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Abstract— With a short product cycle as we see today, fast and
accurate modeling methods are becoming crucial for the devel-
opment of new generation of electronics devices. Furthermore,
increased complexity in circuitry and integration compounds
design iteration and the associated, high-dimensional sensitiv-
ity analysis and performance optimization studies. Therefore,
black-box surrogate models replacing the actual circuitry offer
an attractive alternative for more efficient design iteration,
optimization, and even direct Monte Carlo analysis. In this
article, surrogate models built using nonparametric Gaussian
process (GP) are presented. A robust framework based on
probabilistic programming is used for training GP models. Other
methods, such as partial least-square regression, support vector
regression, and polynomial chaos, are used to compare with
the performance of GP. Three design applications, a high-speed
channel, a millimeter-wave filter, and a low-noise amplifier are
used to demonstrate the robustness of the proposed GP-based
surrogate models.

Index Terms— Bayesian modeling, Gaussian process (GP),
microwave circuits, nonintrusive method, sensitivity analysis, sig-
nal integrity (SI), stochastic analysis, surrogate model, variability
analysis.

I. INTRODUCTION

EXPEDIENT design iteration and performance optimiza-
tion and design verification of state-of-the-art electronic

devices and systems are hindered by the ever-increasing func-
tionality integration. In the quest for computationally efficient
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methods capable of handling the high-dimensional design
space of such devices and systems, machine learning (ML)
methods are being explored recently for modeling and design
optimization applications. In the following paragraphs, we pro-
vide an overview of recent and ongoing research pursuits in
this that are most pertinent to the work reported in this article.

Using neural network for modeling, for frequency-domain
analysis on passive linear time-invariant (LTI) systems,
the works [1]–[5] use feedforward neural networks (FNNs)
to learn the mapping from geometry parameters to electrical
measure such as S-parameter. More recently, Torun et al. [6]
introduced special layers into their NN, namely, causality
enforcement layer (CEL) and passivity enforcement layer
(PEL) to enforce local causality and passivity for NN-based
models. For time-domain modeling, modeling methods using
nonlinear autoregressive network with exogenous input type
of recurrent neural network (NARX-RNN) were presented in
[7]–[12], while

Elman RNN (ERNN) to model electrostastic
discharge (ESD) circuits is used in [13]–[17], digital
high-speed link, and so on without an explicit feedback
connection in the model construction. Nguyen et al. [17]
had a thorough review about different NN-based approaches
for time-domain circuit simulation and detailed explanation
about different types of RNN models and their advantages
as well as disadvantages. Li et al. [18] combined RNN
models with system identification to improve the prediction
accuracy up to 99%. Other efforts have also been applied to
predict performance of high-speed systems via measurements
of the eye diagram. The work in [19] and [20], which use
FNN-based models to solve the forward problem, is worth
noting. A forward problem in this article refers to a problem
where a set of design parameters is given and the electrical
performance of a circuit is desired. For example, in a
high-speed link, the channel geometry and equalization
settings are inputs, while the eye openings (eye width and eye
height) are the output. A comparative study between different
ML methods, such as support vector regression (SVR) and
FNN, has been reported in [21]–[23] focusing on predicting
performance of a high-speed link system. The work reported
in [24] uses an SVR-based model to address the design process
as an inverse problem instead of an optimization problem.
In [25] and [26], SVR and active subspace [27] are combined
to perform reduced dimensionality regression. This results in
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a speedup of the fitting process and facilitates the solution
of the sensitivity analysis and design optimization problem.
Nguyen and Schutt-Aine [28] used the Gaussian process (GP)
building a surrogate model to study the behavior of a
bandpass filter under the variation of its design parameters.
Also, solving the forward problem, Larbi et al. [29], [30],
Trinchero and Canavero [31], and Trinchero et al. [32] used
partial least-square regression (PLS) and least-square support
vector machine (LS-SVM) to perform not only predictions
but sensitivity analysis on design problems with as many as
30 design parameters. In addition, realizing that LS-SVM has
a deterministic nature, Trinchero and Canavero [31] proposed
to combine LS-SVM and GP to create a fully statistical
model that, in addition to predictive modeling, provides a
confidence measure for its predictions.

In the uncertainty quantification (UQ) regime, in general,
we are interested in knowing how a variation in the input
would affect the output. Robust, adaptive, and computationally
cheap methods for efficient stochastic analyses are favorable
over naive Monte Carlo (MC) (brute-force) analysis due to
the prohibitive cost of MC, especially for high-dimensional
problems. There are various studies and reports on this
problem using polynomial chaos expansion (PCE) methods
[33], [34]. PCE methods can be categorized into intrusive
methods, which requires the reformulation of the problem at
hand to insert the randomness seeking for a PC representation
of the solution [35], [36], and nonintrusive methods, which
leave the deterministic model of interest untouched and use,
instead, a sampling strategy to sample the data and fit the
PCE [34], [37], [38]. Most surrogate modeling methods are
suitable for nonintrusive uncertainty propagation, and once
the input–output mapping is learned, propagating uncertainty
from input to output can be obtained simply by running MC
simulation on the surrogate model. Hence, the UQ problem can
also be reduced to obtaining a very accurate and fast surrogate
model.

Unlike the aforementioned methods, GP is stochastic in
nature. A GP is not just a possible mapping that explains
the seen data but a distribution of possible such mappings.
Full Bayesian treatment applied to GP parameters during
training is what makes it stand out from other surrogate
modeling methods. This article reviews and compares different
surrogate modeling methods, including GP, PLS, SVR, and
PC in Section II. Then, Section III presents three examples to
benchmark the performance of the models. As seen later, GP,
more specifically, multioutput GP (MOGP), overall performs
consistently well in both experiments; therefore, it offers an
attractive option for input–output black-box modeling and
for efficient uncertainty propagation and sensitivity analysis.
Section IV concludes the experiments and points out potential
extensions to further improve surrogate modeling techniques.

II. SURROGATE MODELING METHODS

In this section, different regression methods, which are
compared against each other, are briefly reviewed. GP is
presented in much more detailed as it is the main focus of this
article. Linear regression (LR) and polynomial regression (PR)

are also recalled as they are used as the baseline for the
indicator of the nonlinearity level in the examples that are
presented in Section II-A.

A. Gaussian Process Regression (GPR)

The understanding of GPR cannot be separated from that
of Bayesian regression. In the following, nonlinear regres-
sion will be revisited in the context of Bayesian learning.
Then, the connection between Bayesian regression and GP is
established.

1) Bayesian Parametric Regression: Consider the proba-
bilistic view of a regression problem: given a set of data D =
{(x(i), y(i)), i = 1, 2, . . . , N} of N pairs of d-dimensional
vector-valued input x(i) ∈ X = R

d and function-valued output
y(i) ∈ R such that

y = f (x) + � (1)

where � ∼ N (0, σ 2) is independent and identically distributed
(i.i.d.) [39] Gaussian noise, and we seek for the conditional
mean of the output, y∗, at test input x∗, namely E(y∗|x∗,D) =
f (x∗). The Bayesian LR assumes a parametric form of f as
∃θ ∈ R

d such that

f (x) = xT θ . (2)

Imposing a prior on θ : θ ∼ N (0, (1/d)�θ ), the parameter’s
(θ’s) posterior is given by Bayes’ rule

p(θ |D) = p(D|θ)p(θ)∫
θ

p(D|θ)p(θ)dθ

. (3)

For a test (unseen) input x∗, the predicted output y∗ can be
sampled from the posterior predictive distribution calculated
by marginalizing θ out

p( y∗|x∗,D) =
∫

θ

p( y∗|x∗, θ)p(θ |D)dθ . (4)

Usually, (3) is intractable due to the integral in the denomi-
nator. However, due to θ ’s prior and the noise being Gaussian,
the posterior predictive distribution, (4), is also Gaussian.
Hence, what is left is to find its mean and variance, which
is a straightforward process. A Bayesian nonlinear regressor
introduces a nonlinear transformation, often called the feature
map, to transform a d-dimensional vector-valued input x to a
d �-dimensional vector-valued feature z, ϕ : R

d �−→ R
d �

; (2)
now becomes

f (x) = ϕ(x)T θ . (5)

The posterior predictive distribution now involves the term
ϕ(x)T �θϕ(x�) instead of just simply xT �θ x� where x and x �
are 2 arbitrary inputs in either the training or the prediction
points. Since �θ 	 0, let

k
(
x, x �) = 1

d
ϕ(x)T �θϕ

(
x�) (6)

be the covariance function. It characterizes the similarity
and correlation between the features ϕ(x) and, as we shall
see in detail later, it gives rise to the conditional predictive
distribution.
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2) Nonparametric GP: A GP is a random process,
i.e., a collection of random variables whose any finite set
obeys a multivariate Gaussian distribution. This means that
a GP can be fully characterized by a mean function m(x) and
a covariance function k(x, x �). We say that f (x) ∼ GP(m, k)
iff for all M ∈ N

f = [
f
(
x(1)

)
f
(
x(2)

) · · · f
(
x(M)

) ] ∼ N (
f̄ , K

)
(7)

where

f̄ i = m
(
x(i)

)
(7a)

m(·) is, typically, without loss of generality, chosen to be 0
and

Ki j = Cov
(

f
(
x(i)

)
, f

(
x( j)

)) = k
(
x(i), x( j)

)
(7b)

which is also referred to as the Gram(ian) matrix.
Classical literature on this topic is [40]. GP is known as a

probability distribution over a family of functions. A sample
from a GP is a function or, more precisely, a finite set of (N)
evaluations of a function. The kernel function gives rise to
the covariance matrix of a multivariate Gaussian distribution,
which needs to be positive semidefinite (PSD). This puts a
constraint on the type of kernel functions that are valid to
describe a GP.

There are many popular kernel functions that can be used
to specify a GP prior: squared exponential, rational quadratic,
Matern, radial basis function (RBF), periodic, and so on [40].
Kernel functions can also be combined together to represent
a complex prior; the following kernel is the sum of q basic
kernels:

ka
(
x, x �) =

q∑
i=1

ki
(
x, x �). (8)

Since ki(x, x �)’s are PSD, their sum, ka(x, x �), is also PSD.
In addition, Duvenaud et al. [41] proposed additive kernels

that act differently on each dimension of the input x, which
enriches the class of functions that can be represented by GP
even more. Furthermore, such an approach can also capture
different degrees of interactions between the input dimensions.
The scope of this article will focus on basic kernels. Appli-
cations of GP involving additive kernels have been reported
in [42] and [43].

3) Relationship Between GP and Bayesian Regression:
Without loss of generality, we will use d as the dimension
of the feature space in this section. In parametric Bayesian
regression, (5) assumes that the model is a d-component basis
expansion and could be rewritten as

f (x) =
d∑

i=1

ϕi (x)θi (9)

and the kernel function is written as

k
(
x, x �) = σ 2

d

d∑
i=1

ϕi (x)ϕi
(
x�). (10)

If we take d → ∞, then (10) becomes a Riemann sum and

k
(
x, x �) =

∫ ∞

−∞
ϕc(x)ϕc

(
x�)dc. (11)

This is a remarkable result. First, it indicates that each
feature map in Bayesian regression is corresponding to a
kernel function in GP. For example, the squared exponential
kernel function

kSE
(
x, x �) = σ 2

SE exp

[
−

(
x − x �)2

2�2
SE

]
(12a)

was derived from the feature map

ϕi(x) = exp

[
− (x − ci)

2

2�2

]
(12b)

and the prior imposed on the model coefficients

θi ∼ N
(

0,
σ 2

d

)
(12c)

with σ 2
SE = (π)1/2�σ 2 and �SE = (2)1/2�

Second, instead of choosing a set of finite feature map basis
ϕi(x), an infinite order model (d → ∞) is formed. The model
can learn as much as available data. Its complexity increases
as the data provided increases and does not depend on the
complexity of the hypothesis, i.e., the number of parameters.
It is especially clear when the GP model making predictions
at unseen points, and the posterior predictive distribution
requires (4) to marginalize the model parameters θ out. Third,
a reproducing kernel Hilbert space (RKHS), k(x, x �), is all
needed to build a powerful nonparametric model from the
data. Topologically speaking, when using feature maps to
convert the original input space (x) into the feature space,
ϕ(x), we only need to be able to compute the dot product
of the feature maps, i.e., evaluating k(x, x �) for any pair
of input x, x �, the transformation itself, ϕ(·), is not needed
[39], [44]. Any valid GP kernel function must have a corre-
sponding feature map in Bayesian regression point of view.
Thus, in doing regression by GP, instead of putting a prior
on the expansion coefficients of a specific basis function,
we put a GP prior on the mapping we are interested in
and compute the posterior distribution as the data becomes
available. A thorough treatment of Hilbert space and RKHS
with more details can be found in [44].

It can be seen that for large d and small N , performing
regression by GP is preferred over using a feature map, while
the reverse is true if the problem at hand has small d but N
is large.

4) Inference in GP Models: GP regression is implemented
by the following steps: first, a kernel is chosen, and this is
equivalent to choosing a nonlinear feature map in classical
regression. In this article, Matern-3/2 kernel [45] is chosen as
the default kernel for all experiments. Kernel hyperparameters
are optimized by minimizing the negative log likelihood (NLL)
using the Adam optimizer [46], a stochastic gradient-based
optimization method. The NLL can be analytically derived as

NLL(θ) = N

2
log(2π) − 1

2
log |Kr r | − 1

2
yT K −1

r r y (13)

where |Kr r| is the determination of matrix Kr r . The subscript
r indicates that the Gram matrix Kr r is calculated from
(7b) using training data. The gradient of NLL can also be
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calculated analytically for the optimizer to iteratively optimize
the hyperparameters

∇θ j NLL(θ) = − yT K
−1 ∂ K

∂θi
K

−1
y − tr

(
K

−1 ∂ K
∂θi

)
(14)

where K = K rr +σ 2 I . Once the training completes, as testing
data, x∗, are fed into the model, prediction, y∗, can be made
by sampling from the posterior distribution

p( y∗|x∗,D) = N (μ∗, K∗) (15)

where

μ∗ = Kt r K
−1

y (15a)

K∗ = Kt t − Kt r K
−1

Kr t. (15b)

The subscript t stands for testing data. Kt r is the covari-
ance submatrix between test and train data, i.e., (Kt r)i j =
k(x(i)

t , x( j)
r ).

An m-component output GP, generally referred to as MOGP
in this article, can be constructed by different methods.
An extensive review of these methods can be found in [45].
As pointed out in [40] and [45], the complexity of the kernel
in GP will affect the training time, and therefore, in order to
remain computationally cheap while achieving robustness for
multioutput cases, the MOGP kernel in this article is created
by using a linear mixture of multiple single-output GPs. For
example, if the output has two features, i.e., m = 2, the model
can be constructed as[

f1

f2

]
=

[
a11 a12

a21 a22

][
u(1)

u(2)

]
= [

a1 a2
][ u(1)

u(2)

]
(16)

where u(1) and u(2) are output of two latent single-output GP,
a1 = [ a11 a12 ]T , and a2 = [ a21 a22 ]T . The covariance matrix
of the MOGP relates to that of the latent GPs, Ku, by

cov
(

f (x), f
(
x�)) =

(
m∑

i=1

ai aT
i

)
Ku. (17)

The coefficient ai j ’s are also considered hyperparameters,
included in θ . As pointed out in [45], when there is no
correlation between outputs (referred to as tasks in [45]),
the ai j , i �= j , coefficients are zero. An m-component MOGP
is equivalent to m independent GPs. This phenomenon is
known as autokrigeability.

B. PLS Regression

PLS regression relies on the idea of principal compo-
nent analysis (PCA). Principal component regression (PCR)
involves the PCA in which the input space is reduced to the
principal component space; then, an interpolation is carried out
between a few significant principal components and the output.
Assume a multi-input–multioutput system, i.e., y ∈ R

q . Let

X = V PT (18a)

Y = U QT (18b)

be the principal decomposition of X ∈ R
N×d and Y ∈ R

N×q ,
and V , P, U , and Q are of appropriate dimensions. PCR
perform regression on V and U . We can see that though V

best describes inputs and U best describes outputs as PCA
was applied to both input and output, it was applied separately.
PLS fixes this limitation, and it iteratively projects input and
output onto the most significant components, but the projection
happens in a leapfrog scheme so that there is cross-information
exchange between input and output while doing projections.
Process details can be found in [29] and [30]. After L
projections, we obtain an L-component decomposition of X
and Y , V , U ∈ R

N×L and P ∈ R
d×L , Q ∈ R

q×L . Now,
a regression model can be created using U and V

U = Vθ . (19)

Predictions can be obtained by

Y = U QT = Vθ QT = X Pθ QT . (20)

For single-output case, the process finding V and U
becomes a one-step calculation, while for multioutput case,
it is iterative. In this article, single-output and multioutput
PLS are used as two different approaches and will also
be benchmarked against each other. To find the optimal L,
a cross-validation scheme is used, multiple PLS models are
built as L varies, and the optimal L is chosen when the
corresponding model achieves the lowest fitting error.

C. Support Vector Regression

SVR [47], an important branch of SVM [48], aims to
solve the regression prediction problem by finding a regressor,
h(x) = wTϕ(x)+b, that approximates y, i.e., y ≈ h(x). SVR
predictive function can be expressed as

y ≈ h(x) =
∑

1≤i≤N

(
α�

i − αi
)
κ
(
x, x(i)

) + b (21)

where αi ≥ 0 and α�
i ≥ 0 are introduced as Lagrange

multipliers and we select the Gaussian kernel in this
problem [21], [26]

κ
(
x, x(i)

) = exp

(
−∥∥x − x(i)

∥∥2

2σ 2

)
(22)

where σ > 0 is the width of Gaussian kernel.
The SVR algorithm is implemented by MATLAB Statis-

tics and Machine Learning Toolbox, whose hyperparameters,
e.g., σ , are calculated by Bayesian optimization method in
order to minimize the cross-validation error and provide accu-
rate prediction results with robustness.

D. Polynomial Chaos

The PC method estimates an arbitrary random variable of
interest as a function of other random variables with a given
distribution as an orthonormal polynomial expansion. The
general form of multidimensional polynomials is estimated
as [49]

y ≈
P∑

i=0

ci�i (x) (23)
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where ci denotes the unknown polynomial coefficients to be
determined and �i(x) represents multidimensional orthonor-
mal polynomials, constructed using the product of the 1-D
orthonormal polynomials, via

�i =
∏

k∈Ki

φk (24)

where Ki is multi-index set for 1-D orthonormal polynomials

Ki = {ki1, . . . , kid},
∑

ki j ≤ M. (25)

The number of basis is given by P = ((M + d)!/(M!d!)),
where M is the polynomial order. Depending on the dis-
tribution of input variables x, the polynomial basis φ(·) is
chosen accordingly to make the bases orthogonal to each other.
Among them, Hermite polynomials [50] are used to represent
Gaussian random inputs but have also been proved to be effec-
tive for other distribution [49]. Therefore, PC models in this
article are implemented using Hermite polynomials, regardless
of the input distribution type. The expansion coefficients, ci ’s,
are linear w.r.t y, and hence, for a set of N samples, they can
be found by a simple least-square solution.

E. Polynomial Regression

PR is the simplest regression method but sometimes appears
to be very effective in modeling real-world data. PR assumes
that the mapping between the input x and the output y is
given by

y =
P−1∑
i=0

βi

d∏
j=1

x
k j

j (26)

where P is the number of terms, given by P =
((M + d)!/(M!d!)), m is the polynomial order, and x j is the
j th component of x ∈ R

d or the j th input variable. The
monomial power k j ≥ 0 must satisfy the condition

d∑
j=1

k j ≤ M. (27)

When M = 1, the regression model is linear, hence, referred
to as LR. For example, if M = 3 and d = 2, P = 6 and the
PR model reads

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1 + β5x2

2 (28)

and the LR model only has linear terms

y = β0 + β1x1 + β2x2. (29)

PR and LR are included in the study as the baseline to
indicate how much nonlinearity exists in the problem. For a
problem that LR performs well on, the input–output mapping
must be linear and vice versa.

III. EXAMPLES

In this section, different examples in high-speed and
microwave circuit designs will be used to investigate the per-
formance of various surrogate models. Training data are col-
lected by simulations using commercial solvers from Keysight

Fig. 1. Filter insertion loss variations.

(for circuit simulations) and Ansys (for electromagnetics sim-
ulations). Each experiment is designed to build a predictive
model starting with N = 10 randomly distributed training
samples. Once a model is generated, it is validated by calcu-
lating the coefficient of determination, or R2 score, between
the true values ŷ and the predicted values y, defined as

R2 = 1 −
∑N

i=1

∥∥y(i) − ŷ(i)
∥∥2

∑N
i=1

∥∥ŷ(i) − ȳ
∥∥2 (30)

where ȳ = (1/N)
∑N

i=1 ŷ(i). An R2 score of 1.0 means that the
predicted and the true values are in perfect agreement. If the
validation R2 score of a model reaches 0.99, the training for
that particular model may be stopped, and this article will
sometimes refer to this fact as the convergence of a model.
If the model has not reached convergence, i.e., R2 < 0.99, a
number of training samples is added and the model is retrained
using this new set of training data. It is worth noting that
in cases where the output is multidimensional, when using
single-output models such as PLS or SVR, we have to create
multiple-independent such models. Since MOPLS, MOGP,
and PC are multioutput models, only one model is needed.
In the following, training R2 scores for each output feature
are reported separately as they are different for single-output
models, but one should expect a single R2 score to report for
multioutput models.

As demonstrated in the following, the PLS method, though
fast, is inherently linear and, hence, unable to capture nonlinear
input–output mapping correctly. PC method, on the other hand,
appears to overhandle the nonlinearity and, hence, struggles to
achieve a fast convergence rate when the underlying mapping
is linear.

A. Milimeter-Wave Filter

The first example is a 12-GHz coupled-line bandpass fil-
ter [28]. There are 12 geometry-related design variables, such
as lengths, widths, and separations of the coupled lines, and
stack-up features such as dielectric height, permittivity, and
loss tangent. They are all varied by 15% (±7.5%) from their
nominal values. Fig. 1 shows the insertion loss of the filter
as design variables vary. To quantify the insertion loss of the
filter, the center frequency (y0), bandwidth (y1), and shape
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Fig. 2. Validation R2 score during training with different numbers of training samples (N ). The black dashed line represents R2 = 0.99. (a) Center frequency
as output. (b) Shape factor as output.

Fig. 3. Test performance predicting center frequency (y0), bandwidth (y1), and shape factor (y2) of an millimeter-wave bandpass filter; input variables are
independent Gaussian distributed.

factor (y2) are calculated. Surrogate models were created to
predict these three figures of merit (FOMs).

Fig. 2 shows the training process for each FOM. First, most
models converge quite fast, and only the PC model requires a
large number of samples to reach a validation R2 score of 0.99.
Second, single-output models have more difficulties in learning
the shape factor than the center frequency and the bandwidth
as shown in Fig. 2(b), and PLS and SVR models require
more training samples to converge than MOPLS or MOGP.
As mentioned before, MOPLS, MOGP, and PC are multioutput
models, and there is a single R2 score to determine the
convergence of them. Table I(a) shows the minimum training
sample required for each model to reach 0.99 validation
R2 score. Though LR models did not reach 0.99 validation
R2 score even when all others have (N = 400), the fact
that it was able to achieve a validation R2 score higher
than 0.96 for all three outputs indicates that even though
this is a high-dimensional problem, the mapping between
the design variables and the insertion loss FOMs is mostly
linear.

Fig. 3 shows the test R2 score for each output using different
models trained by different values of N . The test performance
of the models is consistent with their validation R2 score, and
most models achieve test R2 scores above 0.96.

B. High-Speed Link

We consider a chip-to-chip, high-speed serial link model,
which involves 16 geometry-related design parameters

Fig. 4. Validation R2 score during training when varying N . Black dashed
line represents R2 = 0.99.

associated with the stack-up and transmission lines
[25], [26]. The link performance is quantified by looking
at the eye opening at the receiver (RX), after equalization.
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Fig. 5. Performance of trained models predicting eye height (y0) and eye width (y1). (a) Test performance with independent Gaussian distributed input
variables. (b) Test performance with correlated Gaussian distributed input variables. (c) Predictive distribution by models trained with N = 50; input variables
are independent Gaussian distributed. (d) Predictive distribution by models trained with N = 50; input variables are correlated Gaussian distributed.

These 16 parameters constitute an input parameter space
of relatively high dimensionality such that a brute-force
parameter sweep is intractable. A surrogate model that

can quickly generate the eye openings from the geometric
inputs is, therefore, imperative as it can be used for design
optimization or uncertainty propagation.
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TABLE I

MINIMUM TRAINING SAMPLE FOR EACH MODEL TO REACH

0.99 VALIDATION R2 SCORE. EACH ROW IS FOR EACH OUTPUT.
N/A MEANS THE MODEL DID NOT REACH 0.99 VALIDATION

R2 SCORE WITHIN SWEPT VALUES OF N

Fig. 4 shows the training result for eye width (y0) and eye
height (y1). PLS (both single-output and multioutput) models
never reach the validation R2 score of 0.99. While GP-based
models quickly approach the threshold, followed by SVR
model, PC model has roughly the same convergence rate as
SVR.

As shown in Table I(b), when N was varied up to 900, only
GP models were able to consistently reach to 0.99 validation
R2 score for all outputs. Besides PLS-based models and LR,
other models though did not reach the target value 0.99, their
validation R2 scores are all well above 0.96 for N > 200.

The trained models are then used to perform uncertainty
propagation tests. A set of 1000 test samples are collected for
each test.

The inputs are sampled from two multivariate Gaussian dis-
tributions for two tests: one independent Gaussian distribution
and the other one assuming correlations between the inputs.
Fig. 5 shows the R2 score for the two tests. PC models when
trained with few samples appear to have generalization issue
as its test R2 score varies widely. Fig. 5(c) and (d) shows
the comparison of the predictive distribution of the outputs
with the true distribution when all models are trained with
N = 50 samples. The output distributions obtained from
GP-based models prediction follow the true distribution quite
well for both tests. As N increases, eventually that obtained
from SVR and PC models also matches the true distribution
well. Even with as many training points as N = 1000, PLS
models still could not reach acceptable prediction accuracy as
others.

Unlike the previous example, LR and PLS cannot learn the
data well while PR can. This suggests that the underlying
mapping is nonlinear, which explains why PLS is unable to
reach higher R2 score during training, thus failing to predict
the output when the input is sampled from a distribution
different from the one that generated the training data.

C. Low-Noise Amplifier

Finally, a two-stage low-noise amplifier (LNA) designed
for a carrier frequency of 8 GHz is studied. The design

Fig. 6. Validation R2 score during training the LNA model when varying N .
Black dashed line represents R2 = 0.99.

Fig. 7. Testing R2 score for the LNA model predicting the gain. Black
dashed line represents R2 = 0.99.

comprises two amplifier stages sandwiched by three matching
networks. For this variability analysis study, the width of
a microstrip quarter-wave transformer in the input matching
network, the spacing and linewidth of a spiral inductor, and
the length of a shorted stub from the middle matching network
and a series resistor from the second amplifying stage are
varied. Three quantities of interest at operating frequency,
which include total gain, output return loss, and output noise
figure, are modeled. The design was fine-tuned based on an
example found in Keysight ADS example directory [51].

The variability analysis was performed on the optimized
design, and hence, even 20% variation from their optimal
values of the design variables does not yield large variations
in output quantities. Therefore, similar to the filter example,
the input–output mapping is relatively simple for all models to
capture with a small number of samples, as shown in Fig. 6.
This is well expected because the number of samples needed
to generally sufficient cover the output space depends on the
variance of the outputs. However, GP models are among mod-
els that reach convergence with the fewest number of training
samples compared with other traditional methods. It is worth
noting that, inherently linear models, such as LR and PLS,
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TABLE II

SUMMARY OF REVIEWED SURROGATE MODELS

can only explain the linear part of the data and hence never
reach the convergence defined by the 0.99 threshold. Fig. 7
shows the test performance of the trained models on more
than 3000 unseen samples. It is noticeable that the PR model,
though converged during training, slightly underperforms as
its prediction accuracy was below 0.99, while all other ML
methods not only converged with a fewer number of samples
but also yield higher accuracy in predictions.

IV. CONCLUSION AND FUTURE WORK

GP-based modeling method has been reviewed in this
article. Due to the Bayesian treatment to the hyperparameters,
they can be learned from the data by maximizing the data
likelihood, which autotunes the hyperparameters to be most
suitable for the provided data. Other methods, such as PLS,
SVR, and PC, are also briefly discussed and benchmarked
against GP models. Table II summarizes the key advantages
and drawbacks of the methods studied in this article. Via three
examples, it was demonstrated that all of the reviewed methods
show good agreement with the true distribution of the test data
though some methods would require more training data than
others. PLS models are extremely fast and straightforward to
implement, but they may fail to capture the strongly nonlinear
mapping. MOGP though takes more time to train consistently
yields good results while using the fewest number of training
samples. Especially, GP models mainly suffer from numerical
inefficiency only when a large dataset involves, making it
suitable to model problems where only a small number of
training data are available due to the expensive cost to collect
data.

Training data are crucial to the convergence rate of surrogate
models. Especially for GP models, training samples if chosen
appropriately would quickly minimize the overall uncertainty
in the model prediction. Potential extension of this work
should investigate which sampling method provides the best
convergence for GP models.
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