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Abstract— This article confirms the advantage of fan-out (FO)
packaging in the electrical performance of power delivery among
integrated circuit (IC) chips with the best use of land side
capacitors (LSCs). On-chip in-place waveform measurements
quantitatively evaluate the integrity of powering and signal-
ing within FO wafer level packaging (FOWLP) multiple chip
module (MCM) demonstrators, where a pair of IC chips are
assembled with LSCs with different sizes and structures. The
IC chip incorporates an array of 12 digital cores and on-chip
waveform monitor (OCM) circuits. Each digital core consists of a
low-voltage differential signaling (LVDS) transceiver channel that
is backed by a static random access memory (SRAM)-based built-
in self test (BIST) module and supplied by an on-chip voltage
regulator module (VRM). The LSCs are placed on the bottom
side of an FO interposer and inserted between the output of VRM
and the ground plane almost ideally with the shortest length
of physical traces. A Si membrane capacitor of 10 nF sustains
the lowest power line impedance over the frequency range of
2.0 GHz more constantly than a multilayer ceramic counterpart,
and attenuates the high-order harmonic frequency components
to the clocking frequency at 750 MHz. The leverage of LSCs in
powering also improves signaling and helps achieve the wider
eye openings in LVDS channels. The implications are elaborated
for the capacitor selections with respect to the physical types of
capacitors, the size of capacitances, and the level of shares in
power delivery among digital cores, all toward the higher level
of integrity in powering and signaling in FOWLP MCMs.

Index Terms— Fan-out (FO) packaging, low-voltage differential
signaling (LVDS), multichip module, on chip monitoring, power
delivery network (PDN), power integrity, power noise, signal
integrity, Si capacitor (SiCap).
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I. INTRODUCTION

ADVANCED packaging has evolved to accommodate mul-
tiple integrated circuit (IC) chips for unifying various

functionality into a system in the form of multiple chips in a
module (MCM). The demand is further extended for hetero-
geneously integrating multiple chiplets that are individually
developed using suitable device technologies and supplied by
associated semiconductor fabs. 3-D IC chip (3DIC) stack-
ing [1]–[6] and fan-out (FO) wafer level packaging (FOWLP)
[7]–[10] technologies have been extensively explored. Both
of them fulfill the advanced packaging toward the higher
performance and a smaller footprint as well as a lower
profile. Stakeholders can share the cost of manufacturing and
disperse the risk of investments, even tracking the level of
integration under Moore’s law that is continuously required
by applications. Photonics and electronics integration [11]
deploying FOWLP MCM achieves the high data bandwidth in
a system where multiple chips of processors, memories, and
opto-electronic interfaces are tightly connected. A machine
learning device [12] uses FOWLP to unite IC chips for
neural-network processing and memory and further exploits
3DIC for a high-density imaging chip to be placed on the
top surface [13]. Those applications demand the design of
MCM systems to strive for high data bandwidths, stable power
supplies, and the maximized power efficiency all around IC
chips.

To achieve the goal of system-level performance, the
integrity in signaling and powering appears to be a challenge
in practically implementing MCM devices with advanced
packaging [14]–[18]. Once IC chips are assembled in a
package, their power and signal lines are unified horizontally
within membranes of an interposer or vertically through the
Si substrate of IC chips, and fundamentally inaccessible by
external measurement equipment. Chip-package-system board
integrated simulation can provide analytical insights of inter-
nal states once models are properly prepared for electronic
components including IC chips [19]–[21]. Packaging materials
are electrically characterized for modeling passive impedance
[22], [23]. The simulation concatenates the passive models
and active circuits to solve dynamic behaviors of powering
and signaling. Here, the accuracy of simulation remains being
concerned by designers and needs to be confirmed or even
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Fig. 1. MCM architecture in schematic (top) and in FO physical structure
(bottom).

calibrated by the measurements on test devices with reference
structures.

The 3DIC demonstrators have been developed and charac-
terized [14], [24] and referred to the superiority of power noise
mitigation and signaling performance. Those are attributed
naturally to the construction of 3DIC stacks with vertically
distributed capacitors among power delivery networks (PDNs)
[25], [26]. The benefits of embedded capacitors in FOWLP
devices were also exhibited by monitoring power and signal
waveforms [27], [28]. The implications with the different
property of interposers have been relevantly discussed with
the same device architecture but integrated on a Si passive
interposer differently from the fan-out one, which should be
referred to [29]. Here, our demonstration was self-explanatory
but limited only to qualitative observations in the previous
reports, which were insufficient to discuss the selection of
capacitors in the design of a PDN.

In this article, the electronic performance of PDN is pre-
cisely and quantitatively evaluated in FOWLP devices through
on-chip measurements and equivalent circuit simulation. It is
shown that the electrical impedance of power delivery can
be strategically planned in a fan-out (FO) structure with the
best use of land side capacitors (LSCs) with smaller series
impedance that benefits from the very short connecting paths
in nature to the stacked membranes in an FO structure. The
implications of capacitor selections in the design of FOWLP
MCM devices are elaborated through the in-place evaluation
of power and signal integrity (PI and SI), for the first time.

The rest of this article is organized as follows. Section II
describes FOWLP MCM demonstrators and associated exper-
imental setups for in-place power noise and signal waveform
measurements. Section III evaluates the electrical performance
of powering and signaling and then discusses the design
strategy of FOWLP MCMs with LSC selections. Section IV
concisely provides conclusions.

II. FOWLP MCM DEMONSTRATOR

A. MCM Architecture

The MCM architecture of Fig. 1 is exemplified with two
application-specific IC (ASIC) chips having multiple digital
cores and being encapsulated in FO assembly. This architec-
ture is intended for the PI and SI evaluation of a typical digital
IC chip. An external high supply voltage, VDDH, is converted
by a voltage regulator module (VRM) into the local supply

voltage VDDL for digital circuits in each power domain. Digital
signals are communicated over a chip-to-chip digital data bus
using physical layer signaling schemes such as low-voltage
differential signaling (LVDS). The electrical performance of
PDNs fundamentally influences PI and SI, where a designer
needs to carefully choose and locate capacitors throughout the
physical structure of system-level FO assembly.

The chips are faced down on the FO interposer and their
bumps on pads are connected to the wires patterned over
metal layers in the interposer. The entire MCM in a ball-
grid array (BGA) is then mounted on a mother printed circuit
board (PCB). The LSCs are mounted in the backside of
the MCM with the shortest length of physical traces to the
associated pads of an IC chip. In addition, mother board
capacitors (MBCs) are mounted on the PCB at multiple
locations of the system-level PDN for decoupling.

B. MCM Demonstrator With Test IC Chip

We have prepared FO MCM demonstrators for the present
study. The block diagram is given in Fig. 2(a). The demon-
strator consists of the tile of digital cores involving LVDS
channels with transmitter (Tx) and receiver (Rx) circuits,
and static random access memory (SRAM)-based built-in self
test (BIST) logic core circuits, all supplied by a dedicated
VRM. In addition, the on-chip waveform monitoring (OCM)
circuits are equipped for in-place PI and SI evaluation among
the digital cores.

The VRM down converts the external voltage of 3.3 V into
the internal digital core voltage of 1.8 V, which is locally
stabilized by the dedicated capacitor, LSC.

The Tx drives the outgoing differential signals. The Rx
vice versa receives and converts the incoming differential
ones to the rectangular signal of bit streaming. The BIST
core circuits of Fig. 2(b) continuously check the consistency
between incoming received data (RXDATA) and expected
data prestored in SRAM at the rate of received data clock
(RXCLK). The number of inconsistent bits is counted in a
bitwise way and then read by an external checker as the data
bit error rate (BER).

The OCM circuits includes probing front end (PFE) mod-
ules for sensing individual analog voltage signals at respective
probe inputs and a data processing unit (DPU) for digitizing
voltage waveforms after a multiplexer (MUX) [29], [30]. The
PFE module of OCM system, Fig. 2(c), senses VSIG by a
source follower (SF), and immediately compares its output
voltage to the reference one, VREF, by a latched compara-
tor (LC) at the strobe timing TSTRB. External voltage and
timing generators provide VREF and TSTRB, respectively. The
SF internally provides an offset dc voltage to VSIG in order
to match the input voltage range of the LC. This allows the
PFE to effectively capture the VSIG of interest in a rail-to-rail
voltage range, namely, from the ground voltage to the power
supply voltage. The single bit stream from the comparator is
given to MUX. The probe selection is set through on-chip
registers. The waveform data acquisitions are fully controlled
by the software running on an off-chip computer (PC).
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Fig. 2. Block diagrams of (a) MCM demonstrator, (b) BIST core circuit,
and (c) OCM system.

Fig. 3. Test chip overview. (a) Block diagram. (b) Chip layout.

The digital cores, represented by LVDS transceiver chan-
nels, are integrated on a silicon prototype chip shown in Fig. 3.
Each left and right side of the chip holds 12 LVDS data chan-
nels that are managed by a central control unit. Another LVDS
clock channel receives and drives the clock (CLK) signal that
is shared by the data channels over multiple chips for synchro-
nization. The chip has the area size of 5.4 mm × 5.4 mm and
uses a 0.18-m standard CMOS technology.

Fig. 4. Physical layout view of LVDS channels featured by in-place waveform
capturing [27].

An in-place power and signal waveform capturing macro
is realized with OCM circuits and aligned to adjacent LVDS
channels in their physical layout, as shown in Fig. 4. The
macro has the total of 20 PFE modules uniformly arrayed in
two sides and associated probe wirings drawn to the nearest
points of interest within respective LVDS channels. These
points to capture waveforms include the plus and minus nodes
of signaling, power supply, and ground nodes around SRAM
and BIST digital cores as well as the output of VRM. There are
pads for bumps to be connected to membrane metallic traces
on the FO interposer for LVDS channels and CLK signals as
well as VDD and ground (VSS).

C. MCM Demonstrator With Capacitors

The block diagrams of MCM demonstrators are given in
Fig. 5. The identical chips are horizontally placed in a face-
to-face way and the 12 data and one clock LVDS channels
are one-to-one connected. We prepare two configurations in
power delivery for exploring the effect of capacitors. The
exploratory version of Fig. 5(a), where a single on-board
power converter supplies every circuit in the MCM with the
support of MBCs while on-chip VRMs are fully cut off and
bypassed. In contrast, the main version of Fig. 5(b) utilizes
on-chip VRMs locally powering circuits among the LVDS
channels. The OCM circuits are powered by the dedicated
PDNs and isolated from LVDS channels, in both versions.

We have manufactured the MCM demonstrators with nine
different variations of electrical parameters, as listed in Table I,
including the exploratory versions [see Fig. 5(a)] without
and with LSC, and the main versions [see Fig. 5(b)] with
different physical structures and sizes of LSCs. The main
versions have some other variations where more than one
LVDS channels are bundled and powered by a single VRM
selected from the bundle, where the other VRMs are turned off.
The LSCs are chosen from the structures of multilayer ceramic
capacitor (MLCC) and Si capacitor (SiCap). The electrical
parameters in Table II highlight the properties of MLCC
and SiCap. The electrical series resistor (ESR) and inductor
(ESL) are derived at the self-resonance frequency (Fres) and
represented at the frequency of 1 GHz, respectively. The
dielectric constant (Dk) and dissipation factor (Df) are assumed
to be 4.4 and 0.02, respectively, in our FO interposer. These
numbers are used in the simulation of electrical impedance in
Section III.
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Fig. 5. Block diagram of demonstrators with different powering schemes.
(a) Exploratory and (b) main versions.

TABLE I

MCM DEMONSTRATOR VARIATIONS. EXPLORATORY (EXP.) AND

MAIN VERSIONS FOLLOW PDN CONFIGURATION IN
FIG. 5(A) AND (B), RESPECTIVELY

The top and cross section views of the manufactured
FOWLP MCM are shown in Fig. 6. The ASIC chips are faced
down on the FO interposer while being attached to an alumina
plate on the die backside [see Fig. 6(a)]. The MCM module has
the external area size of 12.0 mm × 6.0 mm and the height of
1.45 mm excluding the ball diameter of nominally 50 μm. The
space between ASIC chips is around 0.2 mm. Three membrane
layers are, respectively, patterned for metal wirings and formed
in the interposer [see Fig. 6(b)], with each thickness of 4 μm,
for the following purposes; Layer 1: the pads to be connected
to the bumps of ASIC chips and associated power and signal

TABLE II

LSC ELECTRICAL PARAMETERS.

Fig. 6. MCM demonstrator in FOWLP (a) top view, (b) FO membrane layers’
image, (c) LSC soldering location on bottom side, and (d) cross section view.

lines, Layer 2: the whole areas dedicated to the ground plane,
and Layer 3: the lands to mount LSCs and the pads for balls
connecting to PCB, respectively. The total thickness of the
interposer is approximately 20 μm.

The LSCs are soldered on the bottom side of the FO
interposer with the lands customized to fit the external size
of the capacitors. The footprint of LSC shown in Fig. 6(c) is
1.0 mm × 0.5 mm for the MCM demonstrators #3 and #4. The
LSC is mounted on the bottom side of the interposer and finely
concealed within the ball diameter [see Fig. 6(d)]. This allows
the die pad of VRM output to be located in the almost same
place of the land to LSC and minimizes the physical length
of power supply trace, which is 0.83 mm including metal
routings and balls. The other land of LSC is connected to the
ground plane of the interposer with the physical trace length
of 0.95 mm. In comparison, the length from the power pad of
IC chips to the land of MBC becomes as large as 3.39 mm that
is mostly dominated by the metal routings on the mother PCB
with the total height of 1.57 mm, in the MCM demonstrator
#1 for direct powering without VRM [see Fig. 5(a)].

D. Experimental Setup

The whole experimental setup shown in Fig. 7 is fully
automated, according to the measurement sequence of Fig. 8.
A photo is also given and shows its compactness. The field-
programmable gate array (FPGA) device intermediates the
transactions between the software on PC and the MCM
demonstrator as well as the generators of VREF and TSTRB.
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Fig. 7. Experimental setup.

Fig. 8. Experimental measurement sequence.

An external clock generator provides the system clock through
LVDS CLK channel.

There are several registers for commanding measurements
in the sequence (1, 2, 3, and 6 in Fig. 8), which are writ-
ten and read between the demonstrator and FPGA through
serial-parallel interface (SPI). The OCM probe selections are
similarly led by additional registers in the analog power
domain dedicated to the OCM system. Data bits are prestored
to the SRAM core on one of the chips that is set in Tx
mode. The same data are also stored to the other one in Rx
mode for BIST operation. Once the sequence is triggered,
the data transmission starts with preambles and then repeats
with the prestored data. The BIST results are also collected.
The waveform acquisition by the OCM proceeds in parallel,
where TSTRB to sample the voltage waveform of interest moves
incrementally forward with the time step of �T in every
iteration of the transmission. In contrast, VREF in the voltage
comparison also increases with the increment of �V to search
the nearest voltage. In the present setup, �V and �T are set
to be 100 μV and 100 ps, respectively, which determine the
resolution of waveform capturing. The waveform acquisition
algorithm associated with the OCM circuits has been explored
[30], [31] and utilized for the in-place waveform-based eval-
uation of undesired noise coupling in automotive IC chips
[32], [33]. Here, our MCM demonstrator adopts this technique
in a customized way to evaluate the powering and signaling
within the FO interposer featuring stacked membrane layers
and proximate LSCs.

Fig. 9. On-chip power supply and signal waveforms during LVDS data
transmission [27].

III. EXPERIMENTS

A. On-Chip Captured Waveforms

The waveforms in-place captured on the power supply
(VDD), differential signaling (VSIG+, VSIG−), and ground
(VSS) nodes are exemplified in Fig. 9. The all 12 LVDS
channels are synchronously transmitting 16-bit (2-byte) data
of “1010110011001100” with the LVDS CLK frequency
at 400 MHz. One of the LVDS channels adjacent to the on-chip
waveform acquisition macro is measured. The powering nodes
exhibit the periodic voltage variations of roughly 40 mV
and 10 mV for VDD and VSS, respectively, that are regularly
seen with the interval of 1.25 ns due to the power current
consumption of logic circuits at either rise or fall edge of
clocking. There is an additional large drop in every 16 clock
cycles, according to the access to SRAM cores for reading
2-byte data to send (in Tx side) or to compare (in Rx side).
The simultaneous occurrence of drops among VDD and VSS is
the natural consequence of power current flowing in the core
PDN. The differential signaling also exhibits clear transitions
associated with the bit sequence. The vertical axes are cali-
brated in advance with regard to the offset voltage and voltage
gain.

The power supply waveforms are compared in Fig. 10 on
the individual VDD nodes of the two chips in Tx and Rx
operation modes, respectively, within the MCM demonstrator
(#3). The LVDS channels operate at 750 MHz, which is the
highest operating frequency with no erroneous bit found in the
BIST outputs over the time of OCM waveform measurements.
The higher level of voltage peaks is seen in the Tx than
in the Rx mode, since the Tx circuits drive signal lines
between the chips over interposer laminates. The Rx circuits
receives the incoming signals regenerate digital data under the
presence of power noise. We focus on the Rx mode in the
following measurements.
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Fig. 10. Power noise waveforms in Tx and Rx operation.

Fig. 11. Power noise suppression by capacitors. (a) No capacitor, (b) with
MBCs, and (c) with MBCs and LSCs.

B. Power and Signal Integrity

The power supply voltage variations are compared among
the MCM demonstrators with different capacitor configura-
tions, as shown in Fig. 11. The MCM demonstrator (#1,
#2) in the exploratory version [see Fig. 5(a)] is tested in
the different combinations of with and without MBCs and
LSCs. The frequency–domain analysis results are also plotted,
which are in general dominated mainly by the 1st and 2nd
harmonic components of the clock frequency at 750 MHz.
While the demonstrator without any PDN capacitors gives the
largest voltage variations in the frequency below 750 MHz
[see Fig. 11(a)], the variations become slightly attenuated if
MBCs with the total capacitance of 1.2 μF are provided on
the PCB [see Fig. 11(b)]. The power supply voltage becomes
very much stabilized with LSCs [see Fig. 11(c)], which is
explained by the proximate position of LSCs to the source of
power current consumption among LVDS channels.

Fig. 12. Power noise waveforms and signal eye diagrams.

The effect of LSC is further examined in Fig. 12 for
powering and signaling among the MCM demonstrators (#5,
#6, and #7) in the main version [see Fig. 5(b)] using VRMs.
The waveforms in the Rx mode are captured on the internal
VDD pad as the output of VRM to be connected to LSC and
also the signal pads of VSIG+ and VSIG−. While the power
supply voltage variation is more attenuated with the larger size
of LSC capacitors, synchronously, the signaling eye diagram
becomes clearer. The size of eye openings as well as the time
width of jitters are summarized in the table.

The VRM makes the PDN of LVS channel isolated from
the other PDNs and also decoupled from the on-board part of
power delivery. The LSC becomes the necessary part for an
on-chip VRM to suppress power noise spikes in its isolated
power domain.

The voltage variations on the VDD pad as the output of VRM
are compared with those on the other VDD node located nearby
the BIST circuits, for the frequency–domain components of
Fig. 13. Both nodes have the relative distance of approximately
900 μm in the physical layout of LVDS channel (see Fig. 4).
The magnitude of frequency components becomes large in the
distant location from the output terminal of VRM, roughly
from +3 to +6 dB over the frequency range of 2.0 GHz.
We have also simulated the series impedance on the power
line from the land of LSC to the pad in the LVDS channel for
the same frequency range. There is a consistency between the
larger series impedance and the higher magnitude of frequency
components in the voltage variation. The proximate placement
of LSCs is suggested for the superior noise attenuation and the
better signal quality.

C. Design Exploration

The selection of capacitor physical types is explored with
the waveforms on the VDD pad as the output of VRM when
the LVDS channels operate at 100 MHz. The frequency
components are compared between the MCM demonstrators
(#3 and #4) in the main version with MLCC and SiCap of
equally 10 nF, as shown in Fig. 14 for the frequency range
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Fig. 13. Comparison of power noise components at VRM (top). Power line
impedance is also shown by simulation (bottom).

Fig. 14. Comparison of MLCC and SiCap for power noise suppression (top).
The clocking frequency is fixed at 100 MHz. Power line impedance is also
shown by simulation (bottom).

of 2.0 GHz. The power line impedance is also simulated
with equivalent circuits. It is clearly observed that the power
voltage variations follow the impedance trends of respective
capacitor types. The smaller electronic series inductance (ESL)
inherently to SiCap provides the continuous attenuation in a
broad frequency range, while the smallest impedance gives
the highest suppression by MLCC but only within the spot
frequency of its resonance.

The follow-up measurements are executed in Fig. 15 where
the LVDS channels operate at different frequencies
from 15 to 100 MHz. The largest frequency components,
which are often seen at the twice clocking frequency owing
to rise and fall transitions, are compared among MLCC
and SiCap types. The obvious trends again confirm the
influence of the wide frequency impedance, ESZ, parasitic to
capacitors.

The impact of the number of LVDS channels powered by
a single VRM is investigated in Fig. 16, where the in-place

Fig. 15. Comparison of MLCC and SiCap for power noise suppression at
different operating frequencies (top). The largest frequency components at
2× of clocking frequency are plotted. Power line impedance is also shown
by simulation (bottom).

Fig. 16. Comparison of power noise and power current for different number
of LVDS channels per VRM.

waveforms on the VDD pad as the output of VRM are evalu-
ated. The peak-to-peak voltage variation is averaged over clock
cycles and denoted as VDD_PP, during the data transmission
among 12 LVDS channels at 750 MHz with the largest bit
activities of “0101010101010101.” The VDD_PP is minimized if
every LVDS channel is powered by its dedicated VRM, where
a single LSC is also exclusively prepared. The smaller VDD_PP

is observed for the larger capacitance if we compare #6 and
#9. The VDD_PP enlarges with the number of LVDS channels
that share a single VRM and an associated LSC, where the
capacitance per an LVDS channel is chosen to be roughly
equal to the order of 1 nF among the demonstrators (#3, #8,
and #9). The VDD_PP becomes roughly 2.5 times larger in #3
than in #9. Here, the tradeoff needs to be taken into account
between the power integrity and power consumption. The total
power supply current among VRMs, IVRM, is also measured
in Fig. 16 (on the right axis) and compared among the
demonstrators. The quiescent IVRM simply increases with the
number of VRMs when LVDS channels are all in the stand-by
mode (no data transmission). In contrast, the IVRM becomes
almost constant accordingly to bit activities, independently of
the number of channels supplied by the single VRM (with
sufficient power current capacity).
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It is reasonable to share a single VRM by some LVDS
channels in low-power applications often provided with inter-
mittent operation modes. In contrast, a per-channel VRM
with dedicated LSCs is preferable to prioritize the power and
signal integrity in high-performance data storage and server
applications, where data transmission is active almost all the
time. We think that the demonstrator #3 represents the one best
point of design explorations with the power noise reduction,
power current consumption, the number of components, and
associated footprints [see Fig. 6(c)].

IV. CONCLUSION

Powering and signaling among digital cores were in-place
evaluated by using OCM circuits within MCM integration
in FOWLP assembly. The digital cores in a system-on-chip
integration were represented by the array of multichannel
LVDS transceivers with SRAM-based BIST functionality for
chip-to-chip data communication.

Power and signal waveforms were not observable from the
outside of IC chips in flip-chip assembly, which excluded the
quantitative measurements of the electronic performance of
PDN. This problem was solved by the construction of MCM
demonstrators in this article.

The superiority of power noise suppression is proven in
FOWLP thanks to the LSC proximately placed at the output
of VRM and the immediate bottom side of FO interposer,
providing the shortest length of physical power delivery traces.
This benefits clearly from the selection of lower equivalent
series impedance (ESZ) capacitors. These implications came
only from the given in-place evaluation with the support
of equivalent circuit simulation and were elaborated for the
careful capacitor selections and placements in the design of
FOWLP MCMs toward the higher level of PI and SI.

It is quantitatively shown that the leverage of LSCs in the
FO PDN well suppresses power voltage variations in the wide
frequency range of 2.0 GHz when LVDS channels operate
at 750 MHz. This also improves signaling with the wider
eye openings in LVDS. The SiCap of 10 nF sustains the
effectiveness over the full frequency range, and better than
MLCC overall, due to low ESR and ESL to the capacitor itself
and also to the membrane wirings on an FO interposer. The
attenuation was confirmed even for the high order harmonic
components up to 20th to the clock frequency at 100 MHz,
as well as that for the primary frequency components at various
clock frequencies up to 100 MHz. The equivalent circuit
simulation supports the results.

Further explorations beyond our experiments in this article
will be pursued for the co-design flow of PDN on FOWLP
MCM devices among the circuits on a chip, structures in the
FO interposer, and the selection and placement of discrete
electronic components. The equivalent circuit simulation needs
to be more capable of handling all the components and to be
desirably calibrated with physical test vehicles.
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