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Abstract—We have developed terahertz (THz) quantum-
cascade lasers (QCLs) based on GaAs/AlAs heterostructures for
application-defined emission frequencies between 3.4 and 5.0 THz.
Due to their narrow line width and rather large intrinsic tuning
range, these THz QCLs can be used as local oscillators in airborne
or satellite-based astronomical instruments or as radiation sources
for high-resolution absorption spectroscopy, which is expected to
allow for a quantitative determination of the density of atoms and
ions in plasma processes. The GaAs/AlAs THz QCLs can be oper-
ated in mechanical cryocoolers and even in miniature cryocoolers
due to the comparatively high wall-plug efficiency of around 0.2%
and typical current densities below 500 A/cm2. These lasers emit
output powers of more than 1 mW at operating temperatures up
to about 70 K, which is sufficient for most of the abovementioned
applications.

Index Terms—Quantum-cascade laser (QCLs), terahertz (THz)
spectroscopy.

I. INTRODUCTION

THE invention of quantum-cascade lasers (QCLs) about
25 years ago [1] opened the path to a variety of spectro-

scopic approaches in the mid- to far-infrared spectral region.
In particular, QCLs for the terahertz (THz) spectral region [2]
allow for high-resolution spectroscopy of molecules, atoms, and
ions utilizing rotational or fine-structure transitions. During the
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last decade, THz QCLs have been developed for the use as
local oscillators in heterodyne receivers for astronomy [3]–[5].
Since 2014, a THz QCL developed at the Paul-Drude-Institut has
been employed as the local oscillator on board of Stratospheric
Observatory For Infrared Astronomy (SOFIA) for the detection
of interstellar atomic oxygen [6]. In atmospheric science, the
rotational transition of OH at 3.55 THz and the fine-structure
line of atomic oxygen (OI) at 4.75 THz are of particular
interest. Both can be measured with QCL-based heterodyne
receivers. This approach is, for example, proposed for Link
Observations of Climate, the Upper-atmosphere and Space-
weather (LOCUS).1 For fundamental research and industrial
applications, high-resolution absorption spectroscopy based on
fine-structure transitions in Al, N+, and O at 3.36, 3.92, and
4.75 THz, respectively, is expected to allow for the quantitative
determination of the atom and ion densities in plasma pro-
cesses. Furthermore, QCLs emitting in the atmospheric windows
around 3.43, 4.32, and 4.92 THz are of interest for applications
such as THz spectroscopy under pulsed megagauss magnetic
fields at high-magnetic-field facilities, if the THz radiation has
to be transmitted through air over a distance of about 10 m into
the magnet inside a Faraday cage.

Due to their high emission powers and narrow line widths in
continuous-wave (cw) operation, THz QCLs are excellent radia-
tion sources for high-resolution spectroscopy. For such applica-
tions, they have to emit radiation at a well-defined frequency, but
also have to exhibit an intrinsic tuning range of 5–10 GHz. Such
a tuning range is necessary in order to analyze the line shape of
an absorption line, e.g., for the quantitative determination of the
density of the investigated species. A similar tuning behavior
allows for the detection of a possible Doppler shift of radiation
received from interstellar objects recorded by heterodyne tech-
niques. For practical use, THz QCLs have to fulfill particular
specifications for the intended applications. First of all, the
wall-plug efficiency has to be sufficiently high for operation
in a mechanical cryocooler or even miniature cryocooler for
compactness and to avoid the usage of liquid coolants. We
recently demonstrated that THz QCLs based on GaAs/AlAs
heterostructures [7] exhibit significantly larger wall-plug effi-
ciencies than similar lasers relying on Al0.25Ga0.75As barriers so
that these lasers are preferred for liquid-coolant-free operation.

1www.locussatellite.com
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Second, QCLs are the source of choice for many applications if a
cw output power of at least 1 mW is necessary. This output power
has to be correlated with a maximum operating temperature.
Hence, we define a practical operating temperature Tpo as the
temperature at which the QCL exhibits an output power of at
least 1 mW emitted in a fundamental Gaussian mode.

For a near-Gaussian beam profile, QCLs with so-called sur-
face plasmon waveguides [2] are used. However, they require
designs with rather large gain in order to compensate for the
lower mode confinement factor compared to the one for metal-
metal waveguides [8]. In particular, for cw operation, lasers with
a high gain and a low electrical pumping power, i.e., lasers with
a high wall-plug efficiency, are preferred. Here, so-called hybrid
designs, in which a bound-to-continuum transition is combined
with direct carrier injection or resonant population of injector
levels assisted by longitudinal optical phonon emission [9], have
proven to be of advantage [5].

In this article, we present THz QCLs based on GaAs/AlAs
heterostructures with emission frequencies between 3.4 and
5.0 THz based on the hybrid design, substantially extending the
accessible spectral range of lasers based on this materials system,
which has been so far reported only for 4.75 THz. Although the
growth remains challenging, we have realized lasers from 11
different wafers. Optimized lasers exhibit competitive wall-plug
efficiencies and rather high practical operating temperatures in
cw operation. Finally, we demonstrate the operation of these THz
QCLs in a mechanical cryocooler (Ricor K535) or a miniature
cryocooler (AIM SL400).

II. DESIGNS

For the development of the designs, we started from a laser
structure operating at 4.75 THz (sample B in [10]), followed
by a gradual scaling of the layer structure toward lower or
higher frequencies. The QCL structures consist of 78 periods for
frequencies smaller than or equal to 3.90 THz and 88 periods for
frequencies larger than 3.90 THz using in all cases 8 quantum
wells in each period. The corresponding frequencies of the
gain maxima are achieved by an appropriate adjustment of the
quantum well thicknesses and a corresponding fine-tuning of
the thicknesses of some particular barriers. The quantum well,
which contains the transition resonant to the energy of the
longitudinal optical phonon, is Si doped with a density of up to
2× 1017 cm−3. Fig. 1(a) and (b) depicts the calculated subband
structures using the nominal layer thicknesses of the designs
for 4.75 THz and 3.50 THz, respectively, as examples, which
demonstrates that the scaling maintains the essential subband
structure. Similar designs have been demonstrated by Köhler
et al. [11] and Scalari et al. [12] for the GaAs/Al0.15Ga0.85As
materials system with significantly lower doping levels.

In addition to the hybrid character of the design, i.e., the
combination of a bound-to-continuum laser transition with an
efficient carrier extraction from the quasi-miniband and a res-
onant population of the injector levels utilizing scattering by
longitudinal optical phonons, a unique feature of the present
design compared to other recent hybrid designs such as discussed
by Amanti et al. [13] is an undoped injector quantum well

Fig. 1. Conduction band profiles, subband structures, and positions of the Si
doping of QCLs for (a) 4.75 and (b) 3.50 THz. The blue lines depict the laser
states (l1, l0), while the red lines indicate the initial (s1, s2) and final states (s0)
for the main transitions, which are resonant to the energy of the longitudinal
optical phonon. The thick black line presents the injector state (i). Note that the
dipole matrix elementsDl1−l0 for the lasing transition may vary with increasing
field strengths as the coupling of the lower laser level to the quasi-miniband
varies while the energy separation El1−l0 is rather constant due to the vertical
character of the transition. In order to evaluate the designs, gain spectra have to
be calculated for a larger field strength range, as shown in [7]. For the given field
strengths, the key design parameters areEl1−l0 = 20.1 meV,Dl1−l0 = 4.1 nm,
El1−i = 1.4 meV, Es2−s0 = 40.9 meV, Es1−s0 = 37.2 meV with a quasi-
miniband width of 21.1 meV and El1−l0 = 14.5 meV, Dl1−l0 = 1.7 nm,
El1−i = 0.9 meV, Es2−s0 = 34.0 meV, Es1−s0 = 29.7 meV with a quasi-
miniband width of 16.1 meV for (a) and (b), respectively.

between the doped quantum well and the quantum well, in which
the lasing transitions takes place, as shown in Fig. 1. Due to the
applied electric field, the positive space charge in the doped
quantum well and the negative space charge in the undoped
injector quantum well lead to the formation of a local dipole,
i.e., to local electric-field domains [14], [15]. This local dipole
is expected to stabilize the laser operation over a wider range
of applied field strengths by supporting the self-adjustment of
the states involved in the carrier injection into the upper laser
level. The self-adjustment can be explained by a concurrent
reduction of the electron population in the undoped injector
quantum well, since a higher applied field strength results in
a stronger coupling of injector and upper laser states. While the
former process leads to a lowering of the energy of the injector
state, it compensates for the latter one, resulting in an extended
dynamic range. This allows for a reasonable intrinsic tuning
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range of the laser modes even for designs with a vertical laser
transition as shown recently [16].

The longer periods of such hybrid designs reduce the internal
electrical field strengths and consequently the leakage currents.
In addition, the undoped quantum well spatially separates the
dopants from the energy states of the lasing transitions reducing
parasitic impurity scattering. However, these rather complex
structures together with the thin AlAs barriers are challeng-
ing to simulate as well as to grow. For the development of
high-performance lasers, optimization procedures are necessary,
which include both, simulated and empirical data, for a num-
ber of wafers with refined layer thicknesses. In particular, the
background doping density [17], which is difficult to control
over a longer growth campaign, may affect the effective carrier
density and, hence, the formation of the local dipole. It may
consequently lead to a small but significant rearrangement of
the injector and laser states.

The GaAs/AlAs materials system exhibits very high barriers,
which may lead to rather large interface roughness scattering.
However, the influence of this scattering process on the laser
transition can be neglected, since the envelope wave functions
of the laser states possess a rather small amplitude at the po-
sition of the barriers/interfaces in our design with a vertical
laser transition as discussed in [7]. Due to interdiffusion, the
interfaces between barriers and quantum wells show a grading
rather than an abrupt transition. While the realistic band structure
with graded interfaces is included in our design procedure [10],
possible alloy scattering is again neglected since the alloy region
is located at positions where the wave functions have a small
amplitude.

III. GROWTH AND REALIZATION

The lasers were grown by molecular beam epitaxy, which
is particularly challenging for the very thin AlAs barriers with
2–4 monolayer thicknesses. Our approach consists in nominal
growth rates of 0.11 and 0.13 nm/s for AlAs and GaAs, re-
spectively, leading to a minimum Al shutter opening time of
5 s for the thinnest barrier and an overall growth time of about
22 h for the whole cascade structure. The average growth rates
amount to 0.13 nm/s, while fluctuations in the growth rates are
below 1% due to the use of a closed-loop rate control system
based on optical reflection measurements [18] for the in-situ
growth control. During growth, the substrate was rotated at
a speed of about 12 r/min, which is adjusted for each QCL
structure so that it corresponds to an integer number of rotations
per period of the cascade structure. For the waveguides, we
followed [2] with reduced thicknesses of both, the top (80 nm)
and bottom (700 nm), GaAs layers. The samples were processed
by photolithography and standard wet chemical etching for the
(Al,Ga)As materials system using an identical procedure for all
lasers. The etching solution is H2SO4:H2O2:H2O (1:1:8). The
metal contacts were made from Ni/Au0.995Ge0.005 (10/150 nm)
and annealed at 450 ◦C in order to achieve Ohmic contacts.

The lasers are operated in a helium flow cryostat (Oxford
Optistat CF-V), a Stirling cryocooler (Ricor K535), as shown
in Fig. 2(a), or in a miniature Stirling cryocooler (AIM SL400),

Fig. 2. Photographs of (a) the Stirling cryocooler, (b) the miniature Stirling
cryocooler consisting of a cold finger mounted in a vacuum housing and a
cylindrical compressor unit, and (c) the QCL on a copper submount. The THz
beams, indicated by the red arrows, pass the vacuum housings through an
exit window made of either polyethylene, poly-4-methylpentene-1 (TPX), or
polypropylene.

as shown in Fig. 2(b). The miniature cryocooler consists of two
components, a cold finger mounted in a vacuum housing and a
cylindrical compressor unit. The gold-plated copper submounts
with the QCLs shown in Fig. 2(c) are mounted to the respective
cold finger of the used cooler. The lasing spectra are measured
using a Fourier-transform infrared spectrometer Bruker Vertex
80v, while the output power was determined using a calibrated
power meter (Laserprobe RkP-575 RF).2

IV. RESULTS

Fig. 3 exhibits a compilation of operating parameters of
21 GaAs/AlAs QCLs. For 3.50 and 4.75 THz, three different
wafers were used, while for 3.92 THz the lasers were fabricated
from two different wafers. For all other frequencies, only one
wafer was used to fabricate lasers. All QCLs are based on the
hybrid active-region design. The output power of Fabry-Pérot
lasers based on single-plasmon waveguides is shown for cw op-
eration as a function of the emission frequency. The typical ridge
dimensions of these lasers are about 0.12 × 1.0 mm2, and their
threshold current densities vary between 100 and 300 A/cm2.
For 3.50 and 4.75 THz, the optimization of the lasers has already
started, which can be seen by the comparatively larger powers
for these frequencies. The wall-plug efficiencies for lasers at
3.50 and 4.75 THz reach values larger than 1.8 and 1.1× 10−3,
respectively, i.e., for typical output powers of 1 mW, electrical

2Power values are not corrected for window transmission losses or collection
efficiency and are a lower bound by a factor of about 2 to the absolute power of
the lasers.
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TABLE I
LASER PARAMETERS FOR CONTINUOUS-WAVE OPERATION

νmax denotes the frequency of the calculated gain maximum, νmode the frequency range of the observed lasing modes, Tpo the practical
operating temperature, Δν the intrinsic tuning range, L the output power, Jth the threshold current density, and Jmax the current density
at the maximum of the output power. The values for Δν, L, Jth, and Jmax have been determined for a heat-sink temperature of 30 K.

Fig. 3. Maximum output power for cw operation as a function of the center
emission frequency for 21 GaAs/AlAs QCLs (asterisks) based on the hybrid
active-region design measured at a heat sink temperature of 30 K. The vertical
lines indicate the target frequencies of 3.36, 3.92, and 4.75 THz for fine-structure
transitions of Al, N+, and O atoms/ions, respectively, and 3.55 THz for OH
detection. The dashed line depicts a simulated transmission spectrum of air
based on the HITRAN database3 for ambient conditions corresponding to the
USA model, mean latitude, summer, and an optical path length of 10 m, exhibiting
maxima at 3.43, 4.32, and 4.92 THz.

powers of less than 1 W are required so that the operation in a
miniature cryocooler becomes feasible.

We will now present the operating parameters for exemplary
lasers emitting at frequencies around 3.50, 3.90, and 4.75 THz in
more detail. Table I summarizes the frequencies of the calculated
gain maxima, the frequency ranges of the observed laser modes,
and the practical operating temperature, as well as for 30 K the
intrinsic tuning ranges, the output powers, the threshold current
densities, and the current densities at the maxima of output power
for QCLs A, B, and C. Fig. 4 shows the light output-current
density-voltage (L–J–V ) characteristics as well as the lasing
spectra of QCL A 4 with emission frequencies between 3.40 and
3.50 THz observed for various operating conditions. At 30 K, the
threshold current density is as low as 240 A/cm2, although the
confinement factor in the employed single-plasmon waveguide

3hitran.iao.ru
4QCL A has been fabricated from wafer PDI-M4-3322. Starting

from the injection barrier, indicating AlAs and GaAs layers by bold
and normal font, respectively, and denoting the Si-doped quantum
well (nSi = 2.0 × 1017 cm−3) by underlining its thickness, the nomi-
nal thicknesses of the layers in nm are: 0.84/32.2/0.48/16.9/0.48/13.1/
0.48/11.7/0.48/10.5/0.48/9.6/0.48/20.0/0.84/19.1. The quantum well doping
corresponds to an average doping of 2.9 × 1016 cm−3 and a sheet carrier density
of 4.0 × 1011 cm−2 per period.

Fig. 4. (a) L–J–V characteristics for several operating temperatures and
(b) lasing spectra for several operating temperatures and current densities of
QCL A with laser ridge dimensions of 0.12 × 0.94 mm2 under cw operation.
The vertical solid lines indicate the target frequencies of 3.43 and 3.50 THz.

is rather low (about 0.5). The tuning range for individual lasing
modes amounts to about 5 GHz, which is sufficient for high-
resolution spectroscopy of low-pressure molecular absorption
lines, for example, of methanol. Applying first-order distributed-
feedback gratings [19], [20] or two-section cavities [21], [22],
this wafer can be used for the fabrication of single-mode lasers
operating around 3.50 THz for the detection of OH. The value
for Tpo is currently 65 K, which can be improved by varying the
shape of the ridge laser. The target frequency of 3.36 THz for the
respective fine-structure transition of Al atoms can be reached
by a minor adjustment of the active region.
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Fig. 5. (a) L–J–V characteristics for several operating temperatures and
(b) lasing spectra for several operating temperatures and current densities of
QCL B with laser ridge dimensions of 0.12 × 0.99 mm2 under cw operation.
The vertical solid line indicates the target frequency of 3.92 THz.

The L–J–V characteristics as well as the lasing spectra of
the least optimized QCL B,5 which emits at about 3.90 THz,
are shown in Fig. 5. The output power is lower than for QCL
A, although it may be sufficient for high-resolution absorption
spectroscopy of the fine-structure transition of N+ ions. The
tuning range at 30 K is about 11 GHz, which is rather large.

Fig. 6 displays theL–J–V characteristics as well as the lasing
spectra of QCL C,6 which emits at 4.745 THz. It is the most

5QCL B has been fabricated from wafer PDI-M4-3417. Starting from
the injection barrier, indicating AlAs and GaAs layers by bold and nor-
mal font, respectively, and denoting the Si-doped quantum well (nSi =
1.5 × 1017 cm−3) by underlining its thickness, the nominal thicknesses of
the layers in nm are: 1.12/29.9/0.56/16.1/0.42/12.8/0.42/11.3/0.42/9.6/0.42/8.8/
0.42/19.1/0.84/19.1. The quantum well doping corresponds to an average doping
of 2.2 × 1016 cm−3 and a sheet carrier density of 2.9× 1011 cm−2 per period.

6QCL C has been fabricated from wafer PDI-M4-3148. Starting
from the injection barrier, indicating AlAs and GaAs layers by bold
and normal font, respectively, and denoting the Si-doped quantum
well (nSi = 2.0 × 1017 cm−3) by underlining its thickness, the nomi-
nal thicknesses of the layers in nm are: 1.12/27.2/0.56/15.0/0.42/12.1/
0.42/10.8/0.42/9.2/0.42/8.1/0.28/2.0/0.28/17.7/1.12/15.7. The quantum well
doping corresponds to an average doping of 2.9 × 1016 cm−3 and a sheet carrier
density of 3.5 × 1011 cm−2 per period.

Fig. 6. (a) L–J–V characteristics for several operating temperatures and
(b) lasing spectra for several operating temperatures and current densities of
QCL C with laser ridge dimensions of 0.12 × 1.05 mm2 under cw operation.
The vertical solid line indicates the target frequency of 4.745 THz.

mature QCL out of this series. Even for this comparatively
large emission frequency, an output power of about 4 mW is
achieved at 30 K, when the laser is operated in a helium-flow
cryostat for laser ridge dimensions of 0.12 × 1.05 mm2. The gain
maximum is close to the target frequency. Based on this design,
we fabricated lasers with an improved output power using ridge
dimensions of 0.08 × 0.90 and 0.08 × 0.87 mm2. Operated in a
mechanical cryocooler, we demonstrated Tpo > 70 K, as shown
in Fig. 7(a). These lasers can readily be operated in a miniature
cryocooler with a cooling power of about 1 W. Fig. 7(b) shows
the beam profile obtained by using a TPX lens in this configura-
tion. Using enhanced back-facet reflection, another laser out of
this series operated in the miniature cryocooler has recently been
shown to provide up to 8 mW output power. This QCL emits a
single mode around the rest frequency of atomic oxygen, which
can be tuned from −2.7 to +9.4 GHz [23]. A similar laser has
been tested in a spectrometer to be used for plasma diagnostics.
Fig. 8 shows an absorption line of NH3 at 4.767 THz. Static
fine-tuning of this laser to 4.745 THz following the procedure
described by B. Röben et al. [24] is finally expected to allow for
the detection of atomic oxygen in the plasma reactor.
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Fig. 7. (a) Maximum output power under cw operation as a function of heat-
sink temperature for a laser with ridge dimensions of 0.08 × 0.87 mm2 emitting
at 4.75 THz operated in a Stirling cooler. The dashed line indicates the power
of 1 mW as a guide to the eye. (b) Beam profile of the 4.75-THz QCL (ridge
dimensions 0.08 × 0.90 mm2) operated in a miniature Stirling cryocooler.

Fig. 8. Absorption spectrum of NH3 around 4.767 THz using QCL C and a
15-cm-long absorption cell.

V. CONCLUSION

We have shown that THz QCLs based on GaAs/AlAs het-
erostructures can be designed for emission at various frequencies
between 3.4 and 5.0 THz with output powers of several mW us-
ing single-plasmon waveguides. We expect that QCLs emitting
at any frequency in the range between 3.4 and 5.0 THz can be
developed by a straightforward interpolation of the presented
designs. In particular, QCLs emitting at the target frequencies
indicated in Fig. 3 can be realized by relying on the basic design
in the GaAs/AlAs materials system. By optimizing the balance
between the electric-field-dependent gain spectra and the non-
linear transport properties, i.e., the onset of negative differential
conductance, the operating parameters such as the output power
and Tpo may be further improved. The straightforward design of
the resonators allows for a similarly straightforward fine-tuning
of the laser modes so that these lasers are suitable for several
practical applications in the field of high-resolution THz spec-
troscopy. The improved wall-plug efficiencies of GaAs/AlAs
THz QCLs make them suitable for spaceborne applications,
where a high Tpo is required, in particular for passive cooling.
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[14] V. D. Jovanović et al., “Mechanisms of dynamic range limita-
tions in GaAs/AlGaAs quantum-cascade lasers: Influence of injec-
tor doping,” Appl. Phys. Lett., vol. 86, May 2005, Art. no. 211117,
doi: 10.1063/1.1937993.

[15] S. L. Lu, L. Schrottke, S. W. Teitsworth, R. Hey, and H. T. Grahn,
“Formation of electric-field domains in GaAs/AlxGa1−xAs quantum cas-
cade laser structures,” Phys. Rev. B, vol. 73, Jan. 2006, Art. no. 033311,
doi: 10.1103/PhysRevB.73.033311.

[16] L. Schrottke et al., “Intrinsic frequency tuning of terahertz quantum-
cascade lasers,” J. Appl. Phys. vol. 123, May 2018, Art. no. 213102,
doi: 10.1063/1.5024480.

[17] L. H. Li, J. X. Zhu, L. Chen, A. G. Davies, and E. H. Linfield, “The MBE
growth and optimization of high performance terahertz frequency quantum
cascade lasers,” Opt. Express, vol. 23, no. 3, pp. 2720–2729, Jan. 2015,
doi: 10.1364/OE.23.002720.

[18] A. W. Jackson, P. R. Pinsukanjana, A. C. Gossard, and L. A. Coldren, “In
situ monitoring and control for MBE growth of optoelectronic devices,”
IEEE J. Sel. Topics Quantum Electron., vol. 3, no. 3, pp. 836–844,
Jun. 1997.

[19] M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low
divergence Terahertz photonic-wire laser,” Opt. Express, vol. 18, no. 6,
pp. 6390–6395, Mar. 2010, doi: 10.1364/OE.18.006390.

[20] M. Wienold et al., “Lateral distributed-feedback gratings for single-mode,
high-power terahertz quantum-cascade lasers,” Opt. Express, vol. 20,
no. 10, pp. 11207–11217, May 2012, doi: 10.1364/OE.20.011207.

[21] H. Li et al., “Coupled-cavity terahertz quantum cascade lasers for single
mode operation,” Appl. Phys. Lett., vol. 104, Jun. 2014, Art. no. 241102,
doi: 10.1063/1.4884056.

[22] M. Hempel et al., “Continuous tuning of two-section, single-mode
terahertz quantum-cascade lasers by fiber-coupled, near-infrared il-
lumination,” AIP Adv., vol. 7, May 2017, Art. no. 055201, doi:
10.1063/1.4983030.

[23] T. Hagelschuer et al., “A compact 4.75-THz source based on a quantum-
cascade laser with a back-facet mirror,” IEEE Trans. THz Sci. Technol.,
vol. 9, no. 6, pp. 606–612, Nov. 2019.

[24] B. Röben, X. Lü, K. Biermann, L. Schrottke, and H. T. Grahn, “Tera-
hertz quantum-cascade lasers for high-resolution spectroscopy of sharp
absorption lines,” J. Appl. Phys., vol. 125, Apr. 2019, Art. no. 151613,
doi: 10.1063/1.5079701.

Lutz Schrottke received the Diplom and doctoral
degree in experimental physics from the Humboldt-
Universität zu Berlin, Berlin, Germany, in 1983 and
1988, respectively.

From 1985 to 1991, he was with the Zentralin-
stitut für Elektronenphysik, Berlin, Germany, work-
ing on thin-film electroluminescent devices. In 1992,
he joined the Paul-Drude-Institut für Festkörperelek-
tronik, Berlin, Germany, as a scientific staff mem-
ber. He was a Visiting Scholar with the Department
of Physics, the University of Michigan, Ann Arbor,

MI, USA, from 1995 to 1996. His research interests include THz quantum-
cascade lasers as well as optical and transport properties of semiconductor
heterostructures.

Xiang Lü received the M.Sc. degree in physics from
Soochow University, Suzhou, China, in 2000, and the
Ph.D. degree in physics from the Shanghai Institute
for Technical Physics, Chinese Academy of Sciences,
Shanghai, China, in 2003.

He is currently a Postdoctoral Research Assis-
tant with the Paul-Drude-Institut für Festkörperelek-
tronik, Berlin, Germany, where he is involved in the
field of THz quantum-cascade lasers.

Benjamin Röben studied physics with the Technis-
che Universität Berlin, Berlin, Germany, and with
Université Joseph Fourier, Grenoble, France. He re-
ceived the M.Sc. and doctoral degrees from the
Technische Universität Berlin, in 2014 and 2018,
respectively.

He is currently a Postdoctoral Researcher with the
Paul-Drude-Institut für Festköperelektronik, Berlin,
Germany focusing on the development of ter-
ahertz quantum-cascade lasers for spectroscopic
applications.

Klaus Biermann received the Diplom in physics
from the Friedrich-Alexander Universität, Erlangen-
Nürnberg, Germany, in 1998, and the doctoral de-
gree in physics from the Humboldt-Universität zu
Berlin, Berlin, Germany, in 2007.

From 1998 to 2007, he was a Scientist with the
Heinrich-Hertz-Institut für Nachrichtentechnik and
the Max-Born-Institut für Nichtlineare Optik und
Kurzzeitspektroskopie, both in Berlin, Germany, on
molecular beam epitaxy (MBE) and femto-second
spectroscopy of III–V semiconductor heterostruc-

tures with sub-ps response times, respectively. In 2007, he joined the Paul-
Drude-Institut für Festkörperelektronik, Berlin, Germany, working on MBE of
GaAs-based structures, focusing on the growth on substrates of various crystal
orientations, overgrowth of patterned templates, and closed-loop in-situ control
methods.

Till Hagelschuer received the M.Sc. degree in
physics from Freie Universität, Berlin, Germany, in
2014, and the Ph.D. degree in physics from the
Humboldt-Universität zu Berlin, Berlin, Germany, in
2018.

He is currently a Postdoctoral Researcher with the
DLR’s Institute of Optical Sensor Systems, Berlin,
Germany. His research involves the application of ex-
ternal optical feedback phenomena in THz quantum-
cascade lasers for high-resolution spectroscopy and
imaging.

Dr. Hagelschuer was awarded for an outstanding student paper by the Inter-
national Society of Infrared, Millimeter, and Terahertz Waves, in 2017.

Martin Wienold received the Diplom and doctoral
degree in physics from the Humboldt-Universität zu
Berlin, Berlin, Germany, in 2007 and 2012, respec-
tively, working on mid-infrared and THz quantum-
cascade lasers.

He is currently a Postdoctoral Research Assistant
with the German Aerospace Center, Berlin, Germany,
working on the development of spectroscopic tech-
niques based on THz quantum-cascade lasers.

https://dx.doi.org/10.1063/1.1920407
https://dx.doi.org/10.1088/1367-2630/11/12/125022
https://dx.doi.org/10.1063/1.1937993
https://dx.doi.org/10.1103/PhysRevB.73.033311
https://dx.doi.org/10.1063/1.5024480
https://dx.doi.org/10.1364/OE.23.002720
https://dx.doi.org/10.1364/OE.18.006390
https://dx.doi.org/10.1364/OE.20.011207
https://dx.doi.org/10.1063/1.4884056
https://dx.doi.org/10.1063/1.4983030
https://dx.doi.org/10.1063/1.5079701


140 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 10, NO. 2, MARCH 2020

Heinz-Wilhelm Hübers received the Diplom and
doctoral degree in physics from the Universität Bonn,
Bonn, Germany, in 1991 and 1994, respectively.

From 1991 to 1994, he was with the Max-Planck-
Institut für Radioastronomie, Bonn, Germany. In
1994, he joined the Deutsches Zentrum für Luft-
und Raumfahrt (German Aerospace Center, DLR),
Berlin, Germany, becoming the Head of Department
in 2001. From 2009 to 2014, he has been a Professor
of experimental physics with the Technische Univer-
sität Berlin, Berlin, Germany, and the Head of the

Department “Experimental Planetary Physics” at DLR. In 2014, he became the
Director of the Institute of Optical Sensor Systems, DLR and a Professor with
the Humboldt-Universität zu Berlin. His research interests include THz physics
and spectroscopy, particularly in THz systems for astronomy, planetary research,
and security.

Prof. Hübers has received the Innovation Award on Synchrotron Radiation
(2003) and the Lilienthal Award (2007).

Mario Hannemann received the Diplom and
doctoral degree in experimental physics from
the Ernst-Moritz-Arndt-Universität (EMAU)
Greifswald, Greifswald, Germany, in 1980 and 1992,
respectively.

From 1980 to 1985, he was a Research Assistant
with EMAU, working on plasma diagnostics. From
1985 to 1991, he was with the Zentralinstitut
für Elektronenphysik, Berlin, Germany, working
on photometric evaluation and optimization of
high-pressure light sources as well as calculation of

material functions of high-pressure lamp plasmas. In 1992, he joined the Institut
für Niedertemperatur-Plasmaphysik, later Leibnizinstitut für Plasmaforschung
und Technologie, Greifswald, Germany, as a scientific staff member, working
again in the field of plasma diagnostics, especially on Langmuir probe
diagnostics and laser absorption spectroscopy.

Jean-Pierre H. van Helden received the M.Sc. and
Ph.D. degrees in applied physics from the Eindhoven
University of Technology, Eindhoven, The Nether-
lands, in 2001 and 2006, respectively.

From 2007 to 2012, he was a Postdoctoral Research
Assistant with the Department of Chemistry, the Uni-
versity of Oxford, working on laser spectroscopy of
molecular gases and plasmas. In 2012, he joined the
Leibniz Institute for Plasma Science and Technology
(INP), Greifswald, Germany, working on laser-based
plasma diagnostics. In 2017, he was appointed the

Head of the Department of Plasma Diagnostics, INP. His main research interests
include the kinetics and chemistry of low and atmospheric pressure plasmas and
laser spectroscopy with a particular focus on the development of diagnostics to
characterize plasmas and their interactions with surfaces. Since a few years, the
focus has been on cavity-enhanced laser-based diagnostics for plasmas using
lasers in the mid- and far-infrared and frequency comb spectroscopy.

Jürgen Röpcke received the Diplom and Ph.D.
degree in experimental physics from Ernst-Moritz-
Arndt-University (EMAU) Greifswald, Greifswald,
Germany, in 1981 and 1987, respectively, followed
by the habilitation in 2002.

From 1981 to 1982, he was a Research Assistant
with EMAU, working in the field of laser metrol-
ogy. From 1982 to 1991, he was with the Central
Institute of Electron Physics, Academy of Science,
Greifswald, Germany, studying discharge processes
in plasma displays. In 1992, he joined the Leibniz In-

stitute for Plasma Science and Technology (INP), Greifswald, Germany, working
on spectroscopic plasma diagnostics. In 2005, he was appointed as a Professor
for plasma technique with the University of Applied Science Stralsund. His
scientific interests are focused on the investigation of kinetics and chemistry of
molecular nonisothermal plasmas based on state-of-the-art optical diagnostics.

Holger T. Grahn received the Diplom in physics
from the Universität Kiel, Kiel, Germany, in 1983, and
the Ph. D. degree in physics from Brown University,
Providence, RI, USA, in 1987.

From 1988 to 1992, he was a Postdoctoral Re-
search Assistant with the Max-Planck-Institut für
Festkörperforschung, Stuttgart, Germany, working
on vertical transport in semiconductor superlattices.
In 1992, he joined the Paul-Drude-Institut für Fes-
tkörperelektronik, Berlin, Germany, as a Department
Head, first for Analytics and later for Semiconductor

Spectroscopy. In 2001, he was appointed an Adjunct Professor in physics with the
Technische Universität Berlin, Berlin, Germany. His research interests include
the optical and transport properties of semiconductor heterostructures and THz
quantum-cascade lasers.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


