QUS approach
can be picked up by the DL approach. Subsequently, the
DL approach performs feature extraction and classification
simultaneously.

To improve classification, we consider the diffraction pat-
terns associated with ultrasonic transducers and how they
result in different regions or “zones” that must also be
learned to separate the system signal from the sample signal.
We propose a training strategy, which we call zone training.
In zone training, we propose to divide the complete field of
view of an ultrasound image into multiple zones such as pre-
focal, on-focus, and post-focal zones. Then, we train separate
neural networks for each zone using the data belonging to
the corresponding zone. In a sense, we train expert neural
networks for each zone as opposed to regular training, which
uses all data coming from the complete field of view to train
a single neural network. The main intuition is that at each

zone, there are different diffraction patterns and learning all
the patterns by a single network is harder than learning a
single diffraction pattern by a single expert network. The main
advantage of zone training is that it requires less data to
achieve similar classification performance in comparison to
regular training in low data regime.

Il. BACKGROUND AND MOTIVATION

Zone training is similar to applying an attention mask to the
input manually and training separate networks for each mask
to learn dedicated convolutional filters per zone. In this sense,
zone training applies attention in a simple and direct way to
incorporate the physics of diffraction into DL training. There
are methods in the literature that enable learning of varying
convolution kernels over the complete field of view, e.g., pixel-
adaptive convolution [30]. In general, attention mechanisms,
e.g. self-attention mechanisms, Guo et al. [31] were invented
initially for computer vision tasks, where the data are abundant
and they apply attention by altering network architecture and
hence model complexity to improve classification accuracy.
However, in the context of biomedical imaging, we are in a
different regime where the data are often scarce. Therefore,
we favor utilizing a smaller training set to achieve a desired
classification accuracy. Overall, zone training provides us a
method to reduce training set size by modifying data distri-
bution without altering model complexity. Furthermore, zone
training can be perceived as utilizing a symbolistic approach,
in the form of a simple if-else structure (if data are from
a certain zone, train a specific network), to transfer physics
knowledge into DL training. Combining DL and symbolic rea-
soning is known in the literature as neural-symbolic computing
(NSC), which can lead to data-efficient AI [32].

In our experiments, we chose tissue classification as the
primary application and tested our proposed method to classify
three distinct tissue-mimicking phantoms. To further motivate
zone training, we describe a clinical scenario when it is
the most relevant and advantageous. For instance, ultrasound
imaging can be used to examine and characterize tumors,
whether benign or malignant, which can exist at different
depths within a body. When using QUS approaches for tumor
characterization, a region of interest (ROI) inside the tumor
is selected to examine the signals from the tumor. We show
two tumor image examples where the tumors are at differ-
ent depths in Fig. 1, but the same probe is used. Different
depths correspond to different zones and red rectangles are
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Fig. 1. Tumor examples, in dB scale, whose scan depths vary in the field
of a transducer probe. The tumor images were acquired from rabbits
having mammary VX2 tumors. All animal experiments were approved
by the Institutional Animal Care and Use Committee at the University of
lllinois at Urbana—Champaign.

sampled from the tumors in those ultrasound images. In zone
training, we have separately trained DL algorithms for each
zone. Experimental studies for zone training in this work
were conducted under two assumptions following the clinical
scenario. First, we assume that we are not trying to detect the
ROL. In other words, we are given rectangular patches of data
to classify a tissue state. The ROI can be detected by another
algorithm or by the operator. The operator in the clinic can
adjust imaging settings to obtain the best imaging quality, and
then, select the ROI which should be considered as Human-
centered Al, whose aim is to amplify and augment rather than
displace human abilities [33]. The second assumption is that
the ROI is larger than the rectangular patches of data so that the
classification networks in this work, take uniform rectangular
patches as their input.

Ill. METHODS
A. Phantoms

Three different tissue-mimicking phantoms were used in the
experiments, which we designated as Phantoml, Phantom2,
and Phantom3. They are cylindrically shaped as shown in
Fig. 2 and their properties are summarized in Table I.

Phantom1, which mimics human liver, has been described
by Wear et al. [34]. Phantom] had a measured attenuation
coefficient slope of approximately 0.4 dB x cm™! x MHz ~'.
Its materials were produced based on the method of

K KT o i
» ‘ Soi®

Phantom1 Phantom?2 Phantom3
Fig. 2. Tissue-mimicking Phantoms.
TABLE |
PHANTOM PROPERTIES
Phantom1 Phantom?2 | Phantom3

Sphere diameter (pm) 75-90 41 +£ 2 50 £ 24
Background material 3.5% agar 2% agar | 2% agar
Sound speed (m/s) 1540 1539 1539
Attenuation 0.4 0.1 0.1
(dB/cm/MHz)

Madsen et al. [35] and they are macroscopically uniform. The
only nonuniformity in Phantom1 results from the random posi-
tioning of microscopic glass bead scatterers. The component
materials and their relative amounts by weight for Phantom1
are agarose (3.5%), n-propanol (3.4%), 75-90-um-diameter
glass beads (0.38%), bovine milk concentrated three times
by reverse osmosis (24.5%), liquid Germall Plus preservative
(International Specialty Products, Wayne, NJ) (1.88%), and
18-M Q2-cm deionized water (66.3%).”

Phantom2 and Phantom3 are both low attenuation phan-
toms, whose properties have been described by Anderson
et al. [36] and constructions have been described Madsen
et al. [37]. Both phantoms were made with the same weakly
scattering agar background material but contained different
sizes of scatterers. They have an attenuation coefficient slope
of approximately equal to 0.1 dB x cm™' x MHz ~!. Glass-
sphere scatterers (Potters Industries, Inc., Valley Forge, PA;
Thermo Fisher Scientific (formerly Duke Scientific), Inc.,
Waltham, MA) were used in both phantoms with weakly
scattering 2% agar background. The only difference in the
phantoms was the size distribution of the glass bead scatterers,
i.e., Phantom2 had a mean diameter of 41 um and Phantom3
had a mean diameter of 50 pm.

B. Ultrasound Scanning Procedures

Ultrasound gel was placed on the surfaces of the phan-
toms and then the phantoms were scanned with an 1.9-4/38
transducer using a SonixOne system (Analogical Corpora-
tion, Boston, MA, USA) providing an analysis bandwidth of
2-7.5 MHz. 1007 frames of post-beamformed RF data sampled
at 40 MHz were acquired from each phantom and saved for
offline processing.

The imaging array had a center frequency of approximately
5.5 MHz and was operated with a single axial focus at 2 cm
depth and a fixed elevational focus of 1.9 cm. The center
frequency of the pulse was chosen as 9 MHz to provide
higher bandwidth (resolution) for the transducer. The total
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Fig. 3. Patch extraction.

imaging depth was chosen as 4 cm, which is equal to the
height of the phantoms. Output power was chosen as —5 dB,
which corresponds to —5 dB lower power level with respect
to maximum output power of the system.

C. Dataset

We acquired 1007 ultrasound images per phantom by free-
hand motion. In total, we acquired 3021 ultrasound frames.
The size of an ultrasound image frame was 2080 pix-
els x 256 pixels. There were 2080 samples along the axial
direction that corresponded to 4 cm depth. Even though the
1.9-4/38 transducer has 128 channels, the SonixOne system
interpolates to 256 channels that correspond to 256 lateral pix-
els. The dataset of ultrasound images is also publicly available
at https://osf.io/7ztg3/ (DOI 10.17605/0OSEIO/7ZTG3). After
acquiring the ultrasound images per phantom, we extracted
rectangular image patches to be used in training and testing.

In patch extraction, which is depicted in Fig. 3, we extracted
rectangular image patches whose sizes were 200 pix-
els x 26 pixels that correspond to square image patches whose
size were 4 mm x 4 mm in physical dimensions. From one
ultrasound image, we could extract 81 (9 lateral x 9 axial)
image patches when we used the complete field of view as
in regular training. While extracting image patches, we did
not use the first 540 pixels in the ultrasound image. Axially,
we obtained the next line of individual patches by translating
the start of the next patch by 100 pixels along the axial depth.
Laterally, we obtained the next line of individual patches by
translating the start of the next patch by 26 pixels along the
axial depth. Overall, in patch extraction for regular training,
there were nine axial lines and nine lateral lines to extract
individual patches that lead to extracting 81 image patches
per ultrasound image.

For zone training, we first developed definitions for the
zones based on the diffraction pattern for a single focused
transducer. In this work, we broke the complete field of view
into three zones axially: a pre-focal zone which is centered at
1.4 cm, an on-focus zone which is centered at 2 cm, and a
post-focal zone which is centered at 2.6 cm. Then, each zone
coincides with three axial lines of the complete field of view
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Fig. 4. Example B-mode images of extracted patches in dB scale
from the pre-focal zone centered at 1.4 cm. Classifying these patches is

difficult by visual inspection. Top row: Phantom1; Middle row: Phantom2
and Bottom row: Phantom3.

in patch extraction. Therefore, three zones together use the
same data as in regular training. For each zone, we extracted
27 (9 lateral x 3 axial) image patches whose sizes were
200 pixels x 26 pixels corresponding to 4 mm X 4 mm in
physical dimensions. Example B-mode images of the patches
corresponding to each phantom are provided in Fig. 4.

D. Training

DL training was done using two machines each with a single
GPU. One machine had TITAN RTX and the other machine
had RTX AS5000. All implementations were done with the
PyTorch library [38]. As a data preprocessing step, we applied
z-score normalization at the patch level, i.e., the mean intensity
value of patches was subtracted from each patch, and then,
each pixel in a patch was divided by the standard deviation
of the intensity of the patches. The batch number was cho-
sen as 128 throughout all experiments. Horizontal flip with
0.5 probability was implemented as a data augmentation step
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TABLE I
NETWORK ARCHITECTURE

Layer Name Output Size Regular & Zone Training

convl&relu 48 x 4 x 96 11 x 11, stride4
conv2&relu 48 x 4 x 256 5 X 5, pad2
conv3&relu 48 x 4 x 384 3 x 3,padl
convd4&relu 48 x 4 x 384 3 x 3,padl
convS&relu 48 x 4 x 256 3 x 3,padl
maxpooll 23 x 1 x 256 3 x 3, stride2
fcl&relu 4096 5888 x 4096 connections
fc2&relu 4096 4096 x 4096 connections
fc3 3 4096 x 3 connections

in the training process. We used the Adam algorithm [39]
as the optimizer in all experiments. Additionally, the models
were trained using cross entropy loss with uniform class
weights, which includes built-in softmax function in PyTorch
implementation [38].

In this work, we used CNN architectures consisting of two
parts: feature extractors that consist of convolution layers,
max-pooling layers, and nonlinear activation functions, and
a classifier that consists of fully connected layers and non-
linear activation functions. They also have significantly fewer
parameters and so they can be trained more efficiently than
fully connected networks [40]. We used a slightly modified
CNN architecture, which is derived from AlexNet [41] and
is shown in Table II. In the training, dropout layers with
0.5 probabilities were added to improve the regularization
and deal with over-fitting, before fully connectedl and fully
connected?2 layers. Initial weights for the network were chosen
based on the original paper [41].

In the experiments, we searched the learning rate and
the epoch number using a validation set. More specifically,
the learning rate and the epoch number were determined to
achieve “asymptotic test accuracy,” which ideally is defined
as the number of epochs of training required such that any
further training provides no improvement in test accuracy. The
process of forming training, testing, and validation sets started
with randomly selecting the desired number of ultrasound
images per phantom. The same number of ultrasound frames
were set apart for validation, training and testing sets. Then,
we extracted patches, as described in Section III-C, to form
the training, testing and validation sets. After adjusting the
learning rate and epoch number using the validation set,
we trained neural networks in the training sets and obtained
classification accuracies in the test sets. We repeated each
experiment ten times starting from random ultrasound frame
selection for training and testing sets. In Section IV, we report
the learning rate, epoch number, mean classification accuracy,
and standard deviation for each experiment.

E. Depth-Aware Training

In patch extraction, global coordinates are lost. Therefore,
in addition to regular training, zone training is also compared
against depth aware training, which utilizes global coordi-
nates in the training. In depth aware taining, we input the
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Fig. 5. Depth aware training: two-layered input, one with depth infor-
mation and the other one with ultrasound RF data.

depth as an additional feature. Specifically, the CNN now
takes a two-layered input, one layer is the image patch of
200 pixels x 26 pixels and the other one is a constant array
of 200 pixels x 26 pixels whose values correspond to the
relative depth, as shown simplistically in Fig. 5. The depth
information is normalized between 0 and 1 where O is the
depth of the nearest patch and 1 is the depth of the farthest
patch. Overall, depth aware training is designed to consider
the global location of the input patch during both training
and testing so that the DL network adapts itself based on the
relative depth being near O or 1.

V. RESULTS

Results are organized into two parts. In the first part,
we present results that help us to determine if our zone defini-
tions are favorable by experimenting with axial zone widths,
axial zone locations, and by sweeping testing zone centers
around training zone centers. Our purpose in this part is to
determine a reasonable way to divide the field of view into
multiple zones, which is required for zone training. In the
second part, we investigate the relationship between training
set size and classification accuracy for zone training, regular
training, and depth aware training.

A. Examination of Zone Definitions

We now present four results that are helpful in determining
zone definitions. In the first result, we investigate how much
classification accuracy drops as we shift the testing zone away
from the training zone. Specifically, we train a neural network
using patches from the on-focus zone, and then, we test the
neural network with patches from nearby zones. This result
shows us how much the diffraction patterns change around the
focal zone. In the second result, we repeat the same experiment
for the pre-focal zone and the post-focal zone to investigate
how much the diffraction patterns change around these zones.
In the third result, we experiment with axial zone width in
terms of number of overlapping patches per zone. We plot
classification accuracy for the on-focus zone when we increase
the number of overlapping patches used in patch extraction.
In the fourth result, we experiment with axial zone locations
and we plot classification accuracy at different zone centers.

In Fig. 6, classification accuracy is plotted as the testing
zone center is swept by 0.8 cm toward and away from the
transducer around the training zone center. We trained a neural
network using patches from the on-focus zone centered at
2 cm depth, and then we tested the neural network with
patches from zones centered at 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4,
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Fig. 6. Sweeping testing zone center for a network trained using

the on-focus zone: classification accuracy versus distance between the
training and testing zones for different dataset sizes. The colors indicate
the size of the training set. The blue color is for 675 patches which is
labeled as small, the red color is for 2700 patches which is labeled as
medium, and the yellow is for 13500 patches which is labeled as large.

2.6, and 2.8 cm, respectively. Overall, the y-axis represents
classification accuracy and the x-axis represents the relative
distance between the testing zone and the training zone. For
instance, a value of —0.8 means that the testing zone is 0.8 cm
closer to transducer than the training zone and +40.8 means
that the testing zone is 0.8 cm farther away from transducer
than the training zone. We repeat the experiments for dif-
ferent sizes of training sets. We used 675 image patches,
2700 image patches and 13 500 image patches in the training
which correspond to 25 ultrasound images, 100 ultrasound
images, and 500 ultrasound images, respectively. In the figure,
colors indicate the size of the training set. Epoch numbers and
learning rates in the training were chosen as 2000 and 5e-6
for 25 ultrasound images, 1500 and le-5 for 100 ultrasound
images, 400 and le-5 for 500 ultrasound images.

Several observations can be made form Fig. 6. For the small
and medium sets, when the testing zone moved closer to
the transducer by 0.4 cm, classification accuracy dropped to
70%. However, when the testing zone moved away from the
transducer by 0.4 cm, classification accuracy remained above
80%. Similarly, for the large set, when the testing zone moved
closer to the transducer by 0.4 cm, classification accuracy
dropped to below 80%. However, when the testing zone moved
away from the transducer by 0.4 cm, classification accuracy
remained well above 85%. Similar observations can be made
at other spatial locations as well.

In Fig. 7, similar to Fig. 6, we plot classification accuracy
as the y-axis and relative distance between testing zone and
training zone as the x-axis. In this figure, we experiment
with the pre-focal zone and the post-focal zone in addition
to the on-focus zone. When we trained AlexNet using patches
from the pre-focal zone, we tested the network with patches
centered at 0.6 cm, 0.8 cm, 1 ¢cm, 1.2 cm, 1.4 cm, 1.6 cm,
1.8 cm, 2 cm, and 2.2 cm. When we trained a CNN using
patches from the post-focal zone, we tested the network with
patches centered at 1.8 cm, 2 cm, 2.2 cm, 2.4 cm, 2.6 cm,
2.8 cm, 3 cm, 3.2 cm, and 3.4 cm. In this result, we used
a fixed training set size, which was 13500 image patches
or 500 ultrasound images. In the figure, colors represent the
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Fig. 7. Sweeping testing zone center for networks trained on different
zones: classification accuracy versus distance between training and
testing zones. Colors represent the training zone. The blue color is for
the pre-focal zone, which is labeled as prefocal. The orange color is
for the on-focus zone, which is labeled as onfocus. The yellow color is
for the post-focal zone, which is labeled as postfocal.
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100 ultrasound images which is labeled as medium, and the yellow is
for 500 ultrasound images which is labeled as large.

training zone. Epoch numbers and learning rates in the training
were chosen as 400 and le-5 for all zones.

Several observations can be made from Fig. 7 results. When
the testing zone was closer to the transducer by 0.4 cm,
classification accuracies were slightly lower than 90%, slightly
lower than 80% and 75% for the post-focal zone, the on-focus
zone and the pre-focal zone, respectively. However, when the
testing zone moved away from the transducer by 0.4 cm, clas-
sification accuracies were around 90% for all zones. Second,
we observed that the post-focal zone was the most robust
zone against the shift in the testing. Classification accuracy
for the post-focal zone remained approximately above 80% in
all shifts.

In Fig. 8, we plot classification accuracy as the y-axis
and axial zone width as the x-axis for the on-focus zone.
In zone training, we extract three overlapping patches per
ultrasound image as described in Section III-C and shown in
Fig. 3. In this result, we make an exception to experiment
with zone width, which is defined in terms of number of
patches. We now extract 3, 6, and 9 overlapping patches
from each ultrasound image for the on-focus zone and these
numbers form the x-axis. Specifically, extracting three patches
coincides with the original on-focus zone definition, while
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extracting six patches coincides with merging pre-focal and
on-focus zones; and extracting nine patches coincides with
regular training. Additionally, we used three different sizes
for the training set. We used 25 ultrasound images, which
corresponds to 675, 1350, 2025 training image patches when
we extract 3, 6, and 9 patches from each ultrasound image,
respectively. Similarly, we used 100 ultrasound images, which
corresponds to 2700, 5400, 8100 training image patches and
we used 500 ultrasound images, which corresponds to 13 500,
27000, 40500 training image patches. As a side note, for this
graph, we used the same training and testing zones, unlike the
previous two graphs, and colors in the graph represent training
set sizes. Moreover, epoch numbers and learning rates were
were chosen in accordance with the previous figures. From
the Fig. 8, one can observe that for the small dataset size
increasing the number of patches, i.e., broadening the zone
size, resulted in poorer classification.

In Fig. 9, we plot classification accuracy as the y-axis
and zone center as the x-axis. For this graph, we tested
and trained networks from the same zone while sweeping
the zone center axially. We trained and tested our networks
for zones centered at 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,
and 2.8 cm. We repeat the experiments for different sizes
of training sets. We used 675 image patches (25 ultrasound
images), 2700 image patches (100 ultrasound images), and
13500 image patches (500 ultrasound images) in the training.
Epoch numbers and learning rates were chosen in accordance
with the previous figures.

B. Training Set Size Versus Classification Accuracy

This section compares the performance of zone training
against that of regular training and depth-aware training under
various data conditions from low data size regimes to larger
data size regimes to investigate if zone training is more
successful when there is a low amount of data. Tables III-VIII
are confusion matrices that list the classification accuracies for
different training and testing strategies using training set sizes
of 10, 25, 50, 100, 200, and 500 ultrasound images. Rows
represent training strategies: The first row, denoted as pre-
focal, is for training with patches from the pre-focal zone.
The second row, denoted as on-focus, is for training with

TABLE IlI
CLASSIFICATION ACCURACIES WITH TEN ULTRASOUND IMAGES
Pre On Post
Pre-Focal 81.01+£3.20| 75.18+3.67| 38.99+1.91
On Focus 53.004+4.25| 86.77+2.81| 74.564+3.33
Post Focal 42.78+3.90| 74.00+£4.82| 86.96+1.88
Regular 78.624+2.53 | 83.52+2.00| 85.1442.13
Depth-Aware 80.74+2.43| 83.96+3.17| 87.27+2.45
TABLE IV
CLASSIFICATION ACCURACIES WITH 25 ULTRASOUND IMAGES
Pre On Post
Pre-Focal 86.65+2.91| 77.70+4.14| 42.73+9.93
On Focus 54.1942.86| 89.65+1.85| 73.0743.11
Post Focal 43.114+3.61| 73.17+£4.40| 88.45+1.29
Regular 81.64+2.80| 87.49+1.31| 87.35£1.73
Depth-Aware 82.79+1.52| 87.89+0.91| 88.81£1.23
TABLE V
CLASSIFICATION ACCURACIES WITH 50 ULTRASOUND IMAGES
Pre On Post
Pre-Focal 91.664+0.93 | 83.91+2.41| 56.604+8.91
On Focus 53.4243.12| 90.42+0.96| 73.984+3.51
Post Focal 44.754+3.10| 77.87£2.98| 89.63+1.12
Regular 89.66+1.61| 89.23+1.85| 89.01£1.06
Depth-Aware 90.15£1.90| 90.324+1.49| 89.914+1.95
TABLE VI
CLASSIFICATION ACCURACIES WITH 100 ULTRASOUND IMAGES
Pre On Post
Pre-Focal 93.60+0.85| 84.09+1.51| 62.1948.20
On Focus 57.60£3.94| 91.67+0.67| 74.404+2.06
Post Focal 48.62+3.13 | 78.53+4.54| 91.63+0.82
Regular 93.364+1.22| 92.04+0.79| 92.084+0.57
Depth-Aware 93.58+1.17| 92.61+£0.99| 92.774+1.06

patches from the on-focus zone. The third row, denoted as
post-focal, is for training with patches from the post-focal
zone. The fourth row, denoted as regular, is for training with
regular training strategy. The last row, denoted as depth-aware,
is for training with Depth-Aware Training strategy. Columns
represent testing strategies: testing with patches from the pre-
focal zone, testing with patches from the on-focus zone,
testing with patches from the post-focal zone and testing with
complete field of view, respectively, from first to last column.
Epoch numbers and learning rates were chosen in accordance
with the previous figures, which were 2500 and 5e-6 for ten
ultrasound images, 2000 and 5e-6 for 25 ultrasound images,
2000 and le-5 for 50 ultrasound images, 1500 and le-5 for
100 ultrasound images, 1000 and le-5 for 200 ultrasound
images, 400 and le-5 for 500 ultrasound images.

The tables verify that zone training had better classification
accuracy than regular training and Depth-Aware Training in
the low data regime. When we used 10, 25, or 50 ultrasound
images in training, zone training performed 1%-5% better than
regular training and 1%-4% better than Depth-Aware Training.
Additionally, depth-aware training performed approximately
1% better than Regular Training for all training set sizes.
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TABLE VII
CLASSIFICATION ACCURACIES WITH 200 ULTRASOUND IMAGES
Pre On Post
Pre-Focal 94.694+0.41| 84.43+£0.56| 63.774+3.93
On Focus 61.454+4.47| 94.19+0.35| 76.06+2.28
Post Focal 57.9545.66| 83.79+1.98| 93.414+0.53
Regular 94.7940.35| 94.50+0.41| 94.0040.35
Depth-Aware 95.1740.27| 95.00+0.29 | 95.08+0.36
TABLE VIII
CLASSIFICATION ACCURACIES WITH 500 ULTRASOUND IMAGES
Pre On Post
Pre-Focal 96.554+0.22 | 84.53+0.88 | 66.5345.62
On Focus 62.254+4.92| 96.21+£0.36| 75.874+3.05
Post Focal 58.97+£8.04| 82.3442.74| 95.514+0.89
Regular 97.094+0.77| 96.74+0.67 | 96.7540.32
Depth-Aware 97.40+0.10| 97.324+0.16| 97.1540.16

Lastly, the performance of the zones varied as the size of the
training set was reduced. The classification accuracy dropped
around 17% when we used ten ultrasound images in training
in comparison to 500 ultrasound images for the pre-focal
pattern. For the on-focus pattern, the same percentage drop
was approximately 12 points and for the post-focal pattern,
the same percentage drop was around ten points.

V. DISCUSSION

We proposed a DL training strategy, named zone training,
where we split the complete field of view into zones such
as the pre-focal, the on-focus and the post-focal zones. Then,
we trained separate networks for each zone. We investigated
zone training thoroughly by experimenting with zone defini-
tions and their behavior under different training set sizes.

The figures provide several important observations. From
Fig. 6, we observed that as the testing zone moved toward
the transducer, classification accuracy dropped faster and it
was valid for small, medium, and large training set sizes. The
observation indicates that the pre-focal diffraction pattern was
more complicated and it changed faster than the post-focal
diffraction pattern.

In Fig. 7, we quantified how classification accuracy
decreased when the testing zone moved away from the training
zone for training with the on-focus zone, the pre-focal zone,
and the post-focal zone. First, we observed that when the
testing zone was closer to the transducer, classification accura-
cies dropped faster for the pre-focal and on-focus zones. For
the post-focal zone, classification accuracies were relatively
symmetric around the zone center. This further verified our
previous observation stating that the pre-focal pattern was
more complicated and changed quickly in comparison to
the post-focal pattern. Another observation was that for the
pre-focal training, classification accuracy deteriorated slowly
when the testing zone moved away from the transducer in
comparison to the testing zone moving toward the transducer,
which further illustrates the complicated behavior of the pre-
focal pattern.

In Fig. 8, we investigated the relationship between clas-
sification accuracy and zone width in terms of overlapping

patches for the on-focus zone. First, we observed that as
we increased the number of patches, classification accuracy
remained relatively constant for the medium size training set,
while classification accuracy slightly increased for the large
size training set. However, classification accuracy dropped
as we increased the number of patches for the small size
training set. Specifically, classification accuracy dropped to
around 87% from 90% as we increased the number of patches
from 3 to 6 and it stayed relatively constant when we increased
the number of patches to 9. These observations indicate that
zone training was more robust when the training set size was
smaller. However, regular training can be preferable when the
training set size was larger.

In Fig. 9, we determined the best zone location axially in
terms of classification accuracy. We observed that the rela-
tionship between classification accuracy and the zone location
depended on the training set size. For the large training
set size, the classification accuracy stayed relatively constant
around 96% in all axial locations. For the medium training set
size, the classification accuracy degraded from approximately
94% to 92% when the zone location moved from 1.2 to 2.8 cm.
That indicates the pre-focal zones are the most desirable zones
for the medium size training set size. However, for the small
training set size, the zones around the on-focus zone are the
most desirable. Fig. 9 is useful to determine the most optimal
zone center to characterize tissue samples for different training
conditions. However, using a single zone is only meaningful
when the phantoms are uniform and we do not lose any
information by discarding other zones in our decision process.
If there is some spatial information to be taken advantage of in
our classification decision or we want to increase classification
accuracies using all information that we have, then we need
to separate the complete field of view into multiple zones and
train multiple expert networks to be used in a voting schema.
In that case, Fig. 9 is still useful for determining which expert
network should have higher effect in a voting schema.

In Tables III-VIII, we presented confusion matrices to
quantify classification accuracies with respect to different
training set sizes, which are 10, 25, 20, 100, 200, and
500 ultrasound images. First, zone training had better clas-
sification accuracy than regular training when the training
data were scarce. However, when the training data size was
larger, regular training performed better than zone training.
For example, when we used 200 or 500 ultrasound images
in training, regular training performed around 1% better than
zone training for all zones. However, when we used 10, 25 or
50 ultrasound images in training, zone training performed
better than regular training. When we used 100 ultrasound
images, regular training and zone training performed similarly.
Second, depth-aware training was always better than regular
training. Third, zone training was slightly better than depth-
aware training when the training data were scarce. When we
used 10, 25 or 50 ultrasound images in training, zone training
performed better than depth-aware training for the pre-focal
and on-focus zones. However, they performed similarly for
the post-focal zone. Moreover, the post-focal pattern was more
robust against decreasing training set size in comparison to the
on-focus pattern; and the on-focus pattern was more robust in
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comparison to the pre-focal pattern for all training strategies
(Zone, Regular, and Depth-Aware Training). Finally, the results
from the tables indicate that the training set should comprise
data specifically from areas that are task relevant. For example,
if a clinical imaging session investigates data in the pre-focal
zone, but the training data came from the focal or post-focal
zone, the classification performance may degrade significantly.

In this work, our proposed method was applied to tissue
classification. However, it can be applicable to other DL
applications such as detection, segmentation, and image for-
mation. Therefore, zone training can be tested for different
applications. Additionally, it would be interesting to test zone
training with different types of neural network structures even
though zone training is not directly related to the neural
network structure. Moreover, the optimal number of zones
should be investigated in greater detail. The optimal number of
zones can change from problem to problem depending on the
imaging substrates, imaging system, problem complexity, and
imaging settings. It is also important to consider varying zone
widths for different focal zones, as this can have a significant
impact on the optimal number of zones, e.g., breaking the
pre-focal zone into multiple, smaller zones might improve the
accuracy in the pre-focal region. Furthermore, different patch
sizes including pixel-wise classification, which is known as
image segmentation, can be investigated within the context
of zone training. Ultimately, we would like to identify the
most data-efficient DL algorithm in the context of tissue
characterization and zone training can be a useful tool in low
data regimes for ultrasound imaging.

VI. CONCLUSION

We have presented a data-efficient DL strategy for tissue
classification with ultrasound imaging, which we named zone
training. Zone training has the ability to maintain high classi-
fication accuracy, while reducing training set size. Therefore,
it should be considered as a robust approach for DL-powered
ultrasound imaging in the context of tissue characterization.
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