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A Passive, Fully Staring THz Video Camera Based on
Kinetic Inductance Bolometer Arrays
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Andrey Timofeev , Kirsi Tappura , Anssi Rautiainen, Aleksi Tamminen , Visa Vesterinen , Mikko Leivo,

Feng Gao , Hannu Vasama, Arttu Luukanen , and Juha Hassel

Abstract—Current state-of-the-art security video cameras op-
erating in the THz regime employ up to a few hundred detectors
together with optomechanical scanning to cover an adequate field-
of-view for practical concealed object detection. As a downside,
the scanning reduces the integration time per pixel compromising
sensitivity, increases the complexity, and reduces the reliability of
the system. In contrast to this, we demonstrate a video camera, for
the first time, basing its operation on the concept of a fully staring
2-D detector array with a single detector element responsible for a
single imaged pixel. The imaging system is built around the detector
technology of kinetic inductance bolometers, allowing the operation
in the intermediate temperature range>5 K and the scale-up of the
detector count into multikilo-pixel arrays and beyond. The system
is designed for a field-of-view of 2 × 1 m2 and an imaging distance
of 2.5 m. We describe the main components of the system and
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show images from concealed object experiments performed at a
near-video rate of 9 Hz.

Index Terms—Bolometer, focal plane array (FPA), kinetic
inductance, radiometry, security screening, THz imaging, THz
video camera.

I. INTRODUCTION

A LTHOUGH the idea of using subterahertz radiation for
concealed object detection is not a new one [1], the lack

of available instrumentation in this frequency range for long
delayed the development of applicable imaging systems. The
transmission through dielectric materials, including the most
common clothing, deteriorates with increasing frequency and is
very small already at 1 THz [2], defining the upper limit of the
frequency band of interest. On the other hand, the achievable
spatial resolution fundamentally scales with the wavelength,
making standoff detection unattractive below a few hundred
gigahertz. The active video cameras operating in the optimal
regime illuminate targets with high-power sources, making the
detection with room-temperature detectors adequate [3]. In pas-
sive imaging, the magnitude of the signal is limited by the scene
and requirements for detector sensitivity are more pronounced.
The power of radiation emitted by room-temperature objects
is 4–5 orders of magnitude smaller in the 0.2–1 THz band
than at 20 THz where the spectrum of Planck’s blackbody
spectral radiance peaks. To achieve the required sensitivity, the
conventional passive imagers are based on cooled bolometers
although competing detectors operating at room temperature are
also being developed [4].

Due to their similar nature of operation, the advances made
in space instrumentation have supported also the development
of passive imaging systems for terrestrial applications. Passive
video cameras based on both transition edge sensors [5] and
kinetic inductance detectors (KIDs) [6] have been reported. The
common denominator for these systems is that they are operated
below 0.5 K. However, for commercial applications, it becomes
increasingly important to find technological solutions that are
cost-efficient and robust. The prior work at VTT has concen-
trated on developing passive imaging technology with affordable
cryogenics operating in the temperature range of 5–10 K [7]. The
imager utilizes the so-called hot-spot bolometers [8], based on
the resistive transition [9] in a voltage-biased superconducting
air bridge, combined with room-temperature readout electron-
ics. These imaging systems are today commercially available
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Fig. 1. LASTKID imaging system shown from the side (left panel) and from
the imaging direction (right panel) with some of its subsystems indicated.

[10]. All the above-mentioned video cameras contain up to a
few hundred detectors and employ optomechanical scanning to
cover an adequate field-of-view (FOV) for security screening.
As a downside, the system sensitivity is degraded roughly with
a factor of N1/2

eff , where Neff is the number of pixels acquired
with a single detector.

In this article, we present a fully staring passive THz imaging
system, i.e., a video camera without scanning mechanics where
each detector produces a single pixel in the image. The cor-
nerstone of the “LASTKID” imager is the detector technology
based on the so-called kinetic inductance bolometers (KIBs)
developed at VTT [11] that allow the fabrication and readout of
high-pixel-count focal plane arrays (FPAs) and operation in the
intermediate temperature range above 5 K. In contrast to their
millikelvin counterparts, i.e., KIDs [12] relying on nonequilib-
rium excitation of quasiparticles, KIBs exploit the temperature
dependence of kinetic inductance in thermal equilibrium with
the design resembling those presented in [13] and [14]. We have
previously demonstrated the operation of single KIBs [11] and
large detector arrays [15] as well as their readout [16] in the
sensitivity level needed for radiometric imaging for terrestrial
applications. Here, a full imaging system is described. After
presenting the main design guidelines and characteristics of the
imaging system, the imaging performance is measured in terms
of optical resolution and radiometric contrast. Furthermore, we
show video imagery from practical concealed object detection
experiments performed with a frame rate of 9 Hz and FOV of
0.66 × 0.86 m2. We conclude by discussing the future prospects
of the presented technology.

II. IMAGING SYSTEM

The LASTKID imaging system is shown in Fig. 1. The imager
operates at T = 5.8 K using a closed-cycle Gifford–McMahon
cryocooler, enclosing the FPA inside. THz radiation is able to
access the cryostat through a rather large optical window with the
approximate dimensions of the focal plane 100 mm × 200 mm.
The sufficient infrared (IR) rejection is achieved by combining
thermal filters, such as those described in [17], and Zitex polymer
filters [18], defining the instrument bandwidth to 1 THz. The
main components of the system are the detector array, readout
electronics, and optics which will be described in the sections

Fig. 2. (a) Optical photograph of the kinetic inductance bolometer. The
main components of the bolometer, resistive absorber, and kinetic inductance
thermometer are patterned on a 300-nm-thick SiN membrane which has been
released from the back side with through-wafer etching process on areas shown
with orange color. As a result, the membrane has low heat capacitance c and
is thermally isolated from the Si substrate with eight narrow legs determining
thermal conductance G. The TiW absorber has the shape of a square grid while
the thermometer fabricated from NbN meanders along the membrane. The size of
the membraneW = 1 mm and detectors are fabricated with a pitch p = 1.5 mm.
(b) Focal plane array with dimensions AFPA = 100 × 200 mm2. (c) Readout
circuit for an array of kinetic inductance bolometers with temperature-dependent
inductances serving as detector elements.

below. The total height of the instrument is about 130 cm with
a footprint diameter of 65 cm. The system weight is 80 kg.

A. Detector Array

The main features of the KIB technology have been reported
before [11], [15], [19]. The detector array for the LASTKID
imaging system follows these design principles. The structure
of the KIB is shown in Fig. 2(a). A resistive absorber converts
the power of THz radiation into heat on a membrane. Optimal
radiation coupling is achieved by matching the sheet resistance
of the absorbing material to the vacuum impedance of 377 Ω.
The coupling can be enhanced further with a reflective element
located at a distance hbs = nλ/4 behind the detector, where
n is an odd integer and λ the wavelength of the radiation in
the medium. We used a metallic cold finger as the backshort
with hbs= 450 μm as defined by the thickness of the Si wafer.
The heat-induced change of temperature is then detected uti-
lizing the temperature dependence of the kinetic inductance of
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a superconducting NbN meander. Here it is assumed that the
membrane itself together with the absorber and the thermometer
are in thermal equilibrium.

The focal plane of the LASTKID is shown in Fig. 2(b). It
contains three tiles, each fabricated on a single 150 mm Si wafer.
The total detector count Ntot = 8712 that have been divided
into 66 channels. The electrical scheme of one such channel is
shown in Fig. 2(c). Inductor Li with i = 1, ..., 132, containing
contributions from geometric and kinetic inductances, is placed
in parallel with an off-membrane capacitor Ci. The formed
electrical resonator is further coupled to a transmission line with
coupling capacitor Cci, leading to a characteristic resonance
frequency fi = 1/(2π

√
Li(Ci + Cci)) for each detector in the

channel. To increase the packing density of the capacitors, we
used atomic layer deposited aluminum oxide as the dielectric
material with the relative permittivity of 8.5. It is to be noted
that the measurements in this article were performed with N =
114 detectors per channel.

B. Readout

A detailed description of the serial addressed frequency ex-
citation (SAFE) readout for the LASTKID is given in [16]. For
completeness, a brief summary on the basic readout principles
is given here. During a frame time τF, each detector in a channel
is addressed sequentially in a time slot of τs = τF/N with a
corresponding resonance frequency fi. As driven through the
KIB array, the carrier signal gets modulated by the detector
signals. The modulated signal is amplified at room tempera-
ture (noise temperature TN = 35 K) and demodulated to the
baseband, yielding the time-multiplexed detector signals for
post-processing. The chosen readout band fBW = 20–300 MHz
is a compromise of two factors. The resonator quality factor
decreases as a function of frequency [15], being small at the
high frequency bound while the electrical response time of the
resonator becomes too slow for multiplexing at low frequen-
cies [16].

The benefit of SAFE is that high-speed digital electronics
is only needed to generate the sinusoidal excitation tones as
compared to the full frequency division multiplexing case [20],
making the readout system drastically less expensive. It was
also shown in [16] that in the ideal case of the phonon noise [21]
being the dominant noise mechanism, SAFE does not degrade
the multiplexed signal-to-noise ratio (SNR) as compared to the
continuous readout of a single detector.

C. Optics

In many typical imaging applications, the available space is
a limiting factor. Furthermore, wide FOV is preferred which
sets specific requirements for the optics. This aspect has been
previously addressed by a dual polymer lens structure in [22].
In the LASTKID system, we apply a slightly different concept
based on a double-Gauss type lens assembly [23] with the FOV
of 2 m diameter as limited by the optics. The imaging distance
of the system is 2.55 m as measured from the imaging system
center, including also the effect of the planar mirror bending
the optical path by 90◦. This allows easy flow of people while
the system does not occupy too much footprint. A ray tracing
simulation is illustrated in Fig. 3(a), along with a photograph of

Fig. 3. (a) Ray tracing image of the optics showing the object plane on the
right. The image is formed on the FPA under the lens system, whose physical
realization is illustrated in (b).

Fig. 4. Generic block diagram describing the optimization of the imaging
system. Also the main specifications of the LASTKID imaging system are
summarized.

the realized lens assembly in Fig. 3(b). Here TPX plastics was
used as lens material. The optics has a magnification M = 10
from the focal plane to the object plane, and an f -number F =
2.2. Thus, the size of the focal plane 200 mm × 100 mm limits
here the final imaging area to 2 m × 1 m. A mechanical chopper
shown in Fig. 1 is placed between the cryostat window and the
lens assembly, converting the base-band video signal to around
the chopping frequency. Roughly speaking, this means that the
signal is transformed to a root mean square value of a sinusoid
having a peak-to-peak amplitude equivalent to the original dc
signal level, leading to the loss of signal with a factor of 2

√
2. The

benefit is that the influence of low-frequency noise and thermal
drifts in the cryostat are effectively eliminated, improving the
total SNR of the measurement.

III. INSTRUMENT DESIGN OPTIMIZATION

The most important parameters specifying the imager per-
formance are FOV, spatial resolution, and radiometric contrast
which give rise to the tradeoffs between different subsystems of
the instrument. The aim here is to present a simplified analysis,
yielding basic design principles for the whole imaging system.
Fig. 4 summarizes the basic figure of merits of the subsystems
and their relationships.

Diffraction-limited spatial resolutionΔx as defined by the full
width at half maximum (FWHM) of an Airy disk and referred
to the object plane is

Δx = 1.028MλF. (1)
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Fig. 5. Efficiencies from transmission and reflection losses due to IR filters and
optical components together with atmospheric attenuation and optical coupling
of the detector. These were estimated following the methodology presented
in [15], supported by the transmission measurements performed for optical
components in the THz regime. The detector efficiency was computed as the ratio
of the absorbed powerPabs with respect to the area integral of the power density
over the membrane. The total efficiency η is the product of other efficiency
components.

For a spatially fully sampled system, the criterion for detec-
tor spacing is p ≤ 0.5λF [24] and the requirements for the
total detector count Ntot = 4× FOV/(MλF )2 and FPA area
AFPA = FOV/M2. Clearly, low magnification and f -number
promote high spatial resolution. Yet, this comes with the cost
of a larger AFPA and Ntot, increasing the cryogenic exposure
to ambient IR load, silicon area in detector production, and
complexity of the readout system. Very low f -numbers also
challenge the optics design in maintaining the diffraction-limited
resolution across the focal plane [22].

The radiometric contrast is quantified with the noise equiva-
lent temperature difference (NETD) given by

NETD =
NEP

∂Pabs/∂Ts
√
τ
=

NEP

2kB
∫ f2
f1

η(f)AdetΩ
λ(f)2 df

√
τ

(2)

where Rayleigh–Jeans approximation has been used in the last
stage. Here, Pabs is the power received from a thermal source
at temperature Ts, τ is the integration time of the measurement
and NEP stands for noise equivalent power. The total efficiency
η takes into account the different loss mechanisms present
in the optical path as estimated in Fig. 5, with major losses
stemming from the thermal filtering and optical components.
A valid approximation for the normalized optical throughput is
AdetΩ/λ

2 = πAdet/(4F
2λ2) [24], whereΩ is the angle looking

into the optics. With (2), we note that a low f -number also
promotes better radiometric contrast. Furthermore, it appears
favorable to increase the bandwidth toward the high-frequency
end as the factorAdet/λ

2 increases quadratically with frequency,
following from the frequency dependence of the blackbody ir-
radiance [15]. However, the benefit of expanding the bandwidth
is counteracted by the increase of dielectric losses in the optics
and filters as apparent from the data of Fig. 5. Here we have
assumed that the detector effective area Adet � W 2 with W the
absorber width. Although strictly valid only in the geometric
limit W/λ � 1 [25], this is a good approximation with minor
deviations at the low-frequency end of the spectrum [26].

The phonon noise across thermal link G dominates the detec-
tor noise, i.e., noise equivalent powerNEP =

√
4kBT 2G, where

kB is the Boltzmann constant and T is the temperature. This
noise is band limited with a cutoff frequency fc = G/(2πc).
Thus, thermal conductance G and heat capacitance c determine
the tradeoff between the detector speed and sensitivity. A rough
optimization process, assuming c is determined by Adet and G
is engineered to achieve sufficiently fast response time [19],
yields NEP ∝ √

Adet. From this and (2), we further obtain
NETD ∝ 1/

√
Adet. Ideally, the maximum detector dimension√

Adet = p, where detector pitch p is determined by the spatial
sampling. Due to the fabrication tolerances, the detector pitch
p > W in practice.

For the detector readout, an important parameter is the power-
to-voltage responsivityR = ∂vout/∂Pabs, which gives the noise
power spectral density at the input of the preamplifier Sv,out =
(R×NEP)2. This can be converted into equivalent noise tem-
perature Te = Sv,out/(kBZL), where ZL is the preamplifier
input impedance. The detector noise preferably dominates over
amplifier noise. For the SAFE multiplexing scheme, this leads
to a limiting condition for the detector count N in a channel
given by (R×NEP)2/(kBZLN) > TN, where TN is the noise
temperature of the preamplifier [16]. Detector count N is also
affected by the dynamic range ΔP of the detectors [16]. By
requiring that the change of the resonance frequency stays below
the linewidth of the resonator and adjacent resonant frequencies
are separated by several linewidths, it is straightforward to
determine the maximum number of N for a given readout band
fBW. This also gives a preferred value for the number of channels
as Nch = Ntot/N , which, in turn, determines the heat loss due
to wiring.

Based on these principles, the justification for the parameter
choices is roughly as follows: The focal plane (or optical aper-
ture) area was maximized based on the realizable thermal IR fil-
tering and detector array. The IR load scale is set by the ambient
blackbody radiation level estimated from the Stefan–Boltzmann
lawPrad = AwinσT

4, whereσ =5.7× 10−8 Wm−2K−4. While
the load can be, to an extent, reduced by reflective filters, the
first cooling stage of the cryostat absorbs a large fraction of
the radiation in practice. The particular aperture size Awin was
chosen based on the comparison of the estimated ambient IR load
Prad = 8 W and the cooling power of the cryostat. The resulting
FPA area AFPA = Awin was also compatible with the manufac-
turing criteria, enabling FPA production on three 150 mm silicon
wafers. Furthermore, it was found that the double-Gaussian
lens assembly with F = 2.2 and M = 10 can provide a near-
diffraction limited spot size at the wavelength of 600 μm over
the FOV of 2 × 1 m2. Finally, we note that with reference to the
frequency band of interest, the chosen detector pitch p = 1.5 mm
is a factor of 1–4.5 more sparse than the full sampling criterion,
as a consequence of the detector and readout realizability. The
ratio of the total optically active area with respect to the total
FPA area is Adet/p

2 = 0.44. According to the above discussion,
this approximately degrades the NETD by a factor p/W =
1.5 as compared to the case of an equal pitch and ideal filling
p = W .
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Fig. 6. (a) Full width at half maximum values measured as a function of the
radial distance from the center of the object plane for x- and y-directions. (b)
NETD values were determined for single pixels with full integration time τs =
τF and multiplexed case with τs = τF/N over N = 114 detectors. As a result
of multiplexing, the noise level increases from 0.04–0.06 to 0.11–0.14 K/Hz1/2.

IV. MEASUREMENTS

A. System Characterization

The optical performance of the imaging system was charac-
terized in terms of spatial resolution and radiometric contrast.
The measurements followed the methodology presented in [15].
Unlike in imaging experiments, the optical chopper was placed
in front of thermal sources, and not below the lens system shown
in Fig. 1. The chopper was operated between 30 and 45 Hz. The
recorded data was Fourier transformed, yielding the signal at
chopping frequency.

The spatial resolution was measured by moving a hot-spot
source along the object plane with an xy-manipulator. To quan-
tify the optical resolution, the FWHM value of the point spread
function is shown in Fig. 6(a). In the middle of the FPA, the spot
size is around 16–18 mm. This can be compared to (1), which
gives a correspondence to diffraction-limited performance with
a point frequency of 400 GHz while the comparison to truly
wide-band detection is more involved [27]. However, the spots
become asymmetrical toward the FPA edge which can be seen
as an increase of the FWHM value in y-direction, yet being well
below 30 mm for the whole FOV.

The radiometric contrast was determined using an aqueous
blackbody calibrator (ABC) [28] as a thermal source. The results
are summarized in Fig. 6(b). Here, the NETD was measured only
for radial distances below 500 mm as the blackbody emission
from ABC is too narrow to cover the entire FOV of the imaging
system. We estimate detector NEP of 14 fW/Hz1/2 based on the
comparison of current and old detector designs and scaling from

the measurement data of the latter [11]. With this and efficiencies
shown in Fig. 5, the computation of (2) yields theoretical NETD
= 10 mK/Hz1/2. Taking into account the loss of the signal due
to chopping, NETD value of 28 mK/Hz1/2 is obtained which is
in a reasonable agreement with the lowest measured value.

It is seen that noise increases with a factor of 2–3 upon multi-
plexing over N = 114 detectors. The origin of this multiplexing
penalty stems from two factors [16]. First, the band-limited
detector noise does not fully dominate over other wide-band
noise sources such as those stemming from the excitation and
readout electronics. Also, the Nyquist sampling criterion fF
= 1/τF > 2fc is not met with the current design values of fc =
120 Hz and fF = 146 Hz. Still, the multiplexing is clearly
beneficial as compared to the case of mechanical scanning
suffering from the worst-case noise penalty

√
N ∼ 11.

B. Imaging Experiments

The imaging capability of the LASTKID system was ver-
ified in concealed object detection experiments. Fig. 7(a)–(d)
shows snapshots of video imagery taken from different imaging
scenarios. Plastic rods made of polyoxymethylene (POM) were
hidden against the test person’s back under a hooded shirt.
Optical signal was chopped at 37 Hz while the data was recorded
simultaneously from 20 channels corresponding to a detector
count of 2280 and imaging area of 86 × 66 cm2. Slot time τs
was adjusted to 60 μs leading to a frame time τF = 6.8 ms for
N = 114 detectors.

Except for the two missing channels indicated with green
arrows in Fig. 7(a)–(d), the detector yield was generally found
to be better than 97% in channels over the whole imaging area.
The detector readout was tuned with the methodology described
in [16], providing the excitation parameters and the encoding of
the detector readout frequencies into the corresponding spatial
coordinates. The nonidealities in the calibration process lead to
discrete errors in the x-coordinate that is defined by the detector
index within the channel. To fix these, we used a plastic pipe
filled with hot water as a calibrator. The vertically aligned pipe
was slowly moved horizontally with the xy-manipulator, pro-
viding a reference signal for spatial calibration of the detectors.
Furthermore, as another calibration step, a copper plate was
placed on top of the lens system [Fig. 3(b)] to provide a rough
calibration method for varying detector responsivities.

To produce the image quality shown in Fig. 7, the procedure
for data processing was the following. First, the data was demul-
tiplexed and demodulated to the baseband using the chopping
frequency as a local oscillator. The data was then averaged to the
final video frame rate of 9 Hz after which the offset of the signal
was subtracted. A compressor recycles He gas in cycles of 1 Hz
to the cold stage of the cryocooler, creating thermal interference
to the signal at this frequency and its multiples. The effect of
this interference was removed as a next step. With the aid of
acquired calibration data, the pixels were spatially reorganized
and corresponding detector signals normalized. Finally, videos
were produced using gamma correction with an exponent of 2.32
for color scale.

The 30-mm-wide rod is clearly visible in the imagery and even
the 16-mm-wide rod hidden under the shirt is recognizable. Also
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Fig. 7. (a)–(d) Snapshots from THz video imagery taken with the LASTKID
imaging system and compared against optical imagery acquired with a mobile
phone camera in different imaging positions. Rod-shaped items are concealed
under the clothing of the test person’s back while there are no objects hidden
on the frontside. The mobile phone camera was placed to the left with respect
to the THz imager. The green arrows indicate the locations of the nonfunctional
channels visible as dark horizontal lines in THz imagery. (e) Plastic rods
fabricated from POM material with diameters of 30 and 16 mm were used
in imaging situations of (a)–(c) and (d), respectively.

other features such as the nose of the test person in Fig. 7(b) can
be observed. Thus, the results demonstrate the performance of
the fully staring imaging system for concealed object detection
down to the spatial resolution of 16 mm, in line with separate
characterization measurements presented in Fig. 6(a), and with
a sufficient sensitivity level as predicted by the radiometric
contrast measurements shown in Fig. 6(b) [29].

V. CONCLUSION

In conclusion, we have demonstrated, to our knowledge for
the first time, a passive THz imaging system with a fully staring
detector array for the application of person security screening.
Furthermore, this was also the first demonstration of imaging
performed with KIBs in the first place. A general tradeoff
analysis on the instrument design was given. Besides constraints
derived from subsystem-specific properties, there are also gen-
eral factors contributing to the instrument design, including the
instrument weight, size, power consumption, and, of course,
the price along with the limitations set by the microfabrication
techniques. Another benefit of the fully staring imager is the
possibility for a higher video frame rate, in our case restricted by
the frame time τF, as compared to other systems where scanning
mechanics is often a limiting factor.

The question is whether the fully staring concept based
on KIBs has potential in emerging commercial applications.
Currently, millimeter-wave scanners are in common use in the
airport security while potential applications are also found in
other mass transit hubs, and loss prevention, to name a few. These
may benefit from new approaches, especially those allowing a
walk-through type imaging scenarios. Furthermore, the possibil-
ities of the active and passive imaging, or even the combination
of the two, are yet to be fully explored [30]. Regarding standoff
imaging in general, the imaging geometry is to be optimized for
a given application. While the LASTKID system was designed
for a short-range imaging distance of 2.5 m, a longer range
imaging is equally possible with the KIB technology [15]. Here,
the imaging experiments were performed with rather limited
imaging area of 0.66× 0.86 m2, while for the LASTKID system,
a FOV of 2 × 1 m2 is realizable with further scale-up of the
electronics. This already enables the imaging of human-sized
objects, whereas screening a larger number of people requires
larger FOV. Increasing the FPA size eventually leads also to a
larger aperture size which, due to the stronger radiative load, sets
stringer requirements for the cryogenics. A further optimization
of the cryogenic system and advancements in thermal filtering
could help to solve these issues.
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