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Automated Analysis of Reflection Mode Terahertz
Hyperspectral Images

Mark Berman

Abstract—A suite of algorithms and associated procedures, orig-
inally developed for mineral exploration applications, are adapted
for application to terahertz hyperspectral images measured in re-
flection mode. Such data are often quite noisy due to the low reflec-
tivity of many materials at terahertz frequencies. The algorithms
and procedures are based on an extended linear mixture model
consisting of two parts. The first part, called the “foreground”,
models the distinguishing parts of the spectra of materials (in-
cluding mixtures) of interest (especially their diagnostic absorption
features). The second part, called the “background”, models parts
of the spectra that are typically of lesser interest, such as variation
in low frequencies and water vapor. The model and procedures are
exemplified with a spectral library of six materials and are applied
to three hyperspectral images, one consisting only of pure pellets,
some of which are not in the library, and two of which contain
both pure and mixed pellets of three of the materials in the library.
The associated procedures include the following: estimating the
number of materials in the mixture at each pixel; identifying pixels
with materials that are well modeled by the background terms
only; identifying pixels with materials not in the library; and
identifying pixels containing metal. Finally, this article concludes
with a discussion of some outstanding issues.

Index Terms—Hyperspectral image, mixture analysis, reflection
mode, terahertz time-domain spectroscopy (THz-TDS).

I. INTRODUCTION

N RECENT decades, there has been increasing interest in
I the use of terahertz (THz) spectroscopy for a range of areas
including medical, security, communications, astronomy, and
industrial applications such as quality, sensing, monitoring, and
process control [1]-[3]. A topic of growing interest is the analy-
sis of the THz spectra of chemical mixtures [4]-[21]. Usually, the
aim of such an analysis is to identify what materials are present
in the mixture and the relative abundances (“proportions”) or
concentrations of the mixture components. In fields such as
remote sensing and microscopy, this process is often called
(spectral) “unmixing” [22], [23]. We will use the same term
in this article.
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The 18 THz articles analyzing mixtures referenced previously
can be subdivided in several ways. First, only one of the articles
analyzes spectra measured in reflection mode [19], while the
remaining 17 articles analyze transmission mode spectra. Mea-
suring samples in reflection mode is essential when the material
is too thick and/or too absorbing to allow transmission of THz
radiation, or when only one side of a material is physically
accessible. Reflection mode spectra are often quite noisy due
to the low reflectivity of many materials at THz frequencies.

A second subdivision is that 14 of the articles use time-domain
spectroscopy (THz-TDS) to measure their spectra, while two use
Fourier transform infrared spectrometers measurements [14],
[15] and two use THz parametric generation [4], [S]. The last
two of these articles combine THz spectroscopy with imaging, as
does [6], to produce what are variously called spectroscopic im-
ages [4], [5], hyperspectral images [24], chemical images [25],
and chemical maps [6]. None of the other 15 articles use spectra
with any spatial structure. The fourth way to subdivide these
articles is based on whether or not they use a database of spectra
of known materials/chemicals to aid in their identification of
unknown pure and mixed materials. In some disciplines, such a
database is called a “spectral library,” e.g., mineral exploration
and remote sensing [26] and proteomics [27]. We will use this
term in this article. Fourteen of the articles use a spectral library,
while four do not; they carry out what is sometimes called “blind
(hyperspectral) unmixing” [28]. The basic aim of blind unmixing
is to find the “purest” materials in a hyperspectral image without
reference to a spectral library. This is usually done with the aid
of a linear mixture model.

In many of our THz spectroscopy applications, the aim is to
identify and often map automatically materials of interest in a
hyperspectral image, and to do so in reasonable time. As inter-
esting as blind unmixing is as a research topic, its fundamental
drawback in many real-world applications is that, once the purest
materials have been identified, an expert in the spectroscopic
aspects of the relevant application needs to manually identify
what these materials are by examining their spectra.

There are two types of spectral library used in the 14 articles
that employ them. In three of the articles, the library contains
spectra of both pure materials and mixtures of them [18], [20],
[21]. The spectral libraries used in the remaining 11 articles
consist of the spectra of pure materials only and model the
mixing of these. Seven of these articles use (either implicitly or
explicitly) a linear mixture model to analyze their data [4]-[9],
[14]. We will use an extension of the linear mixture model as the
basis for our analysis; this is described in detail in Section V.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0003-3124-1934
https://orcid.org/0000-0002-8248-8905
mailto:mark.berman@data61.csiro.au
mailto:krunalkradhanpura@gmail.com
mailto:krunalkradhanpura@gmail.com
mailto:david.farrant@csiro.au
https://doi.org/10.1109/TTHZ.2022.3172006

BERMAN et al.: AUTOMATED ANALY SIS OF REFLECTION MODE TERAHERTZ HYPERSPECTRAL IMAGES 371

Of the other four articles using spectral libraries of pure
materials, [10] and [11] use a microgenetic algorithm [29] to
maximize a fairly complex “fitness” function. From our per-
spective, the algorithm has three drawbacks. First, it appears to
take many iterations to converge. The authors show plots with
good convergence after 1000 iterations, but there are no statistics
on how long the process takes. Second, “random starting seeds
might result in very different outputs,” which is not desirable.
Finally, the algorithm requires the allowed proportions in the
mixture model to be discrete, e.g., multiples of 0.05; presumably,
the finer the discrete resolution, the longer the algorithm will
take to converge. In [12], absorption spectra are modeled as a
combination of Lorentzian peaks and a low-order polynomial;
we could not find the order of the polynomial used. Their method
is applied to mixtures of lactose and theophylline. In [19], a
complex procedure is used to distinguish the amplitude spectra
(in reflection mode) of the two ternary mixtures (of explosives):
RDX+TNT+HMX and RDX+TNT+PETN. Note that the two
mixtures have two explosives in common. The method described
is very focussed on this particular application. By contrast, the
method that we propose in this article is a general purpose one.

Among the articles using libraries of pure spectra, all ex-
cept [10] and [11] contain at most four materials. They fit
all the materials in their libraries. In most applications, the
number of materials in a mixture is small (2, 3, or possibly
4). However, libraries can be quite large. In [10] and [11],
the number of materials in their libraries (/V;) are 22 and 28,
respectively. In such a case, it is important to omit those materials
in the sample which are not in the library (NIL). We will refer
to such materials as “absent” materials. To some extent, the
microgenetic algorithm used by [10] and [11] achieves this by
discretizing the proportions (see aforementioned) so that the
estimated proportions of absent materials equal O (hopefully),
rather than 0.05 say.

In this article, we use an extension of a linear mixture model
in combination with specific testing for the presence/absence
of materials. In the statistical literature, this process is often
called “subset selection” [30]. Our model and associated testing
procedures also incorporate terms that address variability in
relative humidity, materials in the dataset that are absent from the
library, and spectra that show no distinctive absorption features
(i.e., which appear to be low-frequency curves only). The unmix-
ing methodology is applied to hyperspectral images, measured
in reflection mode, consisting of pure and mixed pellets of
different materials. The methodology presented in this article is
an adaptation of methodology developed for mineral exploration
applications, based on visible and infrared spectra [31]. This
methodology, in particular, the extension of the linear mixture
model and the use of subset selection, has not been published in
the THz literature previously. In addition, what little automated
analysis that has been published in the THz literature has been
mostly confined to transmission spectra.

The article is structured as follows. Section II describes
sample preparation and the experimental setup, while Section II1
introduces our spectral library and three test images that we will
use. Preprocessing, parts of which are important in motivating
our model, is described in Section IV. Our mixture model

and associated training and testing procedures are outlined in
Section V. These are applied to the test images in Section VI.
Conclusions are drawn and outstanding issues discussed in
Section VII.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP
A. Sample Preparation

Samples of D(-)fructose, D-(+)glucose, a-lactose monohy-
drate, D-(+)maltose monohydrate, sucrose, and L-tartaric acid
with > 99% purity were acquired from Sigma-Aldrich. A spec-
trally neutral filler material, Polyblend (PB), was acquired from
Micro Powders. These samples were prepared as pellets using
a press (ICL’s Port-A-Press) with approximately 42-MPa pres-
sure to make pellets of 10-mm diameter. The thicknesses of
pellets were 0.5-1.0 mm for transmission measurements and
4.0-4.5 mm for reflection measurements. For fructose, sucrose,
and tartaric acid, the powders were ground finer using a mortar
and pestle before preparing the pellets. This reduces scattering
of the THz radiation, which has wavelengths in the range of
100-500 pem. A brass pellet was used as a reference for reflection
configuration measurements.

B. Experimental Setup

THz spectroscopy measurements were performed using
a pulsed time-domain system (Menlo Systems) based
on fiber-coupled photoconductive antennas as emitter and
detector [32], [33]. THz-TDS generates coherent broadband
THz pulses by means of short pulses of excitation radiation.
The time-resolved THz field amplitude with femtosecond (fs)
resolution was obtained by using part of the excitation beam
as a gating pulse and mapping the change in field amplitude
by scanning the probe beam along the THz beam. The system
can thus measure both phase and amplitude simultaneously.
This allows calculation of the frequency-dependent complex
refractive index, absorption coefficient, and other material
properties in the THz frequency range.

In transmission configuration, the THz beam was collimated
and focused onto the samples using two TPX lenses. The THz
beam transmitted through the samples was also collimated and
focussed using another two TPX lenses before impinging on the
detector antenna.

In reflection configuration, the THz beam was collimated
using a TPX lens and focused onto the samples using a parabolic
mirror. The THz beam reflected from the samples was collimated
using another parabolic mirror and focused on the detector
antenna using a second TPX lens.

The measurements were performed with continuous purging
using dry nitrogen gas to suppress water vapor absorption lines
in the spectra. For reflection configuration measurements, the
reflectance spectra were calculated from the ratio of sample to
reference, where the reference measurement was a measurement
using a brass pellet.

The time-domain traces (TDTs) were collected every 0.03333
ps over 50, 100, or 200-ps windows (depending on the sample
and measurement configuration), and then Fourier transformed
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to produce frequency spectra, resulting in a spectral resolution of
20, 10, or 5 GHz, respectively. Each spectrum was then averaged
over 10, 20, or 50 s measurements over the area of each pixel.

In order to obtain hyperspectral images, the samples were
scanned laterally using a X—Y stage. The total measurement time
depends on the averaging time (see aforementioned) and on the
total number of pixels, which itself depends on the physical size
of the sample and the required spatial resolution. Discussion
about these issues in relation to particular images is given in
Section III-B. All the measurements presented in this article
were taken with a 1-mm spatial resolution.

III. SPECTRAL LIBRARY AND TEST IMAGES
A. Spectral Library

We have examined the THz reflectance spectra of a large
number of pure materials. Unfortunately, most of them have
a low reflectance and unless their diagnostic absorption features
are strong, they are hard to distinguish from noise. For illustrative
purposes, in this article, we will demonstrate a variety of issues
with a small library, consisting of five saccharides [fructose (F),
glucose (G), lactose (L), maltose (M), and sucrose (S)], plus
tartaric acid (TA). Three of these (L, M, and TA) have strong
diagnostic absorption features, while the other three have weak
absorption features. PB was originally in the library. However,
due to its nature as a spectrally neutral filler material, its re-
flectance spectrum is particularly featureless, so we decided to
exclude it from the library. Details of the sample preparation of
all these materials are given in Section II-A.

The library has been created from six separate “training”
images, each of size 27 x 27 pixels, and each containing
a single pellet of the relevant material. We will call these
“single-pellet” images. A seventh single-pellet brass reference
(R) image (also of size 27 x 27) was also measured. All
seven images were measured with 10-s averaging. For each
of the seven single-pellet images, the “length” (i.e., no of
measurement points) of each TDT was 3000, making a total
measurement window of 100 ps. The relative humidity (RH)
was approximately a very low 4.5% for each image.

The pellet boundaries are somewhat fuzzy due to the width of
the illuminating beam. Effectively, pixels near the frue boundary
are actually mixtures of the holder and material in the pellet.
However, the radius of each pellet in the seven images appears
to be about 10 pixels. To minimize the effect of mixing caused by
the beam width, we have built the library using spectra around
the center (manually estimated) of each pellet. Specifically, we
have taken the 25 reflectance spectra in the 5 X 5 window about
the center of each pellet to build the library. The calculation of
the reflectance spectra from the TDTs is described in Section I'V.
Having more than one spectrum per material gives us some idea
of the variability of spectra of the same material, hopefully with
minimal influence from the holder. We explain how we use the
variability information in the training process in Section V.C.

B. Three Test Images

Three test images have been used to test our unmixing pro-
cedure against the library. All three images contain either six or

TABLE I
SUMMARY OF ANALYZED DATASETS
Data set| Single or | Spatial |Length|ModeRH (%)
Multipellet| Dimensions
Pure | 7 Single | 27 x 27 | 3000 | 10s | 4.5%
Pure Multi 62 x 121 | 1504 | 10s | 15%
L/TA Multi 34 x 44 | 6000 | 20s | 56%
L/M/TA| Multi 48 x 37 | 6000 | 50s | 46%

eight pellets. We will refer to these as “multipellet” images, as
opposed to the single-pellet images used to create our pure spec-
tral library. Summary information about the three test images,
as well as the training images, are given in Table I. Note that
there is significant variability in the spatial dimensions, lengths,
amount of averaging (“mode”), and RH in the four sets of
images.

The first test image consists of eight pure pellets, six con-
taining the six materials in the library, a seventh brass reference
pellet, and the eighth containing PB. This image contains many
more pixels than the other images, and so it has the shortest
averaging time and length. By comparison, the seven single-
pellet images from which the spectral library has been obtained,
discussed in Section III-A, are each much smaller, so we were
able to almost double the length of each TDT.

Note that our library was originally extracted from this mul-
tipellet image, but we found that some of the pellets had low
signals due to slight variations in alignment from pellet to
pellet as a result of their being mounted on a polymer tape
substrate. We then made the single-pellet measurements, where
each pellet could be independently aligned for the maximum
reflected signal.

The impact of the alignment issue is shown in Fig. 1(a)—(f).
Each plot shows 25 reflection coefficient (RC) spectra (the
square root of the reflectance spectra) taken from the centers
of each of the single pellets (in red) and from the centers of
the multipellets (in green). (Because most of the spectra have a
low reflectance, it is often easier to see differences between RC
spectra than between reflectance spectra.) See (1) and the steps
leading to it for an explanation of how the RC is calculated.
All plots are shown in the frequency range (0.25-2.00) THz,
because outside this range, the reflection mode spectra are very
noisy, due to a lower THz dynamic range. The means of the
single-pellet and multipellet spectra are also shown (in black).
In addition, in each plot, a transmission mode RC spectrum
of the relevant material is shown in black. This is calculated
from the refractive index, which is derived from the transmission
mode measurement of the material [34], [35]. This spectrum is
included because as well as being less noisy, it is used as a guide
to where one hopes to observe significant absorption features in
the noisier reflection mode spectra.

Before discussing each of the six plots, we make some general
observations about all the plots. The first thing to note is that, in
each plot, both sets of reflection mode spectra become noisier
as the frequency increases, which is why we have excluded
higher frequencies from each plot. The data are also noisy below
0.25 THz, so they have also been excluded. A second thing to
note is that, for each material, the three datasets broadly differ in
anumber of ways. In particular, their low-frequency components
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Fig. 1. RC spectra for six materials in (0.25-2.00) THz from three datasets (Transmission mode-black. Reflection mode: 25 single pellet (library) spectra—red;

25 multipellet (test) spectra—green, with corresponding mean values in black). See (1) and the steps leading to it for relevant calculations. (a) Fructose. (b) Glucose.

(c) Lactose. (d) Maltose. (e) Sucrose. (f) Tartaric acid.

differ quite significantly. We have included a cubic term in our
extended linear model (described in Section V-A) to account for
this variation. Note also that the multipellet spectra (in green)
of many of the materials show a strong water vapor absorption
feature at approximately 1.7 THz, because their RH is 15%.
However, this feature is usually not present in the single-pellet
spectra (in red), because their RH is a much lower, 4.5%. This

difference is also accounted for by our model. Another difference
is that the multipellet spectra tend to have lower amplitude
(and hence, noisier) than the single-pellet spectra. This is due
to the alignment problem mentioned previously. The glucose
spectra have particularly low amplitudes, with their single-pellet
and multipellet means being 0.104 and 0.041, respectively. The
single-pellet means of the other five materials vary between
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0.184 and 0.220, while the multipellet means vary between 0.120
and 0.150.

We now turn to a more detailed discussion of the six plots
in Fig. 1, and in particular where we can see strong absorption
features consistently across the three datasets. Such features can
be seen in lactose (at approximately 0.6 and 1.4 THz). Also,
these features in the reflection mode spectra are weaker than
they are in the transmission mode spectrum, especially for the
multipellet spectra. There is a strong feature at approximately
1.2 THz in all three sets of maltose spectra. Similarly, there is a
strong feature at 1.25 THz in all three sets of TA spectra.

The features are not as strong or consistent for the other three
materials. Fructose has a weak feature at about 1.8 THz in the
transmission mode and single-pellet spectra. However, it is not
obvious in the multipellet spectra. Sucrose appears to have a
weak feature just below 2.0 THz in all three datasets, but its
shape is not consistent. Glucose has a weak feature at about 1.5
THz in transmission mode. However, this is not obvious in the
two reflection mode datasets.

A summary image of the multipellet image of pure pellets
is shown in Fig. 2(a). This image shows what we will call the
“absolute maxima.” These are the maximum at each pixel of the
absolute value of the original TDT after it has been truncated
to include the relevant parts of the data. (Some details about
this automated truncation procedure are given in Section IV-A.)
We mostly use a “heat” color map to display the maxima. The
smallest values are shown in blue, while the largest values are
shown in red, except for the (global) maximum value, which is
shown in white; we will explain why in Section IV-C. Spectra
that do not satisfy certain criteria that must be met by the
truncation procedure are excluded from further analysis. These
are shown in black. For this dataset, they largely correspond
to the polymer holder. Abbreviated labels for each of the eight
pellets are also included in the image. The following three things
are worth noting:

1) the absolute maxima, together with the truncation proce-
dure, provide a reasonable segmentation of the image into
the eight pellets and holder;

2) there is a dark “halo” around the edges of many of the
pellets due to the width of the beam of the THz source;

3) the (brass) reference is clearly brighter than the other
pellets, as expected, due to its high reflectivity.

The second test image contains six pellets: three pure pellets
containing lactose (L), tartaric acid (TA), and a brass reference
(R), and three pellets containing mixtures of L and TA. The
overall weight proportions of L of the mixed pellets are 0.25,
0.5, and 0.75, respectively. We will refer to this as the L/TA
(mixtures) image. Its summary image is shown in Fig. 2(b),
where the color map is the same as that used in Fig. 2(a). Its
bottom row contains zeroes only and so it is shown in black.
As in the pure multipellet image [see Fig. 2(a)], all the pellets
show a dark blue “halo” (due to the width of the beam) and the
reference pellet is much brighter than the other pellets. However,
unlike in Fig. 2(a), the holder pixels have “passed” the truncation
process. The reason for this will be discussed shortly.

The third test image also contains six pellets: four pure pellets
containing lactose (L), maltose (M), tartaric acid (TA), and a

(b)

Fig. 2. Maxima of absolute time-domain traces (after contiguous subset se-
lection) for the three multipellet images. (a) Pure pellets. (b) L/TA mixtures. (c)
L/M/TA mixtures.

brass reference (R), and two pellets containing mixtures of L,
M, and TA in equal weight proportions. We will refer to this
as the L/M/TA (mixtures) image. Its summary image is shown
in Fig. 2(c). Its characteristics are similar to those of the L/TA
mixtures image.

The second and third test images were measured using a
horizontal mounting configuration for the pellets. The pellets
were placed on a rigid polymer sheet, which was supported by
a metal plate. To capture the full signal from this configuration
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required a longer measurement window. It was then decided
that all future TDTs would have a length of 6000. This greater
length is part of the reason why the holder pixels in both these
images pass the truncation process. Also, because the number
of pixels in both images is relatively small, the averaging time
was increased from 10 to 20 s.

IV. PREPROCESSING

Each spectrum in the four datasets has been subjected to the
following preprocessing.

A. Truncating TDTs

The lengths of the four datasets vary between 1504 and 6000;
see Table I. It is useful to have all the TDTs that are further
analyzed of the same length because it is easier to then apply
the same algorithms to all TDTs in all datasets. In particular,
once the TDTs have been transformed into the Fourier domain,
the frequency spacing within each spectrum will be the same.
In addition, many of the longer TDTs within pellets contain the
effects of the holder, which is undesirable. These effects need to
be omitted by truncating each TDT to at most 1504 contiguous
observations. In fact, we will reduce them to 1501 observations,
where possible.

We have developed an automated truncation algorithm, to deal
with a variety of situations. Because it is moderately complicated
and is not the main focus of this article, we omit the details.
However, we give the flavor of the algorithm with two examples
drawn from the L/TA mixture dataset. Fig. 3(a) and (b) shows
a TDT near the middle of a pellet and one in the holder,
respectively. The red peak in Fig. 3(a) represents reflection from
the front surface of the pellet, while in Fig. 3(b), the red peaks
represent reflection from the front of the pellet and the front
of the polymer holder (both showing low amplitudes due to the
width of the beam covering only the edge of the pellet). The black
peaks following the red peaks are due to internal reflection from
the pellets, as well as reflection from the polymer holder and the
metal plate. In each figure, the selected contiguous section of
the TDT (of length 1501) is shown in red. In some cases, it
is not possible to find a contiguous section of length (at least)
1501 meeting the requirements of the algorithm. These TDTs,
such as the holder spectra in Fig. 2(a), are omitted from further
processing.

B. Converting TDTs to Amplitudes

Before transforming each TDT (of length 1501) to the Fourier
domain, we first apply a Hanning window to them to make the
data “periodic” [36], and then, “pad” them with additional zeroes
to a length of 2048 (= 2'1). This is a common technique for
interpolating Fourier data. The amplitude spectra obtained after
padding and taking the Fourier transform of each TDT produce
data at 1025 frequencies over the range [0.00-15.03] THz. As
mentioned previously, the observations outside (0.25-2.00) THz
are too noisy for practical use. So, we only use the Ny = 119
frequencies inside this interval in our analysis.

0.4 0.6

Voltage
0.2

-0.2 0.0

0 50 100 150 200
Time delay (ps)

(a)

1.0

0.5

o
g
s
S 1 —/—/—/———— W‘ H’M fﬂw\"f\wwb\[\j‘\//v\/\/\,fmww\,ﬂ/\' -
i
1
0
Q@
0 50 100 150 200
Time delay (ps)
(b)
Fig. 3. Two TDTs from the L/TA mixture dataset. Contiguous truncated

sections (used in subsequent processing) shown in red. (a) Pixel (22, 8): Near
the middle of a pellet. (b) Pixel (28, 18): In the holder.

C. Converting Amplitudes to Reflection Coefficients

Let Eg;,7 = ..., N denote the amplitude vector of the sam-
ple material (of length 119) at pixel ¢ out of N pixels in an
image (after masking out those that are unsuitable for further
processing; see above), and let Er denote the amplitude vector
of the reference (assumed to be the same for all pixels in the
image). Then, the RC at pixel ¢ can be estimated by [35]

RC; = Eg;/Eg. (1)

The reference is designed to remove features that are common in
all the spectra prior to further processing and analysis, most no-
tably low-frequency components and water vapor, which varies
with RH.

For the training data, the reference spectrum used is the
geometric mean of the nine driest brass spectra (those with
RH < 10%) from an experiment we call the water vapor ex-
periment, where the measurement volume was purged with
dry nitrogen gas. This reference is used because it is of high
quality and very dry. The water vapor experiment is described in
Section V-B. In the three test images, the reference spectrum that
we have used is the geometric mean of the nine amplitude spectra
centered on the pixel with the largest absolute maximum TDT
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after the contiguous section has been selected; see Section IV-A.
For each of the three datasets, this pixel is shown in white in
Fig. 2(a)—(c), respectively. We will explain why we have used
the geometric mean in Section V-B.

V. EXTENDED LINEAR MIXTURE MODEL, AND ASSOCIATED
TRAINING AND TESTING PROCEDURES

The extended linear mixture model and associated procedures
are based on a set of algorithms and associated software called
The Spectral Assistant (TSA) [31]. They have been developed
for mineral exploration applications, originally in the shortwave
(SWIR) infrared region (1300-2500) nm (with a library of 60
materials, mostly minerals), and more recently in the visible
and near infrared region (450-1100) nm (with a library of 17
materials) and the thermal infrared region (6000-14000) nm
(with a library of 81 materials). TSA is a significant part of
a commercial package called The Spectral Geologist (TSG),'!
which is mainly applied to (typically) tens of thousands of
spectra measured in individual drill cores with an instrument
called the HyLogger [37].

This section is structured as follows. In Section V-A, we
outline the extended linear model. The model includes a water
vapor term. Section V-B describes an experiment we carried out
that enabled us to model the water vapor term. In Section V-C,
we explain how the library is trained within the constraints of
the model. We explain the algorithm for unmixing spectra in
Section V-D. Two related issues arising from this are overfitting
and how to estimate the number of materials in the mixture.
These issues are addressed in Section V-E. The following three
miscellaneous issues are briefly discussed in the final three
subsections: identifying spectra with no significant absorption
features; spectra that are NIL; and metal spectra.

A. Extended Linear Model
Let

(We will explain why we have used the logarithm (“log”) of the
RC spectrum in Section V-B.) Then, the extended linear model
that we will use is

N, Ny
Y= aip;+ Y BuBr+ e 3
=1 k=1

The first term in (3) (Z;V:"i @;jp;), which is the usual linear
mixture model and which we will sometimes call the “fore-
ground”, represents the mixture of the N, chosen materials
(out of Ny = 6). N,;, = 1 corresponds to pure spectra. pu is the
“typical” spectrum of the material j in the mixture. We will
describe how it is estimated in Section V-C. «;; represents, in a
semiquantitative way, the amount of the material j in the mixture.
We do not constrain it to be a proportion so that we can account
for brightness variations in different spectra of the same material.
However, we do constrain it to be positive.

![Online]. Available: https:/research.csiro.au/thespectralgeologist/

The second term (Zgil BikBy) represents “background”
terms, which are of no or lesser interest. Unlike the coefficients
in the foreground term, there are no constraints on ;5. The
most obvious parts of the spectra that can be represented as
part of the background are the low-frequency components of
each spectrum. Here, we represent those components as a cubic
function, which itself can be represented as the sum of four
terms. However, we have found it necessary to include an
additional term to better model the effect of water vapor. This
will be discussed in Section V-B. The addition of water vapor
means that for the spectra analyzed in this article N, = 5.

The last part of (3) is the error term (¢;). This consists of
both instrumental noise and “natural” variation of spectra with
the same composition. Note that the spectra in Fig. 1(a)—(f)
generally become noisier with increasing frequency. So, it is
natural to downweight the observations at higher frequencies.
Also, because spectra are curves, they are highly correlated
locally. We can account for both noise variability and local
correlation in the spectra by an error covariance matrix. In this
article, we will assume normally distributed errors with zero
mean and a common error covariance matrix. We show how we
estimate this matrix in Section V-C.

B. Water Vapor

Water vapor is a significant issue in the analysis of THz spectra
(see [38]), which discusses the physics of water vapor at THz
frequencies in detail. We have carried out an experiment that
provides us with the rationale for incorporating a water vapor
term in our model and a means of estimating it. It is summarized
here.

Multiple TDTs were measured for the following materials:
brass, fructose, lactose, maltose, and TA. For each material,
the RH was adjusted (and measured) before a single TDT was
measured, by varying the amount of purging of the system
using dry nitrogen gas. The TDTs were then converted into
amplitude spectra, as described in Section IV-B. For brass, 46
TDTs were measured with RH in the range [8.3-42.6] %. There
were between 39 and 44 TDTs of each of the other four materials
measured with RH in the range [6.9-30.9] %.

For each material, we then removed the low-frequency vari-
ation in the amplitude spectra by dividing those spectra by the
spectrum with the smallest measured RH for that material. This
enables us to better observe the effects of water vapor. We call
these the relative amplitude spectra. These are shown for the
brass (reference) spectra in Fig. 4.

This plot raises a number of issues. First, we see water vapor
features in a number of frequency regions. These occur at well-
known frequencies [39]. Second, are the depths of the features
a monotonically increasing function of RH, and if so, can we
parametrize this relationship? To investigate monotonicity, in
Fig. 5, we plot the relative amplitudes at five “key” frequencies:
0.57, 1.11, 1.44, 1.69, and 2.23 THz (the last of these is not
shown in Fig. 4).

Each of the brass relative amplitude sequences do appear to be
approximately monotonically decreasing functions of RH. There
are two major exceptions, the first being very low RH values
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Fig. 4. 45 brass relative amplitude spectra measured in the RH range [8.3—

42.6]%, showing prominent water vapor absorption lines.
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Fig. 5. 45 brass relative amplitudes versus RH at five key frequencies.

where strict monotonicity does not apply, probably either due to
small inaccuracies in the RH measurements or due to noise in the
spectra . (These are also consistent with the relative amplitudes
being occasionally above 1 between the water vapor features in
Fig. 4.) The second major exception is when RH > 40%. Here,
the values appear to flatten out and possibly even start to increase
at the higher frequencies. We will discuss this issue further later.

The approximate monotonic relationship between the brass
relative amplitudes and RH can be parametrized; it turns out
that the log of the relative amplitudes is approximately a linear
function of RH. Fig. 6 shows the log relative amplitudes (“Y”)
at the key frequencies for four RH values approximately equally
spaced between the minimum recorded RH (8.3%) and the max-
imum recorded RH (42.6%) versus the log relative amplitudes
at the key frequencies for RH = 42.6% (“X”"). We also plot the
least-squares (LS) line when fitting each of the four Y’s against X
(without an intercept). The approximate log-linear relationship
is clearly demonstrated. It is because of this relationship that we
have taken logs in (2) and why we have used geometric means
of neighboring brass RC spectra to obtain reference spectra in
various datasets.

-0.5
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RH = 15.0%

Log(Relative Brass Amplitude)

RH =21.7%
RH =29.3%

e o o o
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Fig. 6. Log relative amplitudes for four RH values versus log relative ampli-
tudes for RH = 42.6%.
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in Fig. 4.
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Based on the aforementioned results, we have chosen the
brass log relative amplitude spectrum at RH = 42.6% as the
(background) water vapor term in (3). It is shown in Fig. 7.

A fundamental question is how well does the (brass) water
vapor term model the water vapor components of the RC spectra
of other materials? To answer this question, we carried out an
LS fit of the log amplitude spectra of brass, fructose, lactose,
maltose, and TA at all RH values against their driest versions
and the water vapor term, i.e., the black curve in Fig. 7. Fig. 8
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shows the coefficient of the water vapor term for each material
versus RH. We observe that all five sequences are approximately
monotonic functions of RH. However, they do not increase at
the same rate. Brass is slowest and fructose is fastest, with the
other three materials in between, rising at about the same rate.
This reflects the fact that different materials absorb moisture at
different rates. It also highlights the fact that dividing a sample
amplitude spectrum by a brass (or other) reference [see (1)] is
insufficient to model the effect of water vapor on its own. This
is why we have included a water vapor term in the model. Its
coefficient [see (3)] allows the water vapor depths of a material
to be a multiple of those of the reference [rather than being
constrained to be equal to it, which is implied by (1)].

Note that the water vapor term was measured at RH = 42.6%,
while two of our test datasets were measured at higher RH
values (i.e., 56% and 46%); see Table I. The water vapor term by
itself does not adequately model water vapor behavior at higher
RH values. However, as we shall see in Section VI, the water
vapor term together with division of the amplitude spectra of
the samples by the reference spectrum (1) does appear to do an
adequate job of modeling that behavior. So effectively, we need
two terms in our model to account adequately for the behavior
of water vapor at higher RH values.

We suspect that this is related to the fact that water vapor
is a mixture of two components. If the nuclear spins of both
hydrogen atoms in a water molecule are in the same direction,
it is called ortho-H>O. If they are in different directions, it is
called para-H>O. In related experiments to ours, the authors
in [39] and [40] have demonstrated how these two components
impact water vapor frequency depths as RH varies.

C. Training the Library

This section summarizes the process of training the library.
More mathematical details can be found in [31, Sec. V].

Because the spectra in our library are (notionally) pure, they
satisfy (3) with N,,, = 1. However, for the training process,
it will be useful to include additional notation. Let Y;,i =
1,...,n;,7 =1,..., N;denote the 7th log RC spectrum in class
(material) j, where n; (= 25) is the number of samples in class
7. Then, for library spectra in class j, (3) becomes

Ny
Y = aijp; + Z BijeBr + €ij )

k=1
where p; is the “typical” spectrum in the class j (as yet un-
known), o;; is a positive scale parameter, B,k =1,..., Ny
(= 5) are the background functions (all known), 3, are their

(unknown) coefficients, and ¢, is an error term. The LS solution
to (4) minimizes (in matrix notation)
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Fig.9. 25 TA log RC spectra from the library and their scaled residuals, given

by (7). (a) 25 TA log RC spectra. (b) 25 TA scaled residuals.

The minimizer of (5) is not unique! However, this makes no
difference to the unmixing procedures discussed in the following
subsections. Further discussion about this issue can be found
in [31, Sec. V-A]. Probably the simplest solution is as follows.
First, carry out an LS regression of each Y ;; on the N; back-
ground functions only. Let

= Yz] ZBZ]kBk (6)

]

denote the residual of this fit, where Bijk is the LS estimate of
Bijx- Then, substitute the R;;’s into (5) and minimize it with
respect to o;; and g ;. The solution (i) is just the first principal
component (PC) of the R;;’s [41, Sec. 2.1]. Note that the term
@;jp; in (5) has a scale indeterminacy between the two terms.
Unfortunately, the standard PC scaling used to resolve this makes
the amplitude of f1; much larger than the typical amplitudes
of the spectra. We use a scaling that overcomes this problem;
see [31, Sec. V.A] for further details. As an example, Fig. 9(a)
shows the 25 TA log RC spectra in the library. These are the logs
of the red spectra in Fig. 1(f). The “typical” TA spectrum, £,
is the black curve in Fig. 9(b).
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We see from (5) and (6) that each R;; is an estimate of av;; 4.
Then, if &;;,7 = 1,...,n; are the values minimizing (5), the
scaled residuals

Ny
Yij = Rij/buj = <Yij - ZﬁzjkBk> /biij (7
k=1

are all estimates of ;. The red spectra in Fig. 9(b) are the scaled
residuals derived from the log RC spectra in Fig. 9(a). Note how
the background removal and scaling has considerably reduced
the variation among the training spectra. Note also how, broadly
speaking, the variation in the scaled residuals tends to increase
with frequency. In addition, because the spectra are curves, they
are highly correlated locally. The way to deal with these two
issues is by first calculating an average error or noise covariance.
Let

57;]‘:’A}/ij7ﬂj,i:1,‘..,nj;j:1,...Nl(:6) (8)

denote the “final” residuals about the estimated “typical” spec-
trum in each class, f1;, which minimizes (5). The (estimated)

error covariance matrix, denoted by fle, is just the covariance
matrix of the final residuals derived from all 150(= 6 x 25)
samples in the library; see [31, eq. (9)].

We will see in Section V-D that we need to use the inverse of
3. inthe unmixing process. Unfortunately, background removal
causes it to be “singular” (i.e., noninvertible). In fact its rank is
Ny — Ny(= 114). There are at least two ways of overcoming
this. We will use both. The first way is to omit Ny(= 5) fre-
quencies (after background removal). We typically omit about
half each of the lowest and highest frequencies. This has minimal
impact on plots. For the data analyzed in this article, we omit
the first two and last three frequencies.

The second way is to “ridge” 2., i.e., add a small multiple
of the identity matrix [42]. The effect is to add this quantity to
each of its eigenvalues, making them all positive.

We also add a second matrix to ., which is designed to
take advantage of the fact that the data are curves. This is
a modification of an approach called penalized discriminant
analysis (PDA) [43].

The ridge and PDA matrices are scaled so that they have the
same total variance (i.e., trace) as 2.. The final “regularized”
estimated error covariance matrix (denoted by ) is a linear
combination of the three matrices with weights 7r, mp, and
1 — mr — 7p, respectively. In all the examples shown in this
article, mgp = mp = 0.01 so that the contribution of 2, to 2 is
98% of the total.

Further details of the calculation of > are given in [31,
Sec. V-B].

D. Unmixing Spectra

Assuming that there are N,,, (< NN;) materials in pixel i, we
propose to find the best fitting V,,, materials by minimizing the
Mahalanobis distance (MD)

MDZ‘ = 6?2_1 €; (9)

where X is the estimated error covariance matrix described
previously and

N Ny
[V oy~ Y BB
j=1 k=1

where f1; is the typical spectrum of the material j in the subset.
For a given subset of size N,,, (9) is mimimized with respect to
aij,7 =1,..., Np, (which are constrained to be nonnegative)
and B;p,k =1,..., N, (whose values are unconstrained). We
need to do this for all subsets of size IV,,, and choose the one
minimizing (9). We will discuss implementation issues shortly.
Finally, we need to choose the value of N,,, which is most
consistent with the data. This is discussed in Section V-E.

Of the 18 THz articles analyzing mixtures reviewed in Sec-
tion I, seven implicitly or explicitly use (3) but without any
background terms [4]-[9], [14]. Six of the articles place no con-
straints on the coefficients and use ordinary LS regression, while
the seventh [5] does constrain the coefficients to be nonnegative
and uses a method called nonnegative LS (NNLS) [44] to do
this. None of these articles use any subset selection. We shall
investigate this issue shortly.

LS or NNLS minimize Euclidean distance (ED), i.e., with™>
replaced by the identity matrix in (9). We have used MD because
it has minimum error rate in the following special case:

1) Nj,=1;

2) the errors are Gaussian with a common and known within-

class covariance matrix;

3) each of the IV, classes is equally likely.

Another interpretation is that MD transforms the data into
a space that maximally separates the classes/materials. This
should also improve the chances of unmixing the data into their
“true” classes. This has been demonstrated empirically to be true
in the minerals context (see [31, Tables II and III]), where MD
consistently outperforms ED.

We now turn to implementation issues. The first thing to note
is that MD can be converted to ED by a suitable linear transform
so that (9) can be represented as a residual sum of squares
(RSS), in our case as the sum of 114 squared residuals. The
second thing to note is that the RSS can be decomposed into
two parts. This is done using an extension of a technique called
canonical variate (CV) analysis [45, Sec. 3.9.2], which is just a
compressed version of the widely used classification technique
called linear discriminant analysis [46, Sec. 4.3]. In our extended
CV transformation, the dimension of the data is reduced from
114 to N; + N, = 11. We can then write

(10)

MD; = RSSi,CV + RSSi’O (11D

where RSS; cv is RSS in 11-D CV space and RSS;  is RSS in
the 103-D space orthogonal to it. The important property of this
decomposition is that, while RSS; cv depends on the particular
subset whose MD is being calculated, RSS; o does not. Hence,
RSS; o only needs to be calculated once for each pixel, while
the calculation of RSS; cv is much faster for each subset than
it is for MD;, because it is the sum of 11 terms rather than of
114 terms. Mathematical details about the decomposition can
be found in [31, Sec. VI].
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Having converted minimization of (9) into a (lower dimen-
sional) RSS/LS minimization problem, we can utilize fast subset
selection procedures described in [30]. Fortran software imple-
menting these procedures are currently freely available at http:
/Iwp.csiro.au/alanmiller/ and http://jblevins.org/mirror/amiller/
, and in the R package “leaps” [47]. In the implementation of
TSA found in TSG, for each of N,,, = 1,2, 3 and sometimes 4,
we find the 20, 30, or 40 best fits, and among these find the best fit
(if it exists), for which the estimated values &;;,j = 1,..., N,
are all nonnegative. However, in the version applied to the data
analyzed in this article, we examine all possible combinations
satisfying these nonnegativity constraints. It is not much slower;
see [48]. It has been implemented in the R package “groupsub-
setselection” [49].

For N,,, > 1, itis more meaningful to transform the ¢;;’s into
proportions for reporting purposes

Ny,
Pij = 6uj/ Y ik, j=1,..., N (12)
k=1

This scaling makes the procedure invariant to gain effects, while
the inclusion of a constant term among the background functions
(as part of the cubic function) makes the procedure invariant to
offset effects.

E. Estimating the Number of Materials in Each Pixel

Before proceeding, it will be useful to divide MD/RSS by the
number of frequencies used in each pixel. This is usually called
mean squared error (MSE)

MSE; = MD;/(N; — N,). (13)

The value of this statistic is smaller and more interpretable. Its
value is also less sensitive to small changes in the number of
frequencies used.

Before discussing ways of estimating the number of materials
in each pixel, we show why it is necessary, with the aid of the
pure multipellet image; see Fig. 2(a). We fit all six materials in
the library without any subset selection, i.e., we minimize (9)
with IV,,, = 6 and the coefficients o;;, 7 = 1,. .., 6 constrained
to be nonnegative. Although this can be converted into an NNLS
problem, it is easier to use quadratic programming methods [50,
ch. 16].

When all pixels are pure, it is possible to show their classi-
fications in a single image. However, it is difficult to show the
results of mixtures (and in particular, the proportions of each
material in each pixel) in a single image. Therefore, in Fig. 10,
we show separate proportion maps [using (12)] for each of the six
library materials. We also show the MSE map; we will discuss it
shortly. We also show the “heat” color scale that we use for both
the proportion and MSE maps, together with the scale used for
the proportion maps: dark blue, light blue, green, yellow, and red
correspond approximately to the proportions 0, 0.25, 0.5, 0.75,
and 1, respectively. Excluded pixels are shown in black. These
pixels either did not satisfy the requirements of the truncation
procedure (see Section IV-A)or &;; = 0,5 = 1,...,6,in which
case (12) is undefined.

0.75 1

Fig. 10.  Proportion and MSE maps for the pure multipellet image [Fig. 2(a)]
with no subset selection, together with an annotated color scale.

Of the materials with strong features, the L and TA pellets
are mostly red (i.e., pure or almost pure), with significant green
patches (mainly around the mixed edges). Most of the M pixels
are green, except for some red and yellow pixels near the pellet
center. On the other hand, many of the pellets with weaker fea-
tures show significant amounts of these materials (especially L).
The pellets of materials whose RC spectra have weaker features
are poorly identified. The worst example is the F pellet, which
is mostly identified as S. This figure demonstrates several needs
to reclassify those parts of the L, M, and TA pellets currently
identified as mixed as pure, and to reclassify the F, G, PB, and S
pellets as either “NIL” or what will call “aspectral.” It will also
be useful to classify the brass reference pellet as “metal.” These
issues are addressed over the next few subsections.

Before doing so, we discuss the MSE image in Fig. 10. Apart
from the excluded pixels, a heat color map has also been applied
to alinearly stretched version. Specifically, the stretch is between
0 and the upper 1% point of the distribution of (included) MSE
values. Any values above the upper value are shown inred. We do
not stretch it between 0 and the maximum MSE value, because
there are usually some very large RSE values and stretching to
this upper limit will make a few pixels red, with the rest shown
in dark blue. Note that most of the pixels in this image that are
not black or dark blue occur around the (mixed pixel) edge.

There are several ways of estimating the number of materials
at each pixel. We have found the following method reasonably
reliable. It is based on comparing “consecutive” models, i.e.,
containing N,, and N,, + 1 materials, respectively. In what
follows, we will omit the subscript ¢ for notational simplicity.
Call the best fitting mixture of /V,,, materials “model NV,,,” and
let MSE denote its MSE. Our estimate is based on

m

PN ,Ny+1 = MSEw,, /MSEN,, 1. (14)
The model N,, + 1 is preferred to model N,, if
PNy, Ny 1 > PO (15)

where pg is chosen according to some criterion. For each pixel,
PN, N,.+1 1s calculated for V,;,, = 1,..., Npax. In this article,
we will use Npyax = 2. The estimated number of materials
in the mixture is the last value of NV, + 1 satisfying (15).
If this inequality is never satisfied, the estimated number of
materials is 1.

There is statistical theory suggesting a suitable value of pg.
However, it is based on the assumption that the errors in the
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training and test data have the same distribution. Unfortunately,
this does not apply here because of slight variations in pellet
alignments causing differences in the pure training and test spec-
tra; see Fig. 1(a)—(f). Empirically, we have found that py = 1.125
works reasonably well. This is the value in all the examples that
we will analyze in Section VI.

F. Aspectral Pixels

“Aspectral” pixels are those that do not have detectable ab-
sorption features, i.e., they are well fitted by the background
terms in (3) alone, or at least including the best fitting pure mate-
rial does not significantly improve the fit. The aspectral test is just
(15) with N,,, = 0, i.e., only the background terms are fitted. We
use the same value of pg (1.125) as aforementioned. This enables
the easy integration of the aspectral test into the estimation of
the number of aforementioned endmembers. All that needs to
be done is to calculate py,, N,,+1 for Ny, =0,. .., Npax. The
estimated number of materials in the mixture is stlll the last value
of N,, + 1 satisfying (15). However, if this inequality is never
satisfied, the estimated number of materials is now O, i.e., the
pixel is classified as aspectral.

Although we have not seen the term “aspectral” in the litera-
ture, it is in fact used in the version of TSA contained in TSG.

G. Spectra That are NIL

NIL spectra are conceptually different from aspectral spectra.
The latter have no distinctive absorption features (relative to the
noise), while the former have features but their frequencies are
significantly different from those in the library or those of water
vapor. Typically, they do not fit as well and have a higher MSE
than those spectra that are in the library or are well fitted by
the background terms only. The NIL concept is needed in this
article to mask out holder pixels in the two test images containing
mixed pellets. (Most of the holder pixels in the pure pellet test
image are masked out because they fail the truncation test; see
Section IV-A.) In the examples analyzed in this article, a pixel
is masked out if MSE3 > 1.3.

H. Metal Spectra

As we can see in the absolute maxima images in Fig. 2(a)—(c),
the metal pellets are significantly brighter than the other objects
in those images. So, for all three images, we classify a pixel as
“metal” if its absolute maximum is greater than 0.8. This gives a
reasonably good separation between metal pellets and the other
objects. The test is carried out before the mixture model (3) is
fitted.

VI. APPLICATION OF THE METHODOLOGY
TO THE TEST IMAGES

Fig. 11(a)—(c) shows the proportion and MSE maps (based
on the theory and associated procedures in Section V) for the
three test images, respectively. The same color scales that have
been used in Fig. 10 have also been used here. Pixels (shown in
black) have been masked out for one of the following reasons:

1) the TDT consists entirely of zeroes;

Fructose Glucose Lactose Maltose

Sucr DSE Tartaric Acid Metal Aspec

sucr

Malt

Aspec

THA Metal

MSE
(b)
Fruc Gluc Lact Malt

Metal Aspec

(©)

Fig. 11.  Proportion and MSE maps for three multipellet images after subset
selection. The color scale used in Fig. 10 has also been used here. (a) Pure pellets.
(b) L/TA mixtures. (¢) L/M/TA mixtures.

2) criteria to pass the truncation procedure have not been met
(see Section IV-A);

3) if no pure material (with positive weights) can be fitted;

4) if MSE3 > 1.3 (see Section V-G).

Note also that, for all three MSE images, the values are usually
higher in pixels near the pellet edges. This is due to mixing with
light from the holder, which is not in the library.

The proportion maps for the pure pellet image in Fig. 11(a)
are a considerable improvement on those in Fig. 10 in terms
of accuracy and interpretability. Almost all pixels that have not
been masked out are either dark blue (0) or red (1), which is
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what one would expect for pure pixels. In particular, the L, TA,
and brass (R) pellets are almost entirely red in the appropriate
proportion map. The central section of the M pellet is correctly
classified, while the remaining parts are classified as aspectral.
The F, G, PB, and S pellets are also almost entirely classified
as aspectral, as are many pixels near the edges of the L and R
pellets.

In the two images containing some mixed pellets [see
Fig. 11(b) and (c)], the pure L, M, TA, and R pellets are almost
entirely correctly classified; some pixels near edges are classified
as being mixed. The mixing of the materials in mixed pellets is
seldom uniform, so we do not expect the colors to be the same
throughout such pellets. In Fig. 11(b), the pellets that are 75%
L and 75% TA, respectively, are indeed dominated by these two
materials, with smaller amounts of the minor (25%) material
present. However, in the pellet with equal (50%) amounts of L
and TA, L appears to dominate. Note that these percentages are
by weight. Originally, we thought that this discrepancy might
be due to the fact that TA has a higher density (1.79 g/cm?)
than L (1.52 g/cm?®). The theoretical volume percentages of
L and TA then become 54% and 46%, respectively. However,
it is straightforward to average the percentages in any of the
(estimated) pellets, because each of them is surrounded by black
pixels. For the pellet in question, the estimated percentages are L:
71%, TA: 22%, and Other: 7%, which is very different from the
expected percentages. One possible explanation is that, when the
two materials were mixed together, many of the denser TA grains
may have “sunk” beneath L grains and so were less detectable
by the measurement system. We intend to investigate this issue
further in the near future.

A similar phenomenon can be observed in the L/M/TA mix-
ture image. In theory, the two mixed pellets have equal amounts
of L, M, and TA (by weight). We see that most of the pixels in
these two pellets are approximately 50/50 mixtures of L and M.
Only small amounts of TA are found and most of these are near
the pellet edges. The density of M is 1.54 g/cm?, which is similar
to that of L. So what we observe is consistent with the theory
that many of the TA grains many have “sunk” and so were less
detectable by the system.

Finally, we note that, unlike in the pure pellet proportion maps
[see Fig. 11(a)], very few pixels in Fig. 11(b) and (c) have been
classified as aspectral, and most of these are near the pellet edges.

VII. CONCLUSION

In this article, we outlined an automated system for analyzing
reflection mode THz hyperspectral images of pure and mixed
materials. The system is based on an extended linear model (3),
which incorporated terms representing low-frequency variation
and water vapor. The methodology also estimates the number
of materials present in each pixel and tests for the presence of
aspectral and NIL pixels, as well as identifying metals.

The proportion maps in Fig. 11(a)—(c) are encouraging in that
they appear to produce reasonable approximations to the truth.
However, we note again the potential limitation that the esti-
mated proportion of the denser material (TA) was considerably
lower than the actual proportion when it was mixed with less

dense materials. We speculate that this may be due to the heavier
TA grains tending to “sink” below the lighter grains.

Most of the theory applied in this article was developed
for mineral exploration applications. The TSA software that
implemented it is widely used as part of TSG, and especially in
conjunction with a number of HyLoggers, mainly in Australia,’
but also in several other countries. It is encouraging that it
appears to also work well with THz reflection mode spectra
with little modification. This robustness suggests that it should
also work well with THz transmission mode spectra, which are
often less noisy than their reflection mode counterparts.

An issue needing further research is an improved model for
water vapor. The water vapor term in our model is based on a
brass measurement when RH = 42.6%. This is insufficient for
higher RH levels, probably due to their being two types of water
vapor (ortho-H>O and para-H20). We needed to add a brass
reference term [see (1)] to ensure that water vapor effects are
adequately modeled at higher RH levels. Ideally, we would like
to be able to incorporate a suitable additional water vapor term
in our model so that we do not need to rely on a reference in
every dataset. We intend to extend the water vapor experiment
to higher RH levels and to build on the work of [39] and [40] to
enable this.

Finally, we discuss the issue of speed. This is mainly deter-
mined by the following three quantities: the number of sam-
ples/pixels in the dataset (/V); the size of the library (V;);
and the maximum number of materials assumed to be in the
mixture in any pixel (Np.). The datasets analyzed in this
article were fairly small with N = 7502, 1496, and 1776 for
the three datasets, respectively; see Table I. The library size was
also small (N; = 6) and Npyx = 3. Consequently, the average
elapsed times for the three datasets (run on a Dell Latitude 7400
laptop with a 1.6 GHz Intel Core i5-83650 CPU) were 7.93,
3.63, and 4.07 s, respectively.

As N increases, the time taken will grow linearly, unless of
course parallel computing is used, since the algorithm was ap-
plied to each spectrum separately. However, the time taken grows
more quickly if either N; or N,, is increased. The key parameter
is ( ]{IV ! ). For the datasets analyzed here, (g) = 20. However, for
the SWIR mineral application mentioned previously, N; = 60,
and then, (%) = 34220, while (%) = 487 635. A few years ago,
we timed a dataset with N = 109 344 spectra, analyzing pairs
of spectra in parallel. It took 130 s, when N,,, = 3, and 950 s,
when N,,, = 4. Hence, in recent versions of TSG, N,,, = 3 is
the default with N,,, = 4 offered as an option.

There are faster approximations to the full subset selection
algorithms used in this article. Probably the most promising is a
method called L1 regularization, where a penalty term discour-
aging large values of NV, is added to the term in (9); see [31,
eq. (28)]. Although itis faster, it is not as accurate. A comparison
was carried out with some testdatain [31, Sec. VIII.C]. However,
more comparisons with other datasets are needed to understand
the loss of accuracy better.

2 [Online].  Available:  https://www.csiro.au/en/work-with-us/industries/
mining-resources/Resourceful-magazine/Issue- 18/Virtual-core
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