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Abstract—Next generation sub-mm imaging instruments re-
quire kilo-pixel focal plane arrays filled with background limited
detectors. Microwave kinetic inductance detectors (MKIDs) are a
state-of-the-art detector for future instruments due to their inher-
ent multiplexing capabilities. An MKID consists of a superconduct-
ing resonator coupled to a feed-line that is used for readout. In the
device presented here radiation coupling is achieved by coupling
the MKID directly to a planar antenna. The antenna is placed in the
focus of an extended hemispherical lens to increase the filling fac-
tor and to match efficiently to fore optics. In this paper, we present
the design and the optical performance of MKIDs optimized for
operation in a 100-GHz band around 850 GHz. We have measured
the coupling efficiency, frequency response, and beam patterns and
compare those results to simulated performance. We obtain an ex-
cellent agreement between the measured and simulated beam pat-
tern, frequency response, and absolute coupling efficiency between
a thermal calibration source and the power absorbed in the de-
tector. Additionally, we demonstrate that antenna coupled MKIDs
offer background limited radiation detection down to ∼100 aW of
power absorbed in the detector.

Index Terms—Cryogenic, detectors, modeling, planar arrays,
radiation pattern.

I. INTRODUCTION

A STRONOMICAL observations in the mm and sub-mm
wavelength range (from 3 to 0.03 mm) probe the cold and
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distant universe. Young systems, either in early stage of star
formation or high redshift galaxies, are embedded in dust which
absorbs short-wavelength radiation and re-emits in the infrared
region [1]. The study of these systems from the ground is per-
formed at the telluric windows where the sky opacity is low. The
Atacama Large Millimeter/submillimeter Array (ALMA) [2] is
showing the potential of this approach unveiling new science ev-
ery day. However, an interferometer like ALMA is effectively a
single pixel instrument with a field of view identical to the beam
size of a single telescope. Therefore, ALMA must be comple-
mented by imaging systems with a large field of view in a narrow
frequency band. Such imaging instruments require kilo-pixel ar-
rays populated by sensors with the background limited sensitiv-
ity and high optical efficiency to maximize science output and
on sky scanning speed and sensitivity. There are several proven
technologies used in these frequency bands [3], [4]. However,
later microwave kinetic inductance detectors (MKIDs) [5] are
an excellent choice, due to their intrinsic multiplexing capability
which makes reading-out large detector arrays relatively simple
and cost effective. Instruments like MUSIC [6] or NIKA [7] and
NIKA2 [8] are the pioneers in this field. Antenna coupled de-
tectors have been largely employed in the past years due to the
excellent performance [9]–[13]. In our case, the lens antenna
consists of an extended hemispherical lens integrated with a
double slot antenna, introduced first by [14] and developed fur-
ther by [15]. The efficient radiation coupling between the twin
slot antenna and the far field is achieved by means of a silicon
lens as described in [16] and [17]. We choose this planar an-
tenna because it is simple to design and fabricate and achieves
good efficiency. The antenna is coupled to a distributed coplanar
waveguide CPW line that connects the antenna to the MKID.

In this paper, we present in detail the pixel electromagnetic
(EM) design, fabrication, and experimental evaluation of an an-
tenna coupled niobium-titanium-nitride/aluminum (NbTiN-Al)
hybrid MKID, optimized for radiation coupling in a small fre-
quency band around 850 GHz. A similar experiment has been
performed for the 350-GHz frequency band, as presented in
[18], showing the versatility of our detector design. To design
the MKID lens-antenna, we have developed a full EM model to
optimize the antenna aperture efficiency for a given lens geome-
try and to match the frequency response. The model includes the
superconductivity and finite thickness of the metal layers. For
the lenses we used existing lenses, as a result the lens shape was
not optimized. We measure the MKID beam patterns, frequency
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response, and radiation coupling efficiency and compare these
to the EM model. We find that they to agree very well. This work
builds upon previous results as described in [19] and [20] with
the difference that: 1) we present here for the first time a full
detailed design and experimental characterization and modeling
of the MKID lens-antenna, and 2) in this paper the devices are
fabricated on sapphire to ensure high yield. The experimental
validation of the model demonstrates an end-to-end understand-
ing of the detector physics and allows us to predict the expected
performance of big arrays [21].

II. DEVICE DESIGN

MKIDs are superconducting pair-breaking detectors; there-
fore, the fundamental radiation absorption mechanism is the
creation of quasi-particle excitations in a superconducting ma-
terial [5]. The creation of quasi-particles changes the complex
surface impedance of the superconductor, which is read-out by
making the superconducting film part of a resonant circuit con-
nected to a transmission line (called throughline in the remainder
of the text). The change in surface impedance causes the reso-
nance center frequency of the circuit to shift to lower values and
the resonance dip depth to decrease. This effect can be readout
by using a single tone close to the resonance frequency at the
thermal equilibrium.

There are two main families of MKIDs: lumped element KIDs
(“LEKIDs’) [22] and lens-antenna coupled distributed MKIDs
[23], [24]. The lumped element devices are easier to fabricate
and assemble; the aluminum-based lens-antenna coupled de-
vices are more flexible decoupling the KID optimization and
the optical coupling allowing radiation coupling in principle at
any wavelength from 3.3 mm (90 GHz) to 30 μm (10 THz)
[25] by merely changing the antenna design. Around one mm
wavelength aluminium LEKIDs and antenna coupled MKIDs
have shown similar performance [7], [8], [18]. At higher fre-
quencies antenna coupled devices are superior [21]. In addition,
the high directional far field patterns of the lens-antenna allows
for a higher temperature cold stop. Hence, the instrument ther-
mal design and stray-light control become easier although at
the cost of a more complex detector assembly. The distributed
MKID consists of a shorted section of CPW line shunt-coupled
to a CPW throughline. At the shorted end the CPW line also
forms the feed of a twin slot antenna, which is coupled to the
focus of a Si dielectric lens equipped with a λ/4 antireflection
coating made from parylene-C [26].

The resonators have a wide and a narrow section (see Fig. 1):
the wide region is introduced close to the coupler in order to
reduce the two-level system noise [27]; the narrow section is
connected to the feed of a twin slot antenna and made from
NbTiN ground plane (GP) and an aluminum central line (2 μm
wide and ∼1 mm long). NbTiN has a gap frequency of 1.1 THz,
which allows creating a lossless circuit for both the readout
frequency (4–8 GHz) as well as the radiation to be detected.
On the contrary to the aluminum strip is resistive at 850 GHz
frequency having a gap frequency of ∼90 GHz and, therefore,
is capable of absorbing the radiation. The length of the strip is
the result of an optimization between reduction of excess noise

Fig. 1. (a) Antenna at the shorted end of the MKID resonator. (b) Photograph
of a single MKID. To detect power in another frequency band only the antenna
has to be different. The separate elements of the MKID are explicitly indicated.
(c) Schematic diagram of the cross section of the assembled detector array with
lens array, chip, and the position of the MKIDs and the TiN stray light absorbing
mesh layer.

from the MKID and absorption efficiency. The design has two
additional optimizations. One is the use of aluminum bridges to
balance the throughline GPs at each side of the coupler, which
prevent excess interpixel crosstalk [28]. The second optimiza-
tion is introduced to absorb rescattered radiation and consists
of a titanium-nitride (TiN) absorbing mesh located at the back
side of the chip blocking radiation to transfer from one pixel to
another [29].

III. FABRICATION

The device is fabricated on a 350-μm-thick double side pol-
ished C plane sapphire wafer. The fabrication process includes
the following steps. First, the reactive sputter deposition of a
5-nm Ti and 63-nm TiN bi-layer without vacuum break in, re-
spectively, an argon (Ar) and argon-nitrogen (ArN) atmosphere
from a Ti target. This deposition is done on the lens side of
the wafer. Second is the deposition on the detector side of a
500-nm NbTiN layer using reactive magnetron sputtering in an
argon-nitrogen plasma [30], [31] from an 81.9 wt.% Nb and
18.1wt.% Ti target. Patterning of the NbTiN resonator is done
using contact lithography and a dry etch step using sulfurhex-
afluoride (SF6) and oxygen to create a sloped edge on the thick
NbTiN film, needed for a good contact to the last aluminum
layer. Subsequently, we define the dielectric supports below the
throughline bridges by spin-coating polymide, and subsequent
baking and photolithography steps. A three-hour 250 °C cure
under nitrogen atmosphere is done to make the polyimide stubs
chemically resistant to further processing steps. In the next step,
the wafer is soaked in a 10% HF solution for 10 s prior to the
dc sputter deposition of a 40-nm-thick aluminum. The HF soak
removes surface oxides and organic contaminations and guar-
antees a clean NbTiN-Al interface. Both NbTiN and TiN on
the wafer backside are resistant against the HF etchant. The alu-
minum is wet etched to define the MKID hybrid sections and the
throughline bridges. The last step is the patterning and etching
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Fig. 2. (a) Micrograph photograph of the aluminum-NbTiN interface of a
device fabricated on an all Si wafer. The Al is cut at the interface. (b) Micrograph
photo of the aluminum-NbTiN interface fabricated on a sapphire substrate, the
transition is smooth.

Fig. 3. (a) Double slot antenna integrated to a distributed CPW line attached
together with a short-circuited stub, and (b) its RF equivalent circuit.

of the backside TiN layer in order to create the absorbing mesh,
whereas the wafer front side is protected with photo resist.

The fabrication process is based upon C plane sapphire sub-
strates instead of silicon because the Si process resulted in a
limited device yield [32]. While processing on Si wafers, we
have observed that the Al line is cut exactly at the edge of
the NbTiN and Si interface (see Fig. 2). Our hypothesis of this
problem is enhanced erosion of the aluminum at the Si-NbTiN
interface due to the work function difference between the NbTiN
and Si. Using an insulating substrate like sapphire prevents this
process and has proven to create a very reliable process.

IV. LENS-ANTENNA EM MODEL

The lens antenna system has been designed using detailed
computer simulation technology (CST) simulations [33]. Fol-
lowing the same approach, as described in [16] and [17], an
analogue RF model of the double slot antenna can be derived.
As sketched in Fig. 3, the RF model of the CPW fed antenna
consists of four parts as follows:

1) the antenna slots (I);
2) a CPW line that connects the two slots (II);
3) a short-circuited stub attached to the center of the slot

(III);
4) a distributed CPW transmission line that connects the an-

tenna to the MKID (IV).
Starting from the classical design [15], the double slot geom-

etry was optimized in terms of the quality of the radiated beams
inside a semi-infinite dielectric as well as the antenna impedance

Fig. 4. Double slot geometry with its design parameters.

matching performance within the band of operation. The di-
electric material stratification used for the antenna impedance
optimization is highlighted in Fig. 4. A semi-infinite silicon di-
electric (εr = 11.9) is located on top of an anisotropic C plane
sapphire wafer with a thickness of 350 μm and εr = 11.5 paral-
lel to the C-axis and εr = 9.3 perpendicular to the C-axis. With
respect to previous double slot designs [15], [16], the connection
to a distributed CPW line requires a larger separation S, which in-
creases the cross polarization of the antenna. This separation was
limited by the minimum feature size given by the fabrication.
After the optimization of the beams, we focused on the optimiza-
tion of the impedance match. In the current design, the slots are
etched in a NbTiN GP with a kinetic inductance of 0.4 pH/sq and
a finite thickness of 500 nm. In order to take the thickness and
the kinetic inductance into account in the impedance optimiza-
tion for the CST simulations, we took the following approach
[33]: first, the effect of different materials properties for the
GP was simulated assuming the GP is a two-dimensional (2-D)
sheet. We use a perfect electric conductor (PEC) and NbTiN,
which was modeled as a tabulated surface impedance in CST,
with a characteristic kinetic inductance of 0.4 pH/sq, a value ob-
tained from the dc resistivity (100 μΩ · cm), material thickness
(500 nm) and critical temperature (15 K). Second, we evaluated
the effect of the layer thickness using only a PEC GP, first in
2-D and then using the correct thickness of 500 nm. We used the
simulation with a 2-D GP made of NbTiN as the design baseline
and adjusted the design by treating the effect of the thickness as
a multiplication factor to estimate the case of a superconductive
GP with a 500-nm thickness.

Due to the anisotropy of the substrate and the kinetic induc-
tance of the NbTiN GP, one needs to adjust the imaginary part of
the impedance seen from the antenna input port. This problem
was solved in the third step, by introducing a short circuited
stub in series. This additional stub helps bringing the resonance
frequency of the antenna to the desired value by means of adjust-
ing the imaginary part of Zant accordingly. Finally, a distributed
CPW line was attached to the double slot antenna geometry. The
antenna is well matched within the band 750–910 GHz.
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Fig. 5. Two- dimensional sketch of the lens geometry including the design
parameters.

TABLE I
DESIGN PARAMETERS OF THE LENS GEOMETRY

(SEE FIG. 5 FOR THE DESIGN PARAMETERS)

Lens type Elliptical

Wafer material Sapphire (εx,y = 9.3, εz = 11.5 )
Lens material Silicon (εr = 11.9)
Matching layer Parylene ML (εr = 2.62)
Df 1.55 mm
Twafer 350 μm
Tlens 200 μm
Hlens 572 μm
TM L 54.5 μm
θlens 55◦

TABLE II
DESIGN PARAMETERS OF THE DOUBLE SLOT ANTENNA

L 98.82 μm
W 56.47 μm
d1 3 μm
d2 6 μm
S 12 μm
wg 2 μm
ws 2 μm
lstub 8.75 μm

Once the twin slot antenna design was fixed, we integrated
the design to an existing silicon lens with the geometrical pa-
rameters highlighted in the CST model shown in Fig. 5.

Tables I and II report explicitly the design parameters of the
double slot antenna and the lens design, respectively. In the
CST simulations, we use the first transmitted pulse to eliminate
the additional field contributions due to the internal reflections
inside the single lens. The lens is coated by a λd/4 = 55 μm
Parylene C matching layer (ML) with n = 1.62. Here, λd is
the wavelength in the dielectric at the center frequency and
an absorbing material is used to evaluate the power trapped in
the dielectric. From this simulation, we can derive the efficien-
cies described in Appendix A. Fig. 6 and Table III give the
most important efficiency terms contributing to the optical cou-
pling efficiency, ηop(v) = ηrad(ν)ηSO(ν) for our experiment.

Fig. 6. Efficiency calculations obtained from the optimized double slot fed
lens antenna.

TABLE III
CALCULATED EFFICIENCIES OF THE LENS-ANTENNA @850 GHz

Aperture efficiency Optical coupling efficiency

ηrad = 0.74 ηrad = 0.74
ηtap = 0.78 ηSO = 0.71
ηap = 0.58 ηop = 0.53

The radiation efficiency ηrad is the product of three terms
as follows.

1) ηCST
ref (ν) evaluates how much power remains in the di-

electric. In the present lens geometry, this value is limited
to 80% at the central frequency due to the fixed solid angle
to the lens (55°), losing about 13% more power compared
to a wider angle lens.

2) ηmatch gives the match between the MKID CPW and the
antenna, ηmatch(ν) > 90%, within 750–910-GHz band.

3) ηCPW , which has been estimated to be about 94% using
[33], is the term associated to the radiation losses in the
CPW line.

The spill-over efficiency ηSO(ν) is calculated for a solid an-
gle of Ωs = ±14.3° (to be compared to the experiment) using
the fields radiated by the lens antenna. The maximum optical
coupling efficiency is 53% and it is observed at the designed
frequency, 850 GHz. Table III explicitly reports the antenna ef-
ficiencies at the centre frequency of 850 GHz, including the
antenna taper efficiency ηtap and aperture efficiency ηap as
well. The value of the aperture efficiency is smaller than the
reported 78% in [15], due to the factors described above [for
example ηCST

ref (ν)], plus a 10% lower taper efficiency due to the
anisotropy of the sapphire wafer.

V. MEASUREMENTS AND RESULTS

We have fabricated a detector chip with 4 MKIDs in a linear
configuration, the array has a single pixel exactly on the chip
center and, therefore, in the optical axis of the experimental
systems. The MKIDs on this chip are all identical, except the
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Fig. 7. Cross section of the He3 cryostat. From the right to the left they are
drawn: the sample, 4-K shield, 77-K shield and 300-K window.

length of the resonator allowing us to read each pixel at a differ-
ent readout frequency. After fabrication, the chip is mounted
in a sample holder, and the lens array is glued to the chip
using a dedicated alignment tool and cyanoacrylate glue. Be-
low, we discuss the experimental setup to measure the antenna
beam pattern, frequency response, and the device sensitivity
and optical efficiency. Note that in all experiments, we use the
so-called MKID phase response. This is motivated by the fact
that MKID phase readout gives the largest dynamic range, and
importantly, allows for the multiplexing of much more pixels
[34]. This is not needed in the present small chip experiment,
but crucial for the actual use of these devices, as shown for
example in [21]. Additionally, we use the frequency sweep to
convert the MKID complex response to a frequency response.
This removes to first-order nonlinearity of the MKID phase
response, which originates from the limited bandwidth of the
resonance [35].

A. Beam Patterns

The antenna frequency response and beam maps require direct
access from the chips to the 300-K lab environment, hence
we use a dedicated cryogenic test facility optimized for these
measurements. The sample is mounted on the cold stage of a
3He sorption cooler, which is mounted on the cold plate of a wet
4He 4.2 K cryostat equipped with a liquid nitrogen cooled shield
at 77 K. The 3He stage temperature is 290 mK under nominal
operation and the hold time is longer than 8 h. The optical access
consists of a 300K HDPE window, Goretex infrared blockers,
and metal mesh low-pass filters at 77 K and 4 K. The apertures
on the 77-K and 4-K stages limit the total angular throughput
of the radiation to an opening angle of ±27.5°. The absence of
fore optics ensures direct access to the lens antenna system. The
cryostat optical access has been designed with particular care in
order to prevent reflections by using absorbing coatings on all
surfaces. The coating is made from EPOTEK 920 epoxy mixed
with 3% by weight carbon black powder in which are embedded
1-mm rms diameter grains of SiC grains [36] (see Fig. 7).

Fig. 8. Schematic diagram of the beam pattern setup. The cryostat optical
access is defined by apertures, goretex/HDPE and metal mesh filters. The ra-
diation patterns are measured by scanning a glowbar source mounted on a XY
scanner, in an image plane.

The beam patterns are measured by scanning a 2-mm-
diameter hot source in 2 directions in the plane perpendicular
to the optical axis of the cryostat (see Fig. 8). The hot source is
made from a Newport IR source in the focus of an elliptical mir-
ror assembly; a 2-mm-diameter aperture is located in the second
focus of the elliptical mirrors in order to create theoretically a
uniform illumination as a function of angle. The area around
the hot source aperture is coated with radiation absorber to pre-
vent standing waves. Additionally in order to remove drifts, we
introduce an optical chopping mechanism located behind the
source aperture. The hot source is chopped at ∼80 Hz, mod-
ulating above the system 1/f noise dominated by thermal and
background loading drifts. Linearization using to effective KID
resonant frequency using the scheme outlined in [35] removes
the associated changes in responsivity to the ∼10% level across
the beam pattern. Also, we measure the response of each pixel
as a function of the source position simultaneously by using
our multitoned readout system [34]. By positioning a polarizer
in front of the source a specific polarization direction can be
probed.

The measured and simulated beam patterns in copole (per-
formed with the polarizer) agree very well (see Figs. 9 and 10).
There are uncertainties in the measurements due to detector
noise (off-main beam noise floor), beam truncation, and mis-
alignment of the limiting aperture, for example due to thermal
contraction. Additional effects can come from the finite sized
grid, back reflections into the cryostat modifying the thermal
background, and slightly asymmetric beam of the hot source.
The compression of the beam in the E plane is attributed to these
setup uncertainties. The E plane cut, perpendicular to the slots,
and the H plane cut, parallel to the slots, are different due to the
effect of the sapphire birefringence.

For the measurements of the cross-pole response of the de-
tector, we mount a polarizing wire grid in front of the hot source
aperture to prevent beam truncation. This arrangement required
particular care of reflections from the environment back to the
cryostat. In addition, the grid available for the measurements
is measured to have a leakage of the order of –18 dB. This is
clearly visible in the beam patterns measured. To compensate,



132 IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, VOL. 8, NO. 1, JANUARY 2018

Fig. 9. Two-dimensional beam pattern of the lens antenna system in the far
field. The contours level are located at –3 dB and –15 dB. The cutting planes
used for Fig. 10 are also shown. The center of the beam pattern is found by a
Gaussian fit of the beam shape. The scale is in dB.

Fig. 10. Measured and simulated beam pattern for one pixel of the device.
The E plane corresponds to a cross section perpendicular to the antenna slots;
vice versa the H plane is the cross section parallel to the slots. The simulations
are single frequency (850 GHz) while the measurements are wide band.

we introduce a postprocessing analysis where we subtract the
co-pol beam pattern from the raw cross-pole measurement in
order to get the expected null at the center of the cross-pole
beam pattern.

The agreement between calculations and experiment is rea-
sonable (see Figs. 11 and 12). We do observe the asymme-
try in the clover but the patterns are broader and one lobe
is suppressed, the reason is unclear but we attribute this ef-
fect to setup uncertainties as indicated for the copol mea-
surement, in addition the KID resonator can contribute to the
cross-pol emission (this contribution is not included in our CST
model).

Fig. 11. Two-dimensional cross-polarization beam pattern of the lens antenna
system in the farfield. The scale is in dB. The maximum is normalized to the
maximum value of the copolarization beam pattern, and for better visualization
the color scale is varied.

Fig. 12. Cross pol beam pattern, corresponding to the D plane located 45° be-
tween the E plane and H plane. The simulations are single frequency (850 GHz)
while the measurements are wide band.

B. Antenna Frequency Response

The lens-antenna frequency response is measured by means of
a Fourier transform spectrometer (FTS) in a classical Michelson
interferometer setup. Referring to the scheme showed in Fig. 8,
the FTS replaces the XY scanner.

The FTS consists of a glowbar source at 1600 K, a fixed
mirror and a movable mirror and a mylar beamsplitter. The
MKIDs are the detectors in this setup and their phase responses
were measured as a function of the mirror distance. The beam
is stopped down with an aperture to a solid angle of roughly
14°, a similar value used for simulations in order to be able to
compare the two results. The phase response is linear in power,
as verified using a rotating polarizer in another experiment.
The Fourier transform of the interferogram is corrected for the
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Fig. 13. Simulated and measured antenna FTS (in a.u.) versus frequency.

frequency dependency of the filters and beamsplitters. The errors
are given by the uncertainty in the beamsplitter thickness and
the filters transmission.

Fig. 13 compares the simulated with the measured FTS re-
sponse. The agreement between the measurements data and the
model is excellent.

C. Optical Efficiency and Sensitivity

The sensitivity measurements are performed in an adiabatic
demagnetization refrigerator (ADR) cryostat with an operating
temperature of 120 mK. The cryostat is equipped with a ther-
mal calibration source, as depicted in Fig. 14 and explained in
[19] and [37], where we can control with high accuracy the
throughput, power and frequency of sub-mm radiation falling
on the detector. The detector chip is mounted inside a light-tight
sample holder, which itself is mounted inside a light-tight box.
Both are thermally anchored to the 120-mK stage of the ADR
cooler and well shielded against stray radiation [36]. Above the
light-tight box a blackbody radiator is mounted, consisting of a
copper cone coated on its inside with radiation absorber/emitter
consisting of a mixture of 1-mm SiC grains and Epotek epoxy
with 3% by weight carbon black. The blackbody is weakly cou-
pled to its surrounding shield, which is thermally anchored to
the 3K stage of the cooler. Resistive heaters and a PID control
allow us to control the blackbody temperature (TBB) between
3 and 40 K and thereby the power emitted. Quasi-optical fil-
ters are mounted on the radiator enclosure, light-tight box, and
sample holder to define the frequency band of the radiation ad-
mitted to the sample holder. The aperture in the outer 120-mK
light-tight box determines the throughput, in the experiment
considered it is a 10.2 mm diameter aperture at 20-mm dis-
tance, i.e., the half opening angle is 14.3°. Using this geome-
try and the calculated and measured detector beam pattern we
find ηSO = 0.71.

The measurements strategy of the detector’s optical efficiency
and sensitivity is described in detail in Appendix B. In Figs. 15
and 16, we give the results of the experiment. The center panel

Fig. 14. Schematic representation to measure the optical efficiency of a direct
detector, image taken with permission from [19].

of Fig. 15 shows the phase noise power spectral density Sθ (f),
obtained at nine different blackbody temperatures, i.e., nine
different values of Ps . We clearly observe a white noise spectrum
and a power dependent roll off. For the curves, where the roll off
changes with blackbody temperature, we are sure that the device
is background limited [19], this is the case for the five highest
values of Ps . Importantly, the noise level at frequencies below
the roll off (indicated by the vertical line) is much higher than
the noise floor of the system, visible at the highest frequencies,
i.e., −113 dBc/Hz.

This implies that we can neglect any intrinsic detector noise
in the remainder of the analysis. Subsequently, we measure the
MKID Phase response dθ/dPs around each blackbody temper-
ature. This is done by a linear fit to the MKID phase response to
a change in blackbody temperature, converted into a dPs using
(B.4). The result is shown in the top panel of Fig. 15. Now all
parameters in (B.6) are known and as a result we can obtain ηop ,
for measurements at the five highest powers, because only for
those we know that the detector reaches background limited per-
formance. The result is shown in Fig. 16. The optical efficiency
is 0.58 ± 0.05. The error is obtained from the propagation of the
error in the noise equivalent power (NEP) (noise and fit errors)
and combining the error in the mean value of the data points
and the mean of the errors of all points. This agrees within the
errors with the calculated value ηop = 0.53.

Since now both ηop and ηSO are experimentally validated, the
latter by the good agreement between measured and calculated
beam pattern, we can confirm that the calculated values of ηrad
and ηap are an accurate description of the performance of the
detector. The bottom panel of Fig. 15 shows the measured ex-
perimental NEP and background limited NEPBLIP , calculated
using (B.1) as function of Pabs , using ηop = 0.58. It is clear that
for the five highest powers we find an excellent agreement as
expected. For the lowest powers the MKID is no longer back-
ground limited, but limited by thermal fluctuations in the device.
As a result the NEP no longer decreases with power and satu-
rates, as observed in [37]. So, we conclude that the device can
be described by NEPBlip(Pabs) for Pabs > 5 fW.
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Fig. 15. TOP: MKID phase response to a small change in source power
around several center values of Ps. We also show the linear fits to this response
used to calculate the NEP CENTER: Phase noise power spectral density for
several values of TBB . Note the white spectrum and the increase in the roll-
off frequency with increasing TBB , proving that the device is background
limited. BOTTOM: NEPBLIP (Pabs ) and NEP (Pabs ), i.e., as a function the
power absorbed in the aluminum of the MKID. The system has a measured
coupling efficiency ηop = 0.58 between calibration source and detector, i.e.,
the system NEP is ∼1/

√
ηop worse than the data presented. The aperture

efficiency of the detector is ηap = 0.65. Above ∼ 5 fW both NEPBlip (Pabs )
and NEP (Pabs ) are identical, proving that the detector reaches full background
limited performance above that value, and that the optical efficiency obtained is
correct. All values are obtained at a frequency F = 70 Hz, which can be seen to
be in the white region of the noise spectra in the top panel.

VI. CONCLUSION

We have shown that we have reached a full understanding
and characterization of the EM properties of the antenna cou-
pled NbTiN-Al kinetic inductance detectors as indicated by the
good agreement between experimental measurements and the-
oretical simulations. We have designed, fabricated, and experi-

Fig. 16. Optical efficiency for each black-body temperature. We use the five
highest powers to obtain the average value of 0.58. The data points at lower
blackbody temperatures are not fully background limited, and can therefore not
be used in this analysis. The lines are indicating the 1s error.

mentally characterized an MKID device optimized for detection
of the atmospheric window centered at 850 GHz. The device
shows background limited performance with a coupling effi-
ciency ηop = 0.58 and an aperture efficiency ηap = 0.58 at ab-
sorbed power levels in excess of 5 fW. At lower powers the sensi-
tivity saturates at a NEP = 3.5 · 10−19 W/

√
Hz. Furthermore,

we find excellent agreement between the EM model predict-
ing the antenna beam pattern, frequency response, and coupling
efficiency.

APPENDIX A
POWER ABSORBED BY A LENS-ANTENNA COUPLED MKID

In this appendix, we describe how to evaluate the power re-
ceived by a MKID coupled to a lens antenna from an incoherent
source with an average temperature T distributed over a solid
angle of Ωs (Fig. A.1 gives a graphical representation of the
considered configuration).

The power absorbed by a detector in the presence of a black-
body can be described using the Planck’s curve as

Pabs =
1
2

∫ ∫
Ωs

Bs (ν) Atel
eff (ν,Ω) F (ν) dΩdν (A.1)

where Bs(ν) = f 2

c2
2hf

e
h f

k B T −1
is the source brightness, Aeff is the

detector effective area, the factor 1
2 is associated to a single-

polarized antenna, and F (ν) is the filter frequency response.
For single-mode antenna coupled detectors, the effective area

can be expressed as function of the antenna physical area
Alens , aperture efficiency ηap , and antenna normalized radiation
pattern P (ν,Ω)

Atel
eff (ν,Ω) = Alensηap (ν) P (ν,Ω) (A.2)

where the normalized radiation pattern can be expressed
as function of the antenna directivity pattern P (ν,Ω) =
D(ν,Ω)/D(ν, 0). One can express the aperture efficiency as
the product of the radiation efficiency ηrad(ν) and the taper
efficiency ηtap(ν). For directive antennas, the taper efficiency
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Fig. A.1. Lens-antenna coupled MKID in presence of an incoherent source.

relates the broadside directivity to the maximum directivity that
one could achieved for the lens area

ηtap (ν) =
D (ν, 0)
4πAlens

λ2 . (A.3)

Therefore, (A.1) becomes

Pabs =
1
2

∫
Bs (ν) λ2F (ν) ηrad (ν)

1
4π

∫
Ωs

D (ν,Ω) dΩdν.

(A.4)
The angular integral can be expressed as a spill over efficiency

term ηΩs
so (ν) by using the definition of the directivity D(ν, 0) =

4π∫
4 π P (ν,Ω)dΩ

Pabs =
1
2

∫
Bs (ν) λ2F (ν) ηrad (ν) ηΩs

so (ν) dν. (A.5)

With ηΩs
so (ν) =

∫
Ω s

P (ν,Ω)dΩ∫
4 π P (ν,Ω)dΩ . The product ηrad(ν)ηΩs

so (ν)
will be referred here as the optical coupling efficiency ηop(ν).

Whereas the spill over term in the optical coupling efficiency
depends basically on the radiation pattern of the lens antenna,
the radiation efficiency represents the fraction of the power that
is absorbed by the central conductor of the CPW line in the
MKID. This efficiency term can be evaluated simulating the
antenna in transmission (input port at the antenna feed point)
using the CST model shown in Fig. 6. The radiation efficiency
divided into the following contributions.
ηCST

ref fractional radiated power after the lens with respect
to the power accepted by the antenna port in CST sim-
ulation. This efficiency quantifies the power trapped
inside the dielectric.

ηmatch the impedance matching efficiency between the an-
tenna feed and the MKID CPW line impedance.

ηCPW the efficiency associated on how much power is
absorbed by the central conductor of the MKID
CPW [36].

When a filter is used in the measurements with relative band-
width much smaller than that of the antenna, as seen in Fig. B.1
for the present case, the optical efficiency can be taken out from

Fig. B.1. Transmission of all filters in the experimental setup, the peak trans-
mission is 0.2, note that the out of band rejection is better than –60 dB between
80 GHz and 10 THz. The insert shows Pabs as a function of blackbody temper-
ature.

the spectral integral in (A.5)

Pabs ≈ 1
2
ηop (ν0)

∫
Bs (ν) λ2F (ν) dν. (A.6)

APPENDIX B
ABSOLUTE MEASUREMENT OF THE DETECTOR COUPLING

As explained in Appendix A the lens-antenna coupled MKID
is a single mode detector. The maximum throughput is λ2 and
the power absorbed in the MKID depends both on the de-
tector beam and on the aperture size to the thermal radiator.
As a consequence, we need two independent experiments to
measure the aperture efficiency ηap of a lens-antenna coupled
MKID: 1) a measurement of the lens-antenna beam pattern and
2) a measurement of the optical coupling efficiency between a
thermal calibration source and the detector [19].

A. Measurement of the Beam Pattern to Determine ηtap

To measure the beam pattern the MKID is placed in a cryostat
with optical access to the lab, and the response as a function of
the position of a well-calibrated source is measured as explained
in detail in the paper. Due to limits in cooling power we can only
measure the pattern inside a cone with a limited opening angle of
±27.5°, and we compare this measurement with the simulated
patterns. If the experimental patterns match the calculated pat-
tern, we can use the simulated beam pattern, available over the
whole sphere to calculate ηSO and ηtap . We obtain ηtap = 0.78
for the 850-GHz lens antenna. Note that 90% of the detector
throughput is included in the measurement, so we have to rely
on the calculation only for a very limited amount of total power.

B. Measurement of ηop to determine ηrad

A thermal radiator introduces a noise to the signal due to
the quantized nature of the photons emitted. A detector is called
background limited if its sensitivity is given only by the intrinsic
signal to noise of the source. In this limit, the NEP of the MKID
per unit of bandwidth is given by [39]1

NEP2
Blip = NEP2

Poisson + NEP2
wave + NEP2

R

1The last term in [B.1] has a prefactor 4, in [5], [22], and [23] a prefactor of
2 is used. The results in the paper are only affected a bit by this difference.
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Fig. B.2. Background limited NEP and its contributions as a function of Pabs
for our experiment.

which can be evaluated for the case of a narrow band-pass filter
around a center frequency ν0 [40], [41]

NEP2
Blip,ν0 =

∫
(2Pν hν + 2Pν hνmOν + 4ΔPν /ηpb) dν

(B.1)
with

Pν ≈ 1
2
ηop (ν0) Bs (ν) λ2F (ν)

i.e., Pabs =
∫

Pν dν. In this equation m = ηop · F(ν) is the total
efficiency of photon absorption between the blackbody calibra-

tor and the aluminum of the MKID and Oν = (e
h f

k B T − 1)−1

is the occupation per mode. In our setup, F(ν) is maximum in
the filter passband for F(ν)∼0.18 between 830 and 890 GHz
(see Fig. B.1) and ηop = 0.58, with the result that m∼0.1. Fur-
thermore, ηpb is the efficiency of creating a quasi-particle, which
for our aluminum film is approximately 0.4 at frequencies above
180 GHz, but increasing to 1 at 90 GHz [37]. Below 90 GHz
aluminum does not absorb radiation.

The first term in (B.1) is the Poisson noise due to random
photon fluctuations. This term dominates in the Wien limit
(hν>kT) where photon arrival events are completely random
and can be described by Poisson statistics. Hence, in this limit
NEPBlip,ν0 ≈ NEPPoisson = (2Pabshν0)1/2 . The second term
is the wave bunching term, which dominates in the Raileigh-
Jeans limit (hν<kT) providing that m is not too small. In this
limit, NEPBlip,ν0 ≈ NEPwave ∝ kTdν, i.e., independent of
frequency. The last term in (B.1) is the noise added due to
random recombination of quasi-particles in the MKID. This
term deteriorates the NEP for an MKID slightly compared to
for example a TES detector. In our experiment, the total NEP is
increased by 9% due recombination noise. In Fig. B.2, we show
all NEP contributions. Note that the bunching or wave contribu-
tion starts to become important for power levels far exceeding
the experiment described in the main text.

Experimentally, we can obtain the NEP of a MKID by mea-
suring the noise power spectral density Sx(f) at a constant
blackbody temperature and by measuring the device response

to a small variation absorbed power dx/dPabs

NEP (Pabs , f) =
√

Sx (f)
(

dx

dPabs

)−1√
1 + (2πfτqp) .

(B.2)
Here the parameter x is the MKID observable, commonly the

MKID phase response θ or MKID amplitude response, and τqp

is the quasi-particle lifetime, τqp ∝ P
−1/2
abs and of the order of

1 ms for aluminum MKIDs under dark conditions [37]. The
parameter f denotes the frequency information of the power
spectral density, typically between 0.1 Hz and 1 MHz. Since
Sx has a white spectrum under background limited conditions
the NEP is independent of frequency for frequencies fref <
(2πτqp)−1 ∼ 70 Hz. To allow a direct comparison to (B.1) we
obtain the experimental NEP at fref , typically around 60 Hz to
limit effects of 1/f noise using

NEPexp (Pabs , fref ) =
√

Sx (fref )
(

dx

dPabs

)−1

. (B.3)

If ηop is known (B.1) allows us to calculate the background
limited NEP and (B.3) allows us to obtain the experimental NEP
from the measured data.

If we want to experimentally determine ηop , we need to start
from known quantities. We calculate the power emitted per unit
of bandwidth from the blackbody in a single mode multiplied
with the transmission of our quasi-optical filters Ps,ν

Ps,ν ≈ 1
2
Bs (ν) λ2F (ν) (B.4)

i.e., Pν = ηop · Ps,ν . Hence, the total blackbody power trans-
mitted through the filters that can coupled to a single mode is
given by Ps =

∫
Ps,ν dν. These definitions allow us to rewrite

(B.1) and (B.3) into

NEP2
Blip,ν0 = . . . .

∫ (
2ηopPs,ν hν + 2η2

opPs,ν hνF (ν) BOν +
4ΔηopPs,ν

ηpb

)
dν

NEP2
exp = η2

opSx (fref )
(

dx

dPs

)−2

(B.5)

respectively. Since for a background limited MKID
NEPexp ≡̄ NEPBLIP ,ν0 , we can obtain the optical efficiency

ηop =
∫

2Ps,ν hνδν +
∫

4ΔηopPs,ν /ηpqδν

NEP2
exp − ∫

2Ps,ν hνFν Oν δν
(B.6)

which is valid for a narrow frequency band around ν0 . The
experimental measurement of ηop can be combined with a cal-
culation of ηSO which is based on the calculated, and experimen-
tally validated beam pattern, to obtain the radiation efficiency
ηrad(ν0) = ηop(ν0)/ηSO(ν0).
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