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Systematic Frequency Error in Laser
Synchronization Circuits for Fiber-Optic

Time-Transfer Systems
Ł. Śliwczyński , Member, IEEE, P. Krehlik , Ł. Buczek , and H. Schnatz

Abstract—This article addresses the problem of a sys-
tematic frequency error occurring in semiconductor-laser
frequency synchronization circuits based on counting the
beat note between the two lasers in a reference time inter-
val using a high-frequency prescaler. Such synchronization
circuits are suitable for operation in ultraprecise fiber-optic
time-transfer links, used, e.g., in time/frequency metrology.
The error occurs when the power of the light coming from
the reference laser, to which the second laser is synchro-
nized, is below about −50 to −40 dBm, depending on the
details of particular circuit implementation. The error can
reach tens of megahertz if left out of consideration and
does not depend on the frequency difference between the
synchronized lasers. Its sign can be positive or negative,
depending on the spectrum of the noise at the prescaler
input and the frequency of the measured signal. In this arti-
cle, we present the background of the systematic frequency
error, discuss important parameters allowing for predicting
the error value, and describe the simulation and theoretical
models being helpful for designing and understanding oper-
ation of discussed circuits. The theoretical models presented
here show good agreement with the experimental data, which
demonstrates the usefulness of the proposed methods. Implementing polarization scrambling to mitigate the effect of
polarization misalignment of the lights of the lasers used was considered and the resulting penalty was determined.

Index Terms— Calibration uncertainty, fiber optic, frequency prescaler, laser frequency synchronization, systematic
frequency error, time transfer.

I. INTRODUCTION

F IBER-OPTIC time and frequency (T&F) transfer starts
to become a well-established technology that can be

used not only to compare clocks in the optical domain but
also to distribute timescales from nated universal time (UTC)
laboratories to distant users. Apart from metrology laboratories
and those involved directly in time, frequency, or metrology
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activities [1], [2], [3], the applications include a broad range of
scientific cases, e.g., spectroscopy [4], astronomy [very long
baseline interferometry (VLBI)] [5], [6], [7], or geodesy [8].
Due to the high stability and accuracy possible by fiber-optic
transfer, there is also a growing number of sensitive com-
mercial applications, such as in telecommunication [9], [10],
navigation and positioning [11], and smart grids [12], or in the
financial sector [13], where a certain amount of independency
from global navigation satellite systems (GNSS), ubiquitously
used for T&F transfer, is important [14].

A simplified schematic of a fiber-optic time-transfer link
with stabilized propagation delay is shown in Fig. 1. Apart
from a set of local and remote fiber-optic transmitters (TX)
and receivers (RX), it includes a delay compensation system,
which can be realized using a pair of matched variable
electronic delay lines [15] or, in some cases, variable optical
delays [16]. The optical TX needs to use different wavelengths
(λA and λB) to allow filtering out the undesired optical signals
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ŚLIWCZYŃSKI et al.: SYSTEMATIC FREQUENCY ERROR IN LASER SYNCHRONIZATION CIRCUITS 345

Highlights
• A systematic frequency error occurs in the laser synchronization circuits because of a narrow-band noise present

at the input of the prescaler used to divide down the beat note frequency.

• The models proposed in the text help to understand an analyze the problem, giving a tool to predict the value of the
frequency error.

• Developed tools and theory will help design and implementation of picosecond-accurate long-distance fiber-optic
time transfer systems using laser transmitters synchronized to weak incoming light.

Fig. 1. Simplified diagram of a stabilized time-transfer fiber-optic link. OF: optical filter.

resulting from Rayleigh backscattering [17] and reflections.
In such a link, the timescale t0 transferred to the remote end
of the link can be expressed as

t0 = tREF − TRT/2 − 1τ AB/2 (1)

where TRT is the round-trip propagation delay of the link
and 1τ A↔B = τA→B − τB→A is the link asymmetry being
the difference of the forward (τA→B) and backward (τB A)

propagation delays of the link. The link asymmetry can be
further decomposed into

1τ A↔B = 1λA↔B DT + τSagnac + τpol + τC (2)

where the first term is related to the chromatic dispersion of
the fiber (1λA↔B is the wavelength difference of the local and
remote lasers and DT is the chromatic dispersion accumulated
along the fiber), τSagnac is the Sagnac correction [18], τpol is
related to the polarization dispersion, and τC is the correction
related to the asymmetry of propagation inside the local and
remote terminals.

For an accurate time transfer, it is essential to know both
TRT and 1τ A↔B with low uncertainties. This is not a problem
for the round-trip delay, which requires only a time interval
measurement and can be realized with a few picoseconds
uncertainty (see [19]). In the case of link asymmetry, how-
ever, the uncertainty depends also on the accuracy of the
wavelengths of the lasers and the accuracy of determining
the accumulated chromatic dispersion DT . The uncertainty
contribution related to this term may be large and can reach
tens of picoseconds for long links [9].

A possible solution to this problem is to use one of the
lasers (e.g., from the local terminal of the transfer system) as
a source of the reference light and stabilize the wavelength of
the second laser to this wavelength with a desirable offset [20].
In hybrid systems, transferring jointly stable optical frequency
and time [21], [22], [23], [24], this ultrastable optical fre-
quency can also be used as a source of reference light. Using

this approach, the uncertainty contribution can be reduced to
a single picosecond level, even for 1000-km-long links, which
requires uncertainty of the lasers’ relative frequency lower than
about 5 MHz (see [25] for detailed discussion).

To obtain good results, however, a level of care is required as
it has already been shown that such a synchronization system
is vulnerable to a systematic frequency error [20], [25], [26],
which can be unacceptably large when the power of the
reference light is not high enough. Thus, the main goal of
this article is to thoroughly discuss the effects occurring in
the laser frequency synchronization circuits under low optical
levels, present the background of the observed systematic
error, provide analytic and simulation models, as well as
discuss available countermeasures to keep this error under
control. First, we present a short description of the basic laser
frequency synchronization circuit.

II. CONCEPT OF LASERS FREQUENCY
SYNCHRONIZATION

The main idea behind the laser frequency synchronization
circuit is shown in Fig. 2(a). Part of the reference light (νR)

is combined with the light from the synchronized laser (νS)

and produces a beat signal in the beat photodiode (PD).
The beat frequency fBEAT, equal to the difference fBEAT =

|νR − νS|, is then processed in the laser stabilization sub-
system, producing the signal controlling the frequency of
the synchronized laser. Details of this block are sketched in
Fig. 2(b). In practice, fBEAT must match the dense wavelength-
division multiplex (DWDM) grid [27]. Due to the availability
of suitable optical filters the frequency offset can be either
12.5, 25, or 50 GHz. In the first step, such high frequency
is downconverted to a more convenient intermediate value
(selected to be around 2.6 GHz in the circuits discussed
hereinafter), then bandpass filtered, and next divided down by
N M in a divider chain, where the initial division is carried
out by a fast prescaler. This divided frequency needs to
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Fig. 2. (a) Idea of laser frequency synchronization and (b) details of the laser synchronization circuit.

be low enough to enable its counting using a timer/counter
implemented in a microcontroller, which is also used to run a
proportional–integral–derivative (PID) controller.

The offset frequency between the reference and the synchro-
nized lasers fBEAT = |νR − νS| can be found by analyzing the
equilibrium condition in the feedback loop, which is formed
by the synchronization system. It is equal to

fBEAT = N M fREF + fLO = (N M + K ) fREF (3)

where K is the multiplication factor of the microwave synthe-
sizer used for the downconversion of the original beat signal.
The frequency of the synchronized laser may be either higher
or lower than νR , depending on the sign of the feedback loop
gain.

III. ORIGIN OF FREQUENCY ERROR AT LOW
OPTICAL LEVELS

The laser frequency synchronization circuit is a subsidiary
of the entire fiber-optic transfer system, so it should be able to
operate with a low optical input power, representing a small
fraction of the reference light only. In such a case, the expected
beat current is also low and the influence of the system noise
becomes important. This noise can be assumed white and is
composed of the shot noise of the light impinging the PD
(mostly a relatively high power of the synchronized laser) and
the thermal noise of the resistor (50 �) terminating the beat
PD, with also a small contribution of the noise of the amplifiers
and the mixer. It is assumed in all further considerations that
the spectrum of the noise, which is distributed around fIF,
is limited by the IF filter whose passband is fully covered
by the bandwidth of the prescaler, making the operation of
the circuit greatly independent on the prescaler bandwidth.
The noise affects the operation of the fast prescaler (i.e., the
N divider), influencing the number of cycles counted in a
reference time interval, which is used to estimate fBEAT.

An example of such behavior is shown in Fig. 3, measured
with the laser control fixed (i.e., with a feedback loop inactive).
In Fig. 3(a), the case is shown when an optical power of
around −40 dBm is applied as the reference light together
with a power of about 5 dBm from the synchronized laser,
producing substantial beat note, visible as a narrow peak in
the spectrum at 2.6 GHz over the noise background. The
spectrum of the noise was shaped by the filter with the noise

bandwidth of about 1.5 GHz (BFCV-2610 + by Mini Circuits),
which was followed by the prescaler rated for the operation
up to 4 GHz (HMC988 by Hittite, configured as a by eight
dividers). The output of the prescaler shows the square wave
with the frequency of 325 MHz, which is an expected result.
When the reference light is removed, however, leaving only
noise as an input to the prescaler [see Fig. 3(b)], its output
changes into a noisy waveform whose mean frequency is
quite well defined (see Fig. 4 for the data for a few-day-long
measurement, showing a mean frequency of about 322 MHz).
One may thus expect that if the prescaler input power varies
the mean, the output frequency of the prescaler also varies
between two extremes—one corresponding to counting the
pure signal (i.e., the desired frequency) and the other one
corresponding to counting the pure noise, giving rise to a level-
dependent systematic frequency error.

IV. ESTIMATION OF PRESCALER FREQUENCY ERROR

To get a deeper insight into the abovementioned error,
we started from modeling the behavior of the prescaler treat-
ing it as a simple level-crossing detector driven by a time-
continuous random process with a zero mean. Defining the
number of zero crossings in a time interval of duration T
as n(T ), the mean frequency can then be expressed simply
as fM = E{n(T )}/2T , where E{·} denotes an expectation
(division by 2 is because both rising and falling edges are
counted in this model). A known result from the level-crossing
theory, which has been a subject of study for a long time,
is that for a normal random process of power spectral density
S( f ), the mean frequency is [29]

fM =

√∫
f 2S( f )d f /

∫
S( f )d f . (4)

Applying (4) to the noise spectral density shown in
Fig. 3(b) gives 2569 MHz, which is in a reasonably good
agreement with the experimental value, equal to 2576 MHz
(8 × 322 MHz). This result suggests that treating the prescaler
as a level-crossing detector is a reasonable modeling approach,
worth further investigation. Equation (4) can thus be used
to determine the mean frequency corresponding to the band-
limited noise, hereinafter referred to as fMn .

To tackle the problem when a sinusoidal component is
also present, as such a process is no longer normal [29],
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Fig. 3. Operation of the high-frequency prescaler in the presence of a band-limited noise with (a) high sinusoidal component at the input and
(b) only the noise applied to the input.

Fig. 4. Mean output prescaler frequency driven by a bandpass noise
only. The fluctuations visible are due to environmental changes in a non-
air-conditioned laboratory.

we decided to start with a simulation model developed in
MATLAB. The model exploited is based on the same level-
crossing approach discussed above. We used 224 samples x[k]
(k is the sample number) taken from the continuous signal
composed of a pure sinusoid with frequency fx and a band-
limited normal noise with a power spectral density flat in the
frequency range between fL and fH , where fL < fx < fH .
To determine the mean frequency, we counted a number of
zero crossings in the entire vector x[k] by searching for the
condition x[k]x[k + 1] < 0. The amplitude of the sinusoidal
component was varied as well as its frequency and we chose
the parameters of the noise density to mimic the conditions
shown in Fig. 3.

The results of the simulations are shown in Fig. 5(a) where
a relative frequency error 1 f / fx , where 1 f = fM − fx ,
is plotted versus the signal-to-noise ratio (SNR) for a few
different values of the prescaler input frequency. As it can
be seen, both the value and the sign of the error depend on
the difference between fx and fMn . When fx > fMn the
error is negative and changes its sign to positive under the
opposite condition. When fx is located far from fMn and
the SNR is low, the error can be huge—it can easily reach
tens of megahertz. The error can be small, on the other hand,
if ≈ fx fMn is selected.

In Fig. 5(b) and (c), the results of simulations are compared
with the experimental data obtained for a few high-speed
prescalers (rated for the operation at a maximum frequency
of 4, 6.5, and 12 GHz) for two different values of fx shown

in Fig. 5(a), equal to 2.16 and 3.12 GHz. It is evident from
the presented plots that the choice of particular prescaler is
not critical as all examined circuits show similar behavior.
The agreement between the measurement and the simulation
is also satisfactory—the real-world data show a slightly greater
error than predicted from the simulation model, which is not
surprising noting the model’s simplicity. This is, however,
interesting that such a simple model can still give reasonable
results in a relatively large range of SNRs. As mentioned
previously, the acceptable level of error in laser frequency
synchronization circuits for ultraaccurate time-transfer links
is about 5 MHz [25] that calls for relative error at the level
around 2 · 10−3 [shown with a dashed line in Fig. 5(b) and (c)].
To fulfill such a condition, the required SNR must be higher
than some 8 dB in the presented examples and possibly even
lower when fx closer to fMn is selected (the question of the
minimum required SNR will be addressed further in the text).

In addition to the simulation model (which requires sub-
stantial computation time), it would be desirable to have a
formula allowing fast estimation of the systematic frequency
error. The results available in the literature and known to the
authors are, however, very general [28], [30] and cannot be
directly applied. In this situation, an approximate solution may
appear to be useful. A straightforward approach is to check
whether (4) can be extended to the cases where both bandpass
noise and a sinusoidal component are present in the spectrum
entered in (4). Inserting the spectral density in the form
S( f ) = Sn( f ) + PSδ( f − fx ) into (4), where Sn( f ) is the
noise spectrum (continuous) and the Dirac delta represents the
sinusoidal component with power PS and frequency fx , and
performing the required calculations gives the approximated
mean frequency f A

M in the form

f A
M =

√(
f 2

Mn + f 2
x SNR

)
/(1 + SNR) (5)

where SNR =PS/
∫

Sn( f )d f is the SNR.
The usefulness of the discussed approximation can be

verified by comparing it with the results of the simulation.
We assumed that Sn( f ) is uniformly distributed between the
frequencies fL and fH . The comparison is shown in Fig. 6,
where the simulation result f S

M is marked with blue squares
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Fig. 5. Systematic frequency error caused by the presence of band-limited noise at the prescaler input: (a) simulation results and
(b) and (c) comparison of the simulation with experimental data. fMn = 2576 MHz is assumed.

Fig. 6. Accuracy of approximation shown in (a) linear scale and (b) and (c) logarithmic scale using various approximation approaches.
fMn = 2576 MHz is assumed.

and the approximation f A
M is marked with red crosses. It is

not surprising to see that the agreement is fairly good in a
range of very low SNR where the noise dominates, making
the prescaler input signal almost normal (thus, assumptions of
(4) are almost satisfied). It deteriorates, however, in the more
interesting range of the SNR where the sinusoidal component
is dominating, even despite the fact that f A

M → fx when
SNR → ∞. This is because the signal driving the prescaler
can now not be assumed to be normal, so the assumptions
related to (4) are certainly violated. This deterioration is
clearly visible in Fig. 6(b) where the logarithmic plot of the
relative approximation accuracy, defined as

∣∣ f A
M − f S

M

∣∣/ f S
M ,

is shown for fx = 2160MHz as an example. Fortunately, the
approximation accuracy improves if fx is close to fMn [see
Fig. 6(c)].

Looking for a means to further improve the approximation
accuracy for SNR > 0 dB, we discovered that substituting
(exp(SNR) − 1) for SNR in (5), resulting in

f A
M =

√
f 2

Mne−SNR + f 2
x

(
1 − e−SNR

)
(6)

allows obtaining much better results. The corresponding
curves are shown in Fig. 6 with black lines, in both lin-
ear and logarithmic scales, and display that the modified
formula (6) gains at least an order of magnitude improvement
for SNR > 0 dB.

The change of the location of fx with respect to fMn

results in a change of the systematic frequency error, as it has
already been mentioned [see Fig. 5(a)]. The curves presented
in Fig. 6(a) appear to be universal so that, knowing the curve
for some particular value fx1, it can be converted into the
curve for another value fx2 by scaling it by a factor equal

to fx1/ fx2( fx2 − fMn)/( fx1 − fMn). This feature is shown in
Fig. 6(a) where the scale at the right side was drawn assuming
fx = 2550 MHz (in this case, the abovementioned scaling
factor equals about 0.05). In addition, (5) and (6) suggest that
the discussed systematic frequency error can be expected to
be independent on the specific shape of the noise spectrum
Sn( f ), as the only noise-related parameter appears to be fMn .

V. SYSTEMATIC ERROR IN A CLOSED FEEDBACK LOOP

To determine the frequency error remaining after closing
the feedback loop, it is helpful to consider the incremental
model of the circuit from Fig. 2. In addition to the already
discussed error 1 fN originating in the prescaler (defined here
as 1 fP = fM − fIFN, where fIFN is the nominal IF value,
i.e., assuming no any prescaler frequency error), the model
presented in Fig. 7(a) includes the inaccuracy of the electrical
reference 1 fREF, which appears in two different places as this
reference is used in the microwave synthesizer supplying fLO,
and also provides the time base for the beat note frequency
counting by the timer/counter. All other error sources (as the
laser noise 1νL and the quantization noise 1νQ , which occurs
when a digitally tuned integrated tuneable laser assembly—
ITLA [31]—is used as the synchronized laser) are omitted
now as not contributing to the systematic frequency error. HL

and HP are the tuning sensitivity of the synchronized laser
and the gain of the PID controller, respectively.

The noise-dependent incremental gain of the prescaler is
defined as α = Nd fP_O/d fP_I , where fP_O and fP_I are
the input and output prescaler frequencies, respectively. This
parameter reflects the fact that the sensitivity of the prescaler
to the change of its input frequency decreases when the SNR
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Fig. 7. (a) Incremental model of the laser frequency stabilization circuit
and (b) prescaler incremental gain.

decreases. It can be calculated using (6) as α = d f A
M( fx )/d fx .

The relevant curves are shown in Fig. 7(b). It may be noted
that α is relatively independent on fx in the considered
frequency range and is very close to one for SNR higher than
about 5 dB. Its value decreases toward zero when the SNR is
lowered.

Based on the feedback theory the incremental change of the
synchronized laser frequency, 1νS can be cast in the form

1νS =
1 fP

HP HL
M + 1 fREF HP HL

(
1 +

αK
M N

)
1 +

αHP HL
M N

. (7)

Assuming that the loop gain, equal to HP HL/M N , is high
due to the integrating part of the PID controller, (7) reduces
in the limit to

1νS = 1 f P N/α + 1 fREF M N/α + 1 fREF K . (8)

The first term in (8) shows that in a closed feedback
loop, the prescaler error, as shown in Fig. 5(a), scales inversely
to the prescaler gain α and thus is effectively multiplied when
the SNR is low. The inaccuracy of 1 fREF scales in a similar
way, although this effect is much less pronounced because
usually M N1 fREF < 1 f P . Assuming that a standard 10-MHz
temperature compensated crystal oscillator (TCXO) is used
with the inaccuracy of 2.5 ppm and that M N is in the order
of 250 (as it is in the circuits, we investigated experimentally),
M N1 fREF not greater than 2.5 kHz may be expected, whereas
1 f N can be much larger, especially when the prescaler input
frequency is far from fMn (see Fig. 5). The last term in (8)
shows that the inaccuracy of 1 fREF transfers to the circuit
output increased by the synthesizer’s multiplication factor K .
The error due to this can be expected not to be greater than
about 10 kHz, as in the circuits with fLO ≈ 10 GHz considered
here, K around 1000 is required. In practice, therefore, one

Fig. 8. (a) Setup for the out-of-loop measurement used to assess the
systematic frequency error and (b) measurement results. The error bars
show the measurement standard deviation.

can expect that the systematic error will be dominated by the
first term of (8) related to the prescaler.

To verify the predictions shown above, we performed the
measurement of the systematic frequency error in the complete
synchronization circuit using an out-of-loop configuration
shown in Fig. 8(a) (the PD, amplifiers, mixer, IF filter, and
prescaler used in the out-of-loop path were exactly the same
as used in the stabilization circuit). The optical power from
the reference laser (Koheras Adjustic X15) was split into two
unequal parts with 5% directed to the synchronization circuit
via a variable optical attenuator (VOA) to control the SNR
at the input of the prescaler. The remaining 95% of the light
was combined with the light produced by the synchronized
laser and applied to an out-of-loop beat PD. The resulting
signal was then processed by the circuit analogous to this
used inside the laser stabilization circuit (composed of a beat
PD, microwave amplifiers, mixers, and frequency dividers) and
finally applied to the frequency counter (Pik Time T4100).
Due to the high power of the out-of-loop beat signal, one can
be sure that no any systematic frequency error occurred in
the out-of-loop divider chain. Such a setup can thus be used
to detect any difference from the intended 12.5-GHz offset
between the reference light and the synchronized laser.

The results of the measurement are shown in Fig. 8(b)
for a few values of the nominal intermediate frequencies
fIFN set by adjusting the microwave synthesizer inside the
laser stabilization circuit. It is visible that when the SNR
drops, the systematic offset starts to manifest—its expected
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value (marked with black dashed lines) was obtained using (6)
taking the calculated value with a negative sign (this is because
the feedback loop tends to cancel out the error introduced
by the prescaler causing the sign inversion) and scaling it
by α according to (8). The calculations agree well with
the measurements in all investigated cases confirming the
applicability of the theoretical approach developed so far.

Fig. 8(b) (inset) shows an enlarged part of the curves
where the error stays within ±5-MHz limit required for
picosecond-accurate time-transfer systems. The required SNR
values depend on the distance between fMn and the nominal
fIFN frequency. For fIFN equal to 2560 MHz (| fMn − fIFN| =

16 MHz), an operation with an SNR down to about 2 dB
is possible, whereas for larger distances, higher SNR is
necessary.

VI. MINIMUM SNR AND REQUIRED SIGNAL LEVEL

The minimum signal level required for the operation of the
discussed laser synchronization circuits can be, in principle,
determined by defining the acceptable level of the frequency
error 1νSmax. For the considered application of ultra-accurate
time transfer, a value of 1νSmax = ±5 MHz is adequate
(see [25]), but it can be different for other applications.
Knowing this, and also the value of fMn , which is specific
for particular realization of the circuit, but can be quite
easily measured with a frequency counter, one can choose
a reasonable value of the nominal intermediate frequency
fIFN reasonably close to fMn (practical limit results from the
long-term stability of fMn—see Fig. 4 for an example). The
opposite approach when fMn is to be fit to the selected fIFN is
also possible, although it seems less convenient in practice,
especially when rational microwave synthesizers are easily
available. Having these data, it is possible to determine the
required SNR by solving (6) under condition f A

M = fIFN,
forcing the output of the dividers chain to keep the frequency
at the reference value due to the integrating part of the PID
controller in the feedback loop. The solution takes the form

SNR = ln
((

f 2
Mn − f 2

x

)
/
(

f 2
IFN − f 2

x

))
≈ ln(( fMn − fIFN + 1νSmax)/1νSmax) (9)

where fx was substituted with fIFN + 1νSmax (to get mean-
ingful results, the sign of 1νSmax has to be positive for
fIFN > fMn and negative in the opposite case) and assuming
typical working conditions (1νSmax ≪ fIFN and fIFN ≈ fMn).
As visible from (9), the result depends mostly on the difference
fMn − fIFN, which is plotted in Fig. 9(a) for a few values of
1νSmax.

To get the optical power corresponding to this particular
SNR, more details of particular circuit implementation are
required, such as the frequency characteristics of the IF filter
and noise levels of the amplifiers and mixers used. For the
circuits evaluated in the laboratory, the optical powers are
shown in Fig. 8(b) where the range of the plot corresponds
to the values from about −60 to −40 dBm. This shows that
the circuit investigated experimentally is capable to operate
within the acceptable systematic error level of 5 MHz with
the input powers below −50 dBm.

Fig. 9. (a) Minimum SNR required not to exceed ∆νSmax and (b) TDEV
calculated for a 1000-km-long fiber link based on the frequency stability
measurements in the circuit with fIFN = 2600 MHz (≈|fMn −fIFN|34 MHz).

The acceptable systematic error level, however, is not the
only criterion that needs to be considered—a no less important
factor is related to the deterioration of the stability of the
output frequency νS with decreasing SNR and its influence
on the stability of the time transfer. One reason for decreasing
the feedback loop efficiency is suppressing the noise of the
synchronized laser (1νL) and its tuning quantization (1νQ)

because of decreasing the loop gain and bandwidth. The other
reason is related to the multiplication of the prescaler noise.
Both these effects are due to decrease of the prescaler gain
α. This is shown in Fig. 8(b) by the vertical bars showing
the standard deviation of the measured frequency. It may be
noted that the standard deviation of the frequency increases
with decreasing SNR. Nevertheless, this increase is smaller
when selected fIFN is closer to fMn .

The effect of the mentioned noise on the stability of the time
transfer in a 1000-km-long fiber link using standard G.652
single-mode fiber with the chromatic dispersion coefficient of
17 ps·nm−1

· km−1 is shown in form of the time deviation
(TDEV) in Fig. 9(b). In general, the curves for the optical
power larger than −51 dBm (corresponding to the SNR of
about +6.5 dB) are all very similar and close to the noise
floor of the stabilization circuit and resulting mostly from the
tuning quantization of the ITLA used in the experiment, which
can be controlled with a coarse resolution of 1 MHz only
(conforming with ITLA multisource agreement). For lower
optical powers, however, noticeable deterioration of the TDEV
curves is observed, roughly about 2–3 times per each dB.
The decrease of the synchronization circuit bandwidth is also
visible observing the change of the position of the bump
appearing at the averaging time around 1 s.
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Fig. 10. Effect of polarization scrambling: (a) signal at the prescaler
input and (b) frequency error due to scrambling with the scrambling
penalty marked.

Stability deterioration due to decreasing input power (so
SNR) will manifest also as increased jitter. For the cases shown
above, the jitter contribution will be about 250 fs, 520 fs,
and 1 ps for the input power greater than −51, −52, and
−55 dBm, respectively. This suggests that both systematic
frequency error and stability should be considered together
and fit to particular requirements. For example, the comparison
of Fig. 9(a) and (b) reveals that for the lowest TDEV and
jitter, the input power should not fall below −51 dBm, which
corresponds to SNR ≈ +6.5 dB. For the systematic error not
exceeding ±5 MHz, the minimum required SNR about 3 dB
lower should be enough on the other hand, but this time
elevated jitter is to be accepted. Nevertheless, in any case,
a substantial improvement with respect to TDEV of a free-
running laser [shown with the dashed line in Fig. 9(b)] is well
visible for almost all averaging times, which shows a clear
advantage of the discussed laser stabilization circuits.

VII. PENALTY DUE TO POLARIZATION SCRAMBLING

All the results discussed so far assumed that the polariza-
tions of the fields beating at the PD are aligned. It was assured
in the examined circuits using a polarization controller shown
in Fig. 2(a). However, such a solution cannot work reliably
in practice, as standard fibers change their polarization state
randomly due to external factors such as temperature and
mechanical stress variations [16]. A simple solution may be
to use a polarization scrambler [16], [32], which is a stand-
alone fiber-optic component, not requiring any additional
feedback loop or control algorithms (in contrast to an adaptive
polarization controller). However, the polarization scrambler
reduces the average power of the beat by 3 dB, resulting in
a modulation of the IF signal level driving the prescaler [see
Fig. 10(a)]. In this way, the instantaneous SNR is affected,
resulting in a systematic frequency error, according to the
discussion in Sections III, IV, and VI.

The effect of polarization scrambling is shown in Fig. 10(b)
(solid lines) for two different fIFN values. It is noticeable that

scrambling brings with it the disadvantage of increased SNR
required to recover the same value of systematic frequency
error without scrambling (dashed lines). In the examples
shown, the penalty is either 4.4 or 6.6 dB depending on the
difference between fIFN and fMn . Once again, it can be seen
that it is advantageous to choose fIFN close to fMn in order
to minimize the disadvantage.

The minimum scrambling penalty of 3 dB should be
expected due to the decrease of IF signal level mentioned
above. The theoretical prediction of the penalty can in princi-
ple be made by averaging the frequency over all instantaneous
SNR values, ranging from the minimum for orthogonal polar-
izations to the maximum for parallel polarizations. However,
it is difficult to obtain accurate and meaningful results because
such a procedure is sensitive to the SNR distribution and
cannot be held stable or approximated reliably.

VIII. CONCLUSION

The circuits developed here for synchronization of a semi-
conductor laser frequency to a weak optical reference from a
remote laser allow a substantial reduction of the calibration
uncertainty related to the chromatic dispersion in fiber-optic
time-transfer systems. However, the systematic frequency error
that occurs in such circuits must be kept under control. This
error discussed in detail in the text arises in the first stage of the
frequency divider chain (so-called prescaler) due to the band-
limited noise interfering with the sinusoidal component, whose
frequency is estimated by counting the number of slopes in a
reference time interval. Due to the experimental work carried
out, the simulations, and theoretical models, we can state
that the value of the prescaler error is directly related to
the SNR at the prescaler input and the difference between
the frequency of the sinusoidal component and the mean
frequency corresponding only to the counting the bandpass
noise (designated as fMn in the text). Despite the noisy
character of the prescaler output under such conditions (i.e.,
driven by the bandpass noise), the mean frequency observed
at the prescaler output appears to be well defined and fairly
stable. It is thus a reliable parameter, useful in characterizing
circuits with prescalers. The value of this frequency can be
easily determined, either based on the input noise spectrum or
by direct measurement.

If the prescaler is part of a feedback loop used to bring
the frequency of a stabilized laser closer to the frequency of
the optical reference light, the systematic frequency error is
multiplied by the reciprocal of the prescaler gain α, which
is close to one for SNR higher than about 5 dB, but drops
gradually to zero for lower values. At low SNR, the systematic
frequency errors have thus a tendency to increase very rapidly.
With the methods described in the text, it is possible to
predict the error value or determine the required SNR to
keep the error below an arbitrarily chosen value. According
to the results presented, operation with an SNR down to a
few dB is reliably possible in the experimentally examined
circuits. The conditions are substantially relaxed when the
circuit is operated near to the mean frequency determined by
the prescaler input noise fMn . A look at Fig. 4, showing the
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long-term behavior of fMn under realistic conditions, shows
that the difference between fMn and the nominal IF fIFN can
be chosen to be below 1 MHz.

Operation close to fMn is also helpful when the polarization
scrambling is implemented to avoid polarization alignment
problems. In such a case, as shown experimentally, the
scrambling penalty can be kept only slightly higher than the
theoretical minimum of 3 dB.
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