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Field-Effect Transistor Based Detectors for Power
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Abstract—We report on circuit simulation, modeling, and
characterization of field-effect transistor based terahertz (THz)
detectors (TeraFETs) with integrated patch antennas for discrete
frequencies from 1.3 to 5.7 THz. The devices have been fabricated
using a standard 90-nm CMOS technology. Here, we focus in
particular on a device showing the highest sensitivity to 4.75-THz
radiation and its prospect to be employed for power monitoring of
a THz quantum cascade laser used in a heterodyne spectrometer
GREAT (German REceiver for Astronomy at Terahertz frequen-
cies). We show that a distributed transmission line based detector
model can predict the detector’s performance better than a device
model provided by the manufacturer. The integrated patch antenna
of the TeraFET designed for 4.75 THz has an area of 13 × 13 µm2

and a distance of 2.2 µm to the ground plane. The modeled ra-
diation efficiency at the target frequency is 76% with a maximum
directivity of 5.5, resulting in an effective area of 1750 µm2 . The
detector exhibits an area-normalized minimal noise-equivalent
power of 404 pW/

√
Hz and a maximum responsivity of 75 V/W.

These values represent the state of the art for electronic detectors
operating at room-temperature and in this frequency range.
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I. INTRODUCTION

H IGH-RESOLUTION and high-sensitivity heterodyne-
based spectroscopic observations for astronomy require

stable local oscillator (LO) sources operating in the terahertz
(THz) frequency range. For example, a major coolant of the
dense interstellar medium, the neutral atomic oxygen, has a
fine-structure line at 4.7448 THz. Monitoring of this line be-
came an important tool in order to understand the formation of
massive young stars [1].

One of the monitoring laboratories is the Stratospheric Ob-
servatory for Infrared Astronomy (SOFIA). For high-resolution
and high-sensitivity measurements at various frequencies, the
heterodyne spectrometer GREAT (German REceiver for Astron-
omy at Terahertz frequencies) employs multiplied microwave
sources in all channels, except the highest one at 4.75 THz
where a solution of this kind is not available. Instead, a quan-
tum cascade laser (QCL) is employed to cover this frequency,
which emerged as an alternative THz source solution to the gas
lasers for such measurements [2], [3].

While the mixer employed in the GREAT spectrometer can
itself provide information on the impinging THz power, a con-
tinuous monitoring of the THz QCL power with an independent
easy-to-operate reference detector is desirable. The real-time
monitoring of the QCL power allows a straightforward realiza-
tion of a corresponding control loop, which is independent from
the rest of the complex GREAT instrument and only related to
the QCL. It can easily make use of the big amount of QCL
power dumped after the beam splitter (>1 mW). Commercial
devices operating at room-temperature conditions, such as a Go-
lay cell [4] or pyroelectric detectors [5], require the implemen-
tation of chopping techniques, which is undesirable because of
space constraints. Planar antenna-integrated zero-bias Schottky
diodes could offer one of the possibilities; yet, the best available
data indicate a strong sensitivity roll-off in the frequency range
from 100 GHz to 1 THz [6]. GaAs Schottky diodes, which are
optimized for the target frequency range [7], [8], possess high
1/f noise and are not suitable for continuous-wave (CW) power
measurements.
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Fig. 1. (a) Electronic circuit of silicon CMOS-based THz detector with
marked parts: Intrinsic FET channel (red), FET parasitic parts (purple), and
the antenna (black). (b) TL circuit describing the intrinsic FET channel.
(c) Simplified high-frequency (left) and low-frequency (right) electronic
circuits.

Recently, it was reported that field-effect transistor based
THz detectors (TeraFETs) can offer an alternative solution for
operation in a specified frequency range [9] and, in particular,
in application with THz QCLs [10], [11]. Here, we continue
with our explorations and discuss on the design and implemen-
tation of TeraFETs for upper THz frequency range, showing
the prospects of low noise-equivalent power (NEP) TeraFETs
to monitor the power THz QCLs in the CW mode.

We organize this paper in the following way: In Section II,
we present the details of our detector modeling and implemen-
tation. In Section III, we present the details of our measurement
setup, and in Section IV, we discuss our detector spectral char-
acteristics, linearity of response, electrical noise characteristics,
and also the sensitivity of the detectors.

II. DETECTOR IMPLEMENTATION

A schematic circuit for a generalized TeraFET is shown in
Fig. 1(a). The antenna is described by the equivalent voltage
source in series with the connected impedance ZA . Since the
antenna is used for receiving the THz radiation, voltage VA rep-
resents the open-circuit voltage, which can be expressed through
the maximum available power Pmax = V 2

a /(8Re(ZA )) [12],

[13]. There are different models that describe the operation of
a field-effect transistor (FET) depending on the biasing condi-
tions and frequencies. For these purposes, one can use either
a model description, which is provided by the manufacturer of
electronic components, or technology-typical modeling param-
eters [14] or, where the standard description is not satisfactory
(e.g., the operation in THz frequency range) work with analytic
or customized circuit-level descriptions.

In the following treatment, we rely on the assumption that
detection occurs only in the intrinsic FET region, and the influ-
ence of a parasitic transistor part is unwanted and diminishes
the performance of the detector. For the circuit-level analysis
described here, we use two modeling methods that account for
parasitic effects: A model that is supplied by a foundry for the
used technology and an analytical transmission line (TL) based
model.

A. Analytic TL Based Detector Model

The analytical approximation of TeraFETs differs from the
foundry-based model mainly in the description of the electronic
transport in the channel region. It was recognized that transport
equations used in physical modeling at high frequencies are
equivalent to propagation through TLs [15]–[17]. Moreover,
for THz detectors with unbiased channels, a TL analogy [see
Fig. 1(b)] is expected to describe the intrinsic FET better than
the lumped element description, even if the elements CGS , Rin ,
CGD , and Rch are refined by their nonquasi-static approximates
[18].

The channel of the transistor at THz frequencies can be de-
scribed as a TL with resistance Ri = (qnμW )−1 , inductance
Li = Riτ , and capacitance Ci = qW∂n/∂VG defined per unit
length. Here, n is the charge density in the channel, q is the
elementary charge, W is the width of the channel, μ is the car-
rier mobility, τ is the carrier scattering time, and VG is the gate
voltage. This representation corresponds to an electronic circuit
of charge-density (plasma) waves in the transistor channel.

The general circuit of the detector can further be simplified
by separately treating the high-frequency and low-frequency
(quasi-static) cases, as shown in Fig. 1(c). To calculate the
responsivity �V , we start with the simplified hydrodynamic
channel-transport model of Dyakonov and Shur [19]. The volt-
age swing applied between the gate and source terminals at the
interface to the channel excites carrier density waves (plasma
waves), which propagate through the channel with velocity s
given by

s =

√
qn

m

(
∂n

∂VG

)−1

. (1)

In the simplified transport picture, the average charge den-
sity in the channel is inversely proportional to the dc re-
sistance Rch of the gated part of the channel; therefore,
the quantity n∂VG/∂n can be expressed from the mea-
sured dc resistance Rdc, i.e., n∂VG/∂n = −Rch∂VG/∂Rch ≡
− (∂ ln Rch/∂VG )−1 , with Rch = Rdc − RS − RD . For the
small-signal excitation conditions with the onto intrinsic device
delivered voltage amplitude VTHz , one can follow the solution
method proposed by Dyakonov and Shur [19] and Boppel et al.
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[20] and find the induced voltage ΔV as follows:

ΔV =
qV 2

THz

4ms2 f (ω, τ) = −V 2
THz

4
∂ ln Rch

∂VG
f (ω, τ) . (2)

Here, m = 0.26me is the effective mass of electrons in Si (me

is the free-electron mass), τ is their momentum scattering time,
ω is the angular frequency of the THz wave, and f(ω, τ) = 1 +
2ωτ/

√
1 + (ωτ)2 is the detection efficiency factor describing

the conversion ability relative to that of low-frequency resistive
mixing [21] in a nonresonant case (sτ/L � 1, L is the gate
length).

The responsivity of the detector is defined as the ratio of the
induced voltage ΔV to the impinging power PTHz , i.e., �V =
ΔV/PTHz . The power, which is used to characterize Pmax of
the antenna, is equal to PTHzη, where η jointly combines the
antenna efficiency factor and other possible optical coupling
loss mechanisms. We introduce an amplitude attenuation factor
H = |VTHz |/|Va |, which occurs upon the signal transfer from
the antenna to the transistor’s channel. Considering the parasitic
device elements shown in the THz subcircuit [see Fig. 1(c)],
i.e., RG,RS , and the high-frequency capacitive conductance
CGS,p , the resulting mathematical expression for the voltage
attenuation factor is as follows:

H =
∣∣∣∣ Zch ‖ Zp

Zch ‖ Zp + ZA + RG + RS

∣∣∣∣ . (3)

Here, Zch ‖ Zp denotes the resultant impedance for the parallel-
connected channel impedance Zch and the shunting capacitance
Zp = (iωCGS,p)−1 subsuming fringe and overlap capacitance,
ZA is the antenna impedance, and RG and RS are the gate and
source resistances, respectively.

This, finally, leads to the voltage responsivity of plasmonic
FET-based detectors, predictable from the measured static de-
vice characteristics and modeled high-frequency parameters as
follows:

�V = −1
4

∂ ln Rch

∂VG

[
1 +

2ωτ√
1 + (ωτ)2

]
8Re(ZA )H2η. (4)

The impedance of the channel Zch under the condition of
ac-shorted gate and drain terminals can be described via the
characteristic impedance of the TL as follows:

Zch =
√

Ri + iωLi

iωCi
tanh (γL) (5)

where γ =
√

(Ri + iωLi)iωCi is the propagation constant. In
another limiting case of an ac open drain, a tanh (kL) func-
tion changes to coth (kL). However, under the condition of
strong damping for plasma waves and |kL| � 1, both func-
tions asymptotically approach unity. We assume the parasitic
impedance Zp = (iωCGS,p)−1 , with CGS,p assumed to be half
of the overlap capacitance Cov between the source and gate
terminals. With L = 0.1 μm, W = 0.4 μm, d = 2.4 nm, and
εr = 4.3, Cov ≈ 0.1 LWεr ε0/d = 63.5 aF.

Fig. 2. Detector line and a single detector design. The detector line (above)
shows different detectors (coded A1–A8) with various antenna sizes and tran-
sistors. The detector design (bottom) shows all the metal layers, starting from
M9 down to M1, where the ground plane is placed. The source, gate, and drain
show the transistor contacts. Elements in the view are not to scale.

TABLE I
ANTENNA SIMULATION PARAMETERS

B. Detector Layout and Fabrication

The detectors have been designed for a standard 90-nm com-
plementary metal–oxide–silicon (CMOS) technology of Taiwan
Semiconductor Manufacturing Company. The detector cou-
ples THz radiation with the N-channel FET through the patch
antenna. Devices with various antenna sizes were designed
(see Fig. 2). In all devices, we used the same channel length
L = 100 nm and width W = 400 nm. Table I presents impor-
tant geometrical parameters of the antennas, as well as simula-
tion results obtained with the CST Microwave Studio software.
It comprises the dimensions of the patch, height between the
patch and the ground plane, dimensions of the metallic cup, re-
sultant resonance frequency, directivity, and radiation efficiency
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Fig. 3. (a) Simulated antenna impedance spectra for antennas used with A1–
A8 devices. The real and imaginary parts of the impedance are presented using
solid lines and dashed lines, respectively. (b) Modeled frequency response for
A2, A3, and A4 devices. Solid lines correspond to analytic TL-based calcu-
lations, whereas dashed lines result from the foundry-provided model. Two
vertical dashed lines mark frequencies of two THz QCLs used in this study.

at resonance. Simulated antenna impedance spectra are shown
in Fig. 3(a).

Fig. 3(b) depicts frequency responses for A2, A3, and A4 de-
vices. Solid lines correspond to analytic TL-based calculations,
whereas dashed lines result from the foundry-provided model.
It is notable that the foundry model predicts higher response at
much lower frequencies compared with the resonant frequency
of the antenna and with predictions from TL-based description.
The discrepancy might originate from the fact that a foundry
model that is validated at frequencies below 100 GHz tends
to overestimate capacitive shunting at frequencies exceeding
1 THz. Therefore, the more efficient rectification is expected
when the antenna exhibits a strong inductive behavior. It is
worth noting that the detector with the same parameters can be
modeled using the device model supplied for the more advanced
65-nm CMOS technology (data not shown here). In this case, it
would predict the maximum responsivity at similar frequencies
as our TL model. We can just speculate that a 65-nm model
accounts better for nonquasi-static effects, thus supporting the
rationale of the analytical model.

Fig. 4. Measurement setup. The THz radiation emitted by the QCL is col-
limated with a 1-in EFL parabolic mirror and, then, divided into two parts:
One part of the beam is guided to a Ge:Ga detector, and the transmitted part
is focused onto the CMOS detector using a 2-in EFL parabolic mirror. The
CMOS detector also contains acceleration sensors. Detected signals from the
acceleration sensors, the QCL, and both detectors are recorded.

III. MEASUREMENT SETUP

The experiment has been conducted with a LO development
platform, which is an exact copy of the platform used in SOFIA.
The experimental setup is shown in Fig. 4.

The QCL is mounted on the cold finger of the two-staged
Stirling cryocooler (model Ricor K535) [2]. The second stage
of the cooler is doubled in symmetrical manner to avoid large
mechanical vibrations. The heat sink of the cryocooler is altered
by changing the default cooling fins to the custom ones in order
to meet the standards of the SOFIA devices. The temperature
sensor and the heater are attached to the QCL, and a control-
ling system based on field programmable gate array is used for
temperature stabilization. During the experiment, the cooling
system was capable of maintaining the QCL’s temperature of
49 K.

The THz radiation emitted by the QCL is collimated with a
1-in effective focal length (EFL) parabolic mirror and, then, di-
vided into two parts using a 40%/60% (transmission/reflection)
beamsplitter. One part of the beam is directed onto a Ge:Ga
detector with Winston cone coupling optics, whereas the trans-
mitted part is focused onto the CMOS detector using a 2-in EFL
parabolic mirror. The beamsplitter is self-made by evaporating a
thin layer of Cr on a 4-μm-thick polypropylene foil. For power
attenuation, we use two separate items with transmissions of
40% and 25%, whereas 10% attenuation was achieved by com-
bining both. In order to investigate the role of mechanical vibra-
tions produced by the cryocooler, we place three acceleration
sensors (to capture three directions of movement) on the holder
of the CMOS detector. In addition to detected signals from the
TeraFET, the reference detector, and acceleration sensors, we
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Fig. 5. Response voltages at the maximum voltage responsivity for A1–A8
devices to 3.1 and 4.75 THz radiation.

simultaneously recorded VQCL and TQCL using a multichannel
24-bit National Instruments data acquisition system.

The measurement with room-temperature CMOS TeraFET
does not need any chopping or other THz signal modulation
of the QCL power fluctuations; therefore, the measurements
were conducted in the CW mode at room-temperature. For the
responsivity measurements, a lock-in amplifier was used with
the QCL current modulation as the reference signal.

IV. RESULTS AND DISCUSSION

A. Detector Spectral Characteristics

Response voltages at the maximum voltage responsivity for
A1–A8 devices to 3.1 and 4.75 THz radiation are depicted in
Fig. 5. Results clearly indicate that the highest response is ob-
served with devices A4 and A2, for which the antenna resonance
frequencies are close to the frequencies of THz QCLs. In addi-
tion to fundamental resonances, a strong response to 4.75-THz
radiation can be observed with the device A8, resulting in the
excitation of higher order resonance in the patch antenna.

One of the best indicators for the comparison of model pre-
diction can be the performance of A3 detector at 3.1 THz. Sim-
ulating detector characteristics with the foundry model for the
transistor results in this detector having the best relative per-
formance, whereas the TL-model predicts a relatively low re-
sponse. Experimental data indicate that at this frequency, the
most sensitive device is A4, thus favoring earlier discussed ana-
lytically derived TL-model predictions. However, the relatively
high response of device A3 points out that further tuning of
parasitic circuit elements is advantageous. This is planned in
future experiments, which will involve additional THz QCLs
with different emission frequencies.

B. Linearity of the Response

Fig. 6 depicts the response of the TeraFET A2 as a function of
4.75-THz QCL bias current. The right axis presents simultane-
ous measurement with the reference, the cryogenically cooled
Ge:Ga detector. These curves resemble each other well, except

Fig. 6. Response of the TeraFET A2 as a function of the 4.75-THz QCL
bias current. The inset shows the linearity of the response for bias current
IQCL = 600 mA and at different levels of attenuation.

for the low bias currents. Such discrepancies are due to the fact
that despite its superior sensitivity, the impurity-band-based de-
tector has a strong dc output component (approximately 1.6 V),
whereas the THz-induced signal change was maximally 20 mV.
Therefore, due to a slight change in the background level dur-
ing the long duration of the experiment, the power estimation
performed with the reference detector was less accurate than
that with the TeraFET. For the measurements of the linearity
of the response, we employed self-made attenuators based on
transmission through a thin metallic surface evaporated on a
4-μm-thick polypropylene foil. The calibration has been per-
formed with tunable electronic sources in the frequency range
of 200–700 GHz. The symbols shown in the inset correspond to
the THz response for bias current IQCL = 600 mA and at four
different levels of attenuation, i.e., 0 %, 60 %, 75 %, and 90 %.
The line is the linear fit indicating that under the experimental
conditions, the detectors operate in the linear (power) detection
regime.

C. Electrical Noise

Fig. 7 depicts the spectra of voltage fluctuation spectral den-
sity of the input-referred voltage of TeraFET Vout for differ-
ent THz attenuation ratios (blocked, transmission of 40% and
100%) when the THz QCL is biased with IQCL = 580 mA. The
dashed line indicates the thermal noise level of 18 nV/

√
Hz of

the 20-kΩ resistor. These spectra exhibit a thermally limited
baseline with the roll-off frequency at 10 kHz originating from
the external 6-dB/oct low-pass filter, small 1/f noise contribu-
tion, and a lot of strong but narrow spectral components that
couple with the detector output from the environment. Low-
frequency components at 45 Hz and their multiplicative origi-
nate from the vibration of cables induced by the cryocooler and
can be strongly suppressed by using an integrated low-noise am-
plifier within the detector package. A considerably high chan-
nel impedance of 20 kΩ allows easy integration of low-noise
amplifiers based on discrete components or integrated circuits
with convenient 4-nV/

√
Hz input-referred voltage fluctuation
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TABLE II
THZ DETECTOR PERFORMANCE COMPARISON

aDevices for 3–6.6 THz range are supplied with an Si window with ≈ 50% transmission; thus, the datasheet values are scaled by the factor of 2.
bThe NEP is estimated from the minimum detectable power (MDP) per frame. NEP = MDP/

√
fm o d .

cThe NEP is specified for the shot-noise limit above the corner frequency of 1/f noise, which dominates at low modulation frequencies.
dCalculated from specified values using the relation A e f f = Dλ2 /(4π ).

Fig. 7. Spectra of voltage fluctuation spectral density for the input-referred
voltage of A2 TeraFET VG biased to 0.45 V for different THz signal attenuation
ratios when the 4.75-THz QCL is biased with IQCL = 580 mA. The dashed line
represents the calculated thermal noise with a low-pass filter (f3dB = 10 kHz).

spectral density [22], which introduces additional noise contri-
bution only by 2.5%. The corner frequency of 1/f noise for the
detector–amplifier system lies at about 30 Hz.

We also found that in the case of strong focusing of THz ra-
diation onto the detector and back-coupling of radiation into the
QCL, both the intensity of THz radiation and the bias voltage
VQCL start exhibiting strongly correlated low-frequency fluctu-
ations (for details, see [11]). However, the weak feedback of a
back-coupled signal can find practical applications in reflection
imaging and gas spectroscopy [23], [24], and the increase in the
amplitude of low-frequency fluctuations limits the sensitivity
of the detector intended to work in the dc regime. Assuming
that back-reflections will be suppressed, in general, the noise of
the detector does not depend on the QCL current and is limited
by the thermal noise. Therefore, for the effective measurement
bandwidth of 1 Hz, a signal-to-noise ratio (S/N) of 40 dB is

Fig. 8. Responsivity (left axis) and NEP (right axis) as a function of the bias
voltage for A2 TeraFET at 4.75 THz.

granted when a fraction of the power (approximately 250 μW)
is directed onto the detector.

D. Sensitivity

Based on experimentally measured response and noise char-
acteristics, as depicted in Fig. 8, we present the responsivity
and the thermal noise limited NEP of TeraFET A2 at target
4.75-THz frequency (symbols). The dashed lines show the pre-
dictions resulting from previously described analytic model (see
Section II-A). The effective area of the antenna was estimated
by the relation Aeff = Dλ2/(4π), with D and λ representing
the directivity and the wavelength in free space, respectively.
With the modeled value D = 5.5 at 4.75 THz, we arrive at
Aeff = 1750 μm2 , which is about 1.7 times larger than the area
of the implemented metal cup. In the calibration measurement,
the beam profile of QCL radiation at the detector’s plane was
recorded with the microbolometric camera and estimated to be
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1.3 mm for horizontal full-width-at-half-maximum (FWHM)
and 0.8 mm for vertical FWHM. From the total power and under
the assumption of Gaussian beam form, we have estimated the
power delivered to the detector. The detector reaches a maximum
responsivity of 75 V/W. The minimum NEP of 404 pW/

√
Hz

is achieved at a gate voltage of 0.45 V. Values reported here
differ from those reported earlier [11] only by the ratio between
modeled effective areas (1750 μm2 instead of previously used
1600 μm2). Comparing with theory predictions, we notice that
both modeled and measured responsivities nearly coincide only
for gate bias voltages near 0.9 V, whereas in the vicinity of the
threshold voltage (Vth = 0.43 V), we did not observe as strong
responsivity as should follow from our analytic predictions. It
is possible that the discrepancy can originate either from the
simplified description of the receiving antenna or from the iden-
tification of parasitic components or from the simplifications in
the physical description of charge transport (i.e., omitted carrier
heating [34], [35], a quasi-static description of charge carrier
control by gate voltage [16], [34], etc.).

The state of the art for the room-temperature THz detectors
operating in the frequency range of 1–10 THz is presented in
Table II. For a long period of time, GaAs-based Schottky barrier
diodes (SBDs) [7], [8] dominated this frequency range. Due to
required biasing, these devices exhibit strong 1/f noise con-
tribution; thus, the listed performance is achievable only in the
shot-noise-limited regime for modulation frequencies typically
exceeding 100 kHz. The successful demonstration of the op-
eration of a standard infrared imager at 4.3 THz with a NEP
value of 320 pW/

√
Hz [36] launched the race between the man-

ufacturers of microbolometer (μ Bolometer) cameras, and now,
THz-tailored devices demonstrate unprecedented NEP values
below 10 pW/

√
Hz [27], [29]. One drawback of microbolome-

ters could be their considerably long integration time, which is
close to the inverse of the frame rate [27]. There are reports
that single devices can have submicrosecond thermal response
times [37]; these data are available only for devices optimized
for 300 and 765 GHz. The device presented here continued
on developments described in [9] and [32]. The reported perfor-
mance values are in full competition with SBDs and commercial
devices, such as Golay cells and pyroelectric devices, however,
without the 1/f -noise limitation and the necessity of chopping,
thus fully complying with the requirements for application in
monitoring THz QCL power in the GREAT spectrometer.

V. SUMMARY

In summary, we present a series of TeraFETs with resonant
patch antennas for detection at discrete frequencies from 1.3 to
5.7 THz. In particular, we concentrate on a device, which shows
the highest sensitivity to 4.75 THz, and its prospect to be em-
ployed for power monitoring of the THz QCL used in the het-
erodyne spectrometer GREAT.

The TeraFET for 4.75 THz has the dimensions of the patch
antenna as 13 × 13 μm2 and the height to the ground plane as
2.2 μm. The modeled radiation efficiency at 4.75 THz is 76%
with a maximum directivity of 5.5, resulting in an effective area
of 1750 μm2 . The detector exhibits an area-normalized minimal

NEP of 404 pW/
√

Hz and a maximum responsivity of 75 V/W.
These values are at the state-of-the-art level for electronic de-
tectors operating at room-temperature and for this frequency
range. We show that a TL-based detector model can better pre-
dict detector performance than the device model provided by
the manufacturer.

Regarding the applicability of TeraFETs, we demonstrate that
the detector for 4.75 THz has linear power dependence over the
whole power range of the QCL and can monitor the intensity of
THz QCL radiation using a fraction of the beam power (approx-
imately 250 μW) with a S/N ratio of 40 dB. Since the TeraFET
does not require chopping, it has an advantage over alternative
room-temperature detectors and can be employed in a hetero-
dyne instrument as a reference detector for real-time QCL power
monitoring.
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