
IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020 1043

Self-Evolution Cascade Deep Learning Model
for High-Speed Receiver Adaptation

Bowen Li , Brandon Jiao, Chih-Hsun Chou, Romi Mayder, and Paul Franzon, Fellow, IEEE

Abstract— The IBIS algorithmic modeling interface
(IBIS-AMI) has become the standard methodology to model
Serializer/Deserializer (SerDes) behavior for end-to-end high-
speed serial link simulations. Meanwhile, machine learning (ML)
techniques can mimic a black-box system behavior. This article
proposes the self-evolution cascade deep learning (SCDL) model
to show a parallel approach to effectively modeling adaptive
SerDes behavior. Specifically, the proposed self-guide learning
methodology uses its own failure experiences to optimize its
future solution search according to the prediction of the receiver
equalization adaptation trend. The proposed SCDL model
can provide the high-correlation adaptation results, while the
adaptation simulation time is much faster than conventional
IBIS-AMI models.

Index Terms— Adaptation, behavior, cascade, deep learning,
high correlation, IBIS algorithmic modeling interface (IBIS-
AMI), modeling, receiver, self-evolution cascade deep learning
(SCDL).

I. INTRODUCTION

W ITH the receiver adaptation algorithm, a robust serial
link can be built regardless of the transceiver set-

ting and channel characteristics. The adaptively adjusted gain
control, CTLE peaking, and DFE coefficients automate the
tasks that had previously been manual for the designer [1].
A Serializer/Deserializer (SerDes) is a pair of functional
blocks used in high-speed communications to compensate for
limited input/output. These blocks convert data between serial
data and parallel interfaces in each direction. Due to the intel-
lectual property (IP) of the SerDes vendors, customers do not
have transparent knowledge about the circuit design. On the
other hand, customers do need a fast and accurate simulator
to evaluate their channels. As a result, a simulation model
is usually provided from the vendors. While being effective
on the real system, complex adaptation process makes it
difficult to come up with a behavioral model for the simulation.

Manuscript received January 11, 2020; revised April 12, 2020; accepted
April 30, 2020. Date of publication May 4, 2020; date of current version
June 2, 2020. This work was supported in part by the National Science
Foundation under Grant CNS 16-24811 and in part by the members of
the Center for Advanced Electronics through Machine Learning (CAEML)
IUCRC. Recommended for publication by Associate Editor W. T. Beyene
upon evaluation of reviewers’ comments. (Corresponding author: Bowen Li.)

Bowen Li and Paul Franzon are with the Department of Electrical and Com-
puter Engineering, North Carolina State University, Raleigh, NC 27606 USA
(e-mail: bli11@ncsu.edu).

Brandon Jiao, Chih-Hsun Chou, and Romi Mayder are with Xilinx Inc.,
San Jose, CA 95124 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2020.2992186

Much effort has been made to develop the behavior model in
the industry. The IBIS algorithmic modeling interface
(IBIS-AMI) is currently the most commonly used approach
to emulate receiver adaptation process.

While having high correlation with the real circuit behavior,
the current challenge for the IBIS-AMI modeling is the
simulation speed. Normally, engineers need to wait half an
hour or even longer to see the results for the adaptation
simulation, because the adaptation process requires transient
state information. Moreover, designing an IBIS-AMI model
needs detailed information about the circuit design data over
process, voltage, and temperature (PVT) to improve the model
accuracy. Combining with the fact that silicon vendors provide
product and the associated IBIS-AMI model to the customer,
the IBIS-AMI model development efficiency is important.
Among all the behaviors, the receiver adaptation behavior is
the most difficult to model.

The biggest challenge for building receiver adaptation
behavioral models is that a new model is needed to be
designed for each product. In the conventional IBIS-AMI
model development, the knowledge to the underlying cir-
cuit is required to build an efficient model and the details
of the adaptation algorithm. As each product is different,
model details cannot be all included until the final design
is completed, which can lead to long design cycles. As a
result, a general modeling mechanism is desired to speedup
the model development cycle. To decouple the need of circuit
knowledge in the model design, all the data are the receiver
input waveform and the receiver adaptation output codes.
With this limited information, the problem fits itself as a
black-box problem: a system viewed in terms of its inputs
and outputs, without any knowledge of its internal workings.
In recent years, machine learning (ML) models are proved to
be very effective for the SerDes behavioral modeling [3]–[6].
However, the required training data grow as the complexity
of the underlying black-box system. Also, fine tuning or even
creating a specialized ML model is not necessarily easier than
building the IBIS-AMI model. For the receiver adaptation
behavior modeling Li etal., [14] proposed a method about
CTLE adaptation using a deep learning model. To the best of
our knowledge, there is no research focus on leveraging ML
models on receiver CTLE and DFE adaptation behavior.

To tackle these challenges, an ML modeling framework is
built to eliminate the time-consuming model tuning step in the
ML model. A novel yet intuitive mechanism is developed to
“self-evolve” through mixing low-level ML models and input

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4467-0674

1044 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

Fig. 1. DNN structure.

data features. To the best of our knowledge, this is the first
exploration of the feasibility and to have built the ML-based
adaptation behavior model. In summary, the proposed general
ML-based modeling framework has the following capabilities.

1) Find useful information from the model inputs and
mutual information during the training.

2) Find data dependency during the training.
3) Leverage its own experience to correct its learning

process.
As for the simulation speed, since the adaptation results

are not based on the bit-by-bit transient simulation, the pro-
posed model produces the result in the order of magnitude
of seconds. Thus, the ML-based technique can speedup the
adaptation process compared with the conventional IBIS-AMI
modeling approach.

II. DEEP LEARNING MODEL STRUCTURE INTRODUCTION

In this article, two deep learning models are used in the self-
evolution cascade deep learning (SCDL) model library. In this
section, a brief introduction to the two deep learning models
is presented.

A. Deep Neural Networks

Neural network model is to mimic the activity of the
human brain. It can learn a black-box system. Deep neural
network (DNN) is a commonly used model in deep learning.
Fig. 1 shows the DNN structure.

In each layer of the DNN, the number of neurons
can be obtained as {L} = (L in, L1, . . . , Lh, Lout), where
L in, Lh, and Lout are the number of neurons in the input layer,
the hth hidden layer, and the output layer, respectively. The
input of the hth hidden layer can be calculated by

{zh} = {xh−1}W h (1)

where W h is a matrix which contains the weights between the
output of the (h−1)th layer and the input of the hth layer. The
output vector {xh} of the hth hidden layer is represented as
follows:

{xh} = fa({zh} + {bh}) (2)

where fa is the activation function and bh is the matrix which
contains the bias at the hth layer. In this article, rectified linear
unit (ReLU) [11] is used as the activation function, which is
obtained as follows:

fa(z) = max(0, z). (3)

Fig. 2. LSTM cell structure.

The output from the output layer is the prediction
targets, {ŷ}. The stochastic gradient descent (SGD)
method [12] is used to minimize the cost function.

In this article, the Bayesian optimization (BayesOpt) method
is applied to select the best number of hidden layers and
neurons of DNNs. The mean square error between outputs
and expected outputs is used as the cost function.

B. Long Short-Term Memory

Recurrent neural network (RNN) is designed for time-series
regression problem. In a vanilla RNN, the input and the hidden
states are simply passed through a single tanh layer [7]. The
RNN aims to map the input sequence x into output y. Each
output in the sequence is calculated by the state of the previous
RNN cell and current input.

Traditional RNN structure faces a challenge. To deal
with the vanishing gradient or exploding gradient problems,
the long short-term memory (LSTM) model is proposed [8].
The LSTM cell structure is shown in Fig. 2. The LSTM can
create paths where the gradient can flow for a long duration.

The core function of the LSTM is the cell state, which is
the horizontal line, from Ct−1 to Ct , on the top of Fig. 2.
The cell state will go through the entire chain, with some
linear interactions. The LSTM has the capability to remove
or add previous or new information to the cell state using
gates. Gates are a way to optionally let information through.
They are composed of a sigmoid neural network layer and a
pointwise multiplication operation. An LSTM cell has three
gates, namely input, output, and forget, to protect and control
the cell state. The input gate will add new information selected
from the current input and previous sharing parameter vector
into the current cell. The forget gate is to discard useless
information from the current memory cell. Also, the output
gate decides new sharing parameter vector from the current
memory cell.

At first, the LSTM would discard useless information from
the cell state. This decision is made by a sigmoid layer named
the forget gate layer. It looks at ht−1 and xt , and outputs a
number between zero and one for each number in the cell
state Ct−1. If the output is one, it means that the LSTM would
completely keep the cell state, while zero represents that the
LSTM would completely forget this. The forget gate can be

LI et al.: SCDL MODEL FOR HIGH-SPEED RECEIVER ADAPTATION 1045

calculated as follows:
ft = σ(W f · [ht−1, xt] + b f) (4)

where ft is the output of the forget gate; W f and b f are the
weights and biases of the neural networks, respectively; ht−1

is the previous hidden vector; and xt is the current input.
The next step is to decide what new information is needed

to store in the cell state. This step is twofold. First, a sigmoid
layer named the input gate layer decides which values will be
updated. Next, a tanh layer creates a vector of new candidate
values, C̃t , which could be added to the state. Second, these
two will be combined to create an update to the state. The
input gate can be represented by

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

where it is the output of the input gate layer; Wi and bi are
the weights and biases of the input gate layer, respectively;
and C̃t are the vectors which modify the cell state.

Then, the old cell state, Ct−1, will be updated, as shown in
the following:

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

where Ct is the new cell state and ft and it are the outputs
of the forget gate and input gate, respectively. These two gate
outputs will decide how much information will be through
away and updated, which can be obtained as follows:

ft = σ(W f · [Ct−1, ht−1, xt] + b f)

it = σ(Wi · [Ct−1, ht−1, xt] + bi)

ot = σ(Wo · [Ct , ht−1, xt] + bo). (7)

Finally, the LSTM cell will decide what should be consid-
ered as the final output. A sigmoid layer will decide what parts
of the cell state are the output. Then, the cell state, Ct , will
go through a tanh layer and multiply it by the output of the
sigmoid gate. The output of the LSTM can be obtained by

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct) (8)

where ot is the output of the output gate; ht is the final output
of the LSTM; and Wo and bo are the weights and biases of
the output gate layer, respectively.

With these three gates, the LSTM model will remember
all the useful information from the receiver input and void
gradient vanishing or exploding problems.

III. PROPOSED MODELING ARCHITECTURE

In this article, a modeling mechanism, named self-evolution
cascade deep learning (SCDL), is proposed to deal with
general black-box problems in SerDes link. The proposed
modeling architecture is shown in Fig. 3. There are three
main blocks: modeling, scoreboard, and mutual information
library (MIL). Next, these blocks and their interaction would
be discussed in detail.

In the modeling block, the input to the framework is the
receiver input waveform (raw data) and will be sent to the

Fig. 3. SCDL architecture.

modeling block. The raw data are preprocessed for feature
selection (data preprocessing block), where important features
are extracted from the data pattern, such as the low-frequency
and high-frequency signal amplitudes and slices based on unit
interval (UI) information provided in the product specification.
The extracted features are then sent to the model library for
ML model training.

In the model library, there are multiple ML model types,
such as DNNs and LSTM. These models will be chosen by the
scoreboard to perform the ML training. Once the ML model
is trained and validated, the testing accuracy will be passed
to the scoreboard. In the proposed design, the modeling block
will do the separated target modeling, which means that it will
create one model for each target.

The scoreboard controls the prediction flow of the SCDL
system. It selects useful information from the preprocessed
data and mutual information during the training. Based on
the data, proper ML model types are chosen to do the
training. At the beginning of the flow, all ML models will be
used independently. During the training phase, the BayesOpt
method is used to optimize the ML model hyperparameters.
After the training and prediction process is done, the score-
board will gather the model architecture of all successfully
predicted targets, whose prediction accuracies are higher than
the predefined accuracy threshold. For the successful targets,
scoreboard will try to optimize the ML training process by
reducing the input feature sets and kick off the modeling
flow until the minimum feature sets that satisfy the prediction
accuracy threshold are found. The SCDL model will decide
whether to keep input information according to the model
performance. For instance, if the model accuracy drops more
than 5% when one input data is removed, it proves that the
removed input information is important, and the SCDL model
will keep it. On the other hand, if the model accuracy remains
the same or increases when one input data is removed, then
that input data should be ignored during the model training.
The final feature sets and model architecture will be stored
and treated as “experience learned.” Also, the targets will be
stored in the MIL.

On the other hand, for the targets that failed the
accuracy threshold, scoreboard will start the “evolution”
flow. Scoreboard will use the stored experiences (fea-
ture sets and ML model) plus the targets stored in the
MIL to train and predict the failing targets. The pur-
pose is to explore possible dependency between targets.

1046 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

Similarly, if the newly trained model satisfies the threshold,
it will then enter the optimization phase described previously.
However, if the threshold is still not met, all the features
and mutual information that exist for training and prediction
with each ML model independently would be used. The
reason behind this is that the target could have very different
behaviors than what successfully learned. Mutual information
would provide useful connections among those. If this still
failed, the same feature sets will be used with all ML models
working in combination. This provides the strongest modeling
capability it can have.

The SCDL model will stop its training in two scenarios.
The first is that it successfully finishes the training and
provides high-precision predictions regarding the preset accu-
racy requirements set by a human. The second scenario is
when it tries all the models and training iterations and finds
the performance cannot meet the preset accuracy threshold
under the current circumstances, it will stop and tell some
information of the bad prediction cases. Those bad prediction
cases may be some corner cases that should not be considered.
This information can help users to improve the data quality.

After the training and reducing the input data for each
model, the SCDL model could figure out what type of model
and data are used to predict each target. This backtracking
process can let human learn the model prediction flow and
the laws that the SCDL model finds itself, which can provide
guidance in future modeling mechanism design.

In this article, the SCDL model shows a parallel approach
to effectively modeling adaptive SerDes behavior. Specifically,
the proposed self-guided learning methodology uses its own
experiences to optimize its future solution search according to
the prediction of the receiver equalization adaptation codes.
The proposed model should provide fast and high-precision
predictions under various PCB channels with different trans-
mitter settings. Due to its self-training process, the design
process of the SCDL model is usually much faster than the
IBIS-AMI model.

The use of ML algorithms frequently involves careful
tuning of learning parameters and model hyperparameters.
Unfortunately, this ML model tuning requires lots of expert
experience or even brute force search. Therefore, a great
appeal for automatic approaches, called the BayesOpt, is pro-
posed [13], which can optimize the performance of the ML
model [9], [10]. In this article, the BayesOpt is used to
optimize the model configuration.

Generally, the goal of the BayesOpt is to find a global
maximum/minimum of an unknown objective function f :

θ∗ = argmax f (θ)
θ ∈ X

(9)

where X ⊆ R
DX is the design space or data space. DX

is the dimensionality of the parameter space. Furthermore,
it is assumed that the unknown objective function f can
be evaluated at any arbitrary query point θ in the data
space. This evaluation produces outputs y ∈ R such that
E[y| f (θ)] = f (θ). Hence, the function f can be observed
through unbiased noisy pointwise observations y. In this
setting, a sequential search algorithm is considered, which,

Fig. 4. Various data patterns.

Fig. 5. Data collection process.

at iteration n, selects a location θn+1 at which to query
function f and observe yn+1. After N queries, the algorithm
makes the final recommendation θN , which is the best estimate.

The BayesOpt proposes a prior belief over the possible
objective functions and improves this model according to data
observed via Bayesian posterior updating. Equipped with this
probabilistic model, the BayesOpt can sequentially induce
acquisition functions ϒ_n: X �−→R that use the uncertainty in
the posterior to guide the exploration. Intuitively, the acquisi-
tion function evaluates the candidate points for the next evalu-
ation of f ; therefore, θ_(n+1) is selected by maximizing ϒ_n,
where the index n indicates the implicit dependence on the
currently available data.

IV. MODELING PROCESS

For the receiver adaptation system, the inputs are the
receiver input waveform, while the outputs are the receiver
adaptation codes. Multiple input data patterns are prepared,
namely pseudorandom binary sequence (PRBS), a single-bit
response (SBR), and long pulse response (LPR), as shown
in Fig. 4. PRBS data can provide intersymbol interference (ISI)
and channel loss information. In this article, multiple PRBS
patterns are used, for example, PRBS7 and PRBS31. SBR
data can show channel loss information. The LPR would
provide dc gain information. The aim of providing all kinds
of data pattern is to prepare all the information for the SCDL
model to predict the receiver adaptation system. For each
data case measurement, the receiver input waveform and the
adaptation codes are collected as the SCDL model inputs
and outputs, as shown in Fig. 5. The receiver used in this
article has 18 adaptation codes. However, since all the data
are measured in a set of conditions, for example, PVT and the
TX and RX reflection coefficients fall in a particular range
after the adaptation process converges. In this article, only
seven adaptation codes are considered.

In this article, 700 cases are measured from the trans-
ceiver. Those cases are collected over 15 industry channels.
By tuning the TX deemphasis settings, several cases over
one channel are generated. Among all the TX settings, low,
medium, and high swing cases are selected because they can

LI et al.: SCDL MODEL FOR HIGH-SPEED RECEIVER ADAPTATION 1047

TABLE I

TRAINING AND TESTING DATA CONFIGURATION

Fig. 6. Adaptation process for the receiver code.

cover underequalized, properly equalized, and overequalized
cases. The data are measured under different channel cases
and various TX deemphasis settings. Those case scenarios are
summarized in Table I.

The data are divided into three groups. Five hundred data
cases from 11 channels are set as the training dataset. Fifty
data cases from two channels are set as the validation data. The
training and validation channels are from customers, which
cover low to high channel loss. The rest 176 data from two
channels are set as testing data. Those two testing channel
cases are from IEEE standards and hidden from the model
training and validation process. The targets are collected from
the receiver adaptation codes after the adaptation process is
done.

As for the data generation, receiver codes are collected after
the adaptation process is done. To get a single value as the
model prediction target, the receiver code values are collected
at the last simulation bit, as shown in Fig. 6. However, even
after the adaptation process, the receiver equalization codes
are still dithering.

Since the model target should be a single value, not a range,
during the model training, the mean values after the adaptation
are used as the model target, which is the target code value
in Fig. 6. During the model prediction, a target range, which
can be calculated as [target – threshold, target + threshold],
is set for each receiver code. The threshold is set according to
the normal fluctuation range of each code after the adaptation.
Different code has a different threshold. If the predicted value
lies in the target range, it is a correct prediction. The prediction
accuracy can be calculated as follows:

Prediction accuracy = n

m
× 100% (10)

where n is the number of cases that the predicted value is
in the target range and m is the number of all the testing

Fig. 7. SCDL flow chart.

cases. At the model testing process, the prediction accuracy is
calculated, which can describe the model performance.

Fig. 7 gives the detailed flow chart of the SCDL framework.
In this section, the workflow of the SCDL framework would
be presented. At first, all the raw inputs are sent to the
data preprocessing block for feature extraction, where the
important features are measured from the data pattern, such
as the low-frequency and high-frequency signal amplitudes
and slices of receiver waveform. The extracted feature will
be sent to the scoreboard as the base data set. As a design
choice out SCDL will start from using the DNN model type.
This choice provides shorter learning time overall during the
experiment. The scoreboard will send the data set that fit
DNN to different models to predict each receiver adaptation
code target. After the training process, the scoreboard will
examine each prediction result and score the results that exceed
the accuracy threshold. The prediction results from the initial
feature data set with high scores are saved and do the modeling
again. In this article, seven adaptation codes, which labeled
targets 1–7, are considered. While each target code going
through independent training, the experiences and prediction
results are stored and shared.

The goal of SCDL is to select only useful information from
the initial feature data set. To do that, it will go through two
different phases: feature expansion and feature contraction.
When the prediction accuracy is below threshold, SCDL
will try to include more features if available in the feature
expansion phase. On the other hand, there are times that
redundant features would hurt the accuracy, thus the feature
contraction phase will try to cut down the input feature.

In the experiments, the SCDL model figures out that
using the PRBS data will not only significantly increase the
model training time and model complexity but also produce
low-prediction accuracies for all the codes no matter which
PRBS data pattern is used, in the range of 20%–30%. On the
other hand, using the SBR and LPR features, the score-
board can find reasonable model structure and the prediction
accuracies can be improved, which are from 40% to 60%.
In that case, the SCDL model saves the PRBS data for further
study and only uses SBR and LPR data as model inputs.
The reason why the prediction accuracies are low using the
PRBS data is because the PRBS data contain lots of redundant
information, such as data dependency, which would mislead
the ML model. Also, the ML model needs a long pattern for
PRBS data to cover all the data dependencies, which leads to

1048 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

a tremendously long training time. On the other hand, simple
data patterns, such as SBR and LPR, can provide the model
concise and useful information, for example, high-frequency
or low-frequency loss.

Next, the SCDL model uses the DNN model to predict all
the receiver adaptation codes with the measured features from
the SBR and LPR data, including high-frequency signal ampli-
tude, low-frequency signal amplitude, high to low transition
time, and amplitude at each UI information after the SBR
main cursor. During the DNN model training, the BayesOpt
is applied. After the training, the DNN model can provide
high-precision predictions for targets 1–5, while other targets
show low correlations with the real code values.

After target accuracy is met, the SCDL will go into the
feature contraction phase and try to reduce the ML model
complexity by reducing the model inputs one by one. If the
model accuracy drops more than 5% when one input feature
is removed, it proves that the removed input information
is important, and the SCDL model will keep it. On the
contrary, if the model accuracy remains the same or increases
when one input data is removed, that input data should be
ignored in the future model training. After the input reduction
process, the scoreboard finds that two measured features from
the SBR and LPR data will influence targets 1–3 prediction
performance the most. With these two features, the ML model
complexity significantly drops, the training time is shortened,
and the model performance is much improved. Hence, these
two features are selected as the DNN model inputs to predict
targets 1–3. At this point, all the predicted targets 1–3 will
be saved in the MIL for the future prediction. The successful
experience is saved for future modeling.

During the optimization process for targets 1–3, the SCDL
also record that targets 4 and 5 show better prediction accu-
racies. To further improve the prediction accuracy, SCDL will
add mutual information from the MIL, which has success-
fully predicted target values, as a new feature set to predict
targets 4 and 5. After training, the prediction accuracies for
targets 4 and 5 are much improved. Again, the scoreboard will
do feature contraction to reduce the modeling flow complexity.
After that, the scoreboard updates the successful experience.

For targets 6 and 7, the previous features cannot provide
high-precision accuracies, and the scoreboard switches to use
the LSTM model. Since the input LSTM model should be
time-series data, the SBR and LPR data are sent to the LSTM
model separately to predict targets 6 and 7. After training,
the LSTM model shows better performance using the SBR
data than the LPR data. Out of all targets, targets 6 and 7 show
better performance than others, with the accuracies above 70%.

The scoreboard focuses on performance improvement for
these two targets until the prediction accuracies meet the preset
accuracy requirements. At first, targets 6 and 7 are predicted
using two individual LSTM models. The sliced SBR data are
the LSTM model inputs. For example, the first, second, and
third UI data after the SBR main cursor are sent to one LSTM
model sequentially to predict one target. After modeling,
the scoreboard selects sliced SBR data, which shows the best
prediction accuracy, to predict the current target. To further
improve the prediction accuracy, the scoreboard uses mutual

information from the MIL, which are predicted targets 1–5.
However, these features cannot be applied to the LSTM model.
As a result, a DNN model is added in cascade with the LSTM
model to boost the prediction accuracy of each target. One
LSTM model is used to predict the initial target 6 using the
sliced SBR data. After that, the initially predicted target 6 will
be sent to an individual DNN model, along with previously
predicted targets 1–5, to predict the final target 6. In this
way, the prediction accuracy of target 6 is much improved,
which are around 88%. Next, the SCDL model would go
to the feature contraction process, which reduces the inputs
of the DNN model. After the input reduction, the prediction
accuracy of target 6 is above 90%. Then target 6 is saved into
the MIL. The scoreboard saves this successful experience for
future modeling.

However, the prediction accuracy of target 7 is still below
preset threshold. At last, the SCDL model chooses to use
mutual information and a DNN model to predict target 7. After
DNN input reduction, the prediction accuracy of target 7 meets
the preset requirement.

After self-evolution learning process, all the predicted tar-
gets show high correlations with the real code values. In that
case, the SCDL modeling process is finished and provide
detailed information about its prediction process using the
backtracking method. Meanwhile, a counter is set to count
how many tries a target is been through. After going through
too many tries (exceeding a predetermined threshold), it will
stop and ask for more data or more ML models. All the
evolution steps are automatic. The SCDL model would choose
which evolution step it should go next based on the current
performance and mutual information. However, the current
SCDL model prediction capability has limitations. Once the
best accuracies are reached, human need to design more
decision steps to boost the SCDL model performance.

V. SELF-EVOLUTION ABILITY

The self-evolution ability can be proved by three scenarios.
1) It can use mutual information during the modeling

process and provide better predictions.
2) It can optimize the prediction flow when the accuracy

requirement is strict.
3) It can find data dependency during the model optimiza-

tion process.
In this section, these self-evolution abilities would be

demonstrated.

A. Use Mutual Information

When lower accuracy requirements are set for each target,
the first prediction flow chart is shown in Fig. 8. For the first
three targets, the scoreboard chooses to use two measured
features from the SBR and LPR data and three DNN models
separately for each target. The successfully predicted targets
are sent to the MIL for future prediction.

As for the rest of the targets, the scoreboard uses two DNN
models to predict targets 4 and 5. After the input reduction,
the inputs of each DNN model are two measured features from
the SBR and LPR data and mutual information from MIL.

LI et al.: SCDL MODEL FOR HIGH-SPEED RECEIVER ADAPTATION 1049

Fig. 8. First prediction flow that the SCDL model proposed when the preset
accuracy requirements are low.

Similarly, the successfully predicted targets are sent to the
MIL for future prediction.

For targets 6 and 7, the SCDL tries the DNN model at the
first time, but the model prediction accuracies are below preset
accuracies. The scoreboard then switches the model type,
which is the LSTM model. The inputs of the LSTM model
would be the sliced SBR data. After training, the prediction
accuracies meet the requirements. Hence, the SCDL model
successfully finishes the training and provides reasonable
predictions regarding the accuracy requirements set by users.

During the modeling process, the SCDL model can use
mutual information to learn failed-predicted targets, which is
the first self-teaching/self-evolution scenario.

B. Optimize the Prediction Flow

As mentioned previously, the SCDL model will stop its
training if it successfully meets the preset accuracy require-
ments. If the users increase the accuracy requirements, would
the SCDL model optimize the prediction flow to provide
better predictions? In the next experiment, higher accuracy
requirement for each target is set in the SCDL model. After its
self-training, the optimized prediction flow is shown in Fig. 9.
The prediction flows of targets 1–3 are the same as the first
prediction flow. As for targets 4 and 5, the SCDL model
chooses to use two DNN models. The inputs of these two
DNN models are the measured features along with previous
predicted targets 1–3 in MIL.

For target 6, the SCDL finds a new way to construct models.
The sliced SBR data are fed into one individual LSTM model
and cascade another DNN model to predict target 6. The inputs
of the DNN model are the LSTM model prediction results and
mutual information from the MIL. As for target 7 prediction,
the scoreboard uses only mutual information with a single
DNN model. The DNN input reduction can help model to
improve the performance and find data dependency among the
targets. After the self-evolution process of the SCDL model,
the prediction accuracies increase more than 20% on average
across targets.

TABLE II

DATA DEPENDENCY FOUND BY THE SCDL MODEL

C. Find Data Dependency

After the SCDL model finishes its modeling process,
the SCDL model will enter the feature contraction phase
and try to reduce the input information for each model to
speedup the overall training and data generation process.
During the feature contraction process, the scoreboard selects
important mutual information from the MIL, which are critical
to the model performance. If one previously predicted target
(mutual information) is removed from the model input and
the prediction accuracy significantly drops, it means that
feature is important to the current model prediction. Hence,
the scoreboard will keep that mutual information and try to
remove another feature from MIL. After the feature contrac-
tion process, the scoreboard can find data dependency among
inputs and all the targets. Table II shows the final prediction
flow and the data dependencies. Target means the model
predicted outputs. Model type means which model type is
used to predict the current target. Data dependency means
which data are selected to predict the current target. Those data
dependencies can provide users some useful information found
by the SCDL model. People can use the data dependency to
design modeling flow in the future.

D. Example of Target 6 Prediction Evolution Process

The prediction accuracy improvement process of target 6 is
shown in Fig. 10. The preset accuracy threshold is 95%. This
threshold is set according to SI engineer requirement.

At the beginning, the SCDL model uses the raw data
to predict all the targets. The first trial is to use a DNN
model to predict target 6. The inputs of the DNN model
are high-frequency signal amplitude, low-frequency signal
amplitude, and the sum of the sliced SBR amplitude after the
main cursor based on experience learned from previous targets.
After training, the prediction accuracy is low as shown in
Phase I of Fig. 10. Next, SCDL will enter the feature expansion
stage. Since the SCDL model does the parallel modeling,
targets 1–5 prediction accuracies meet the preset accuracy
thresholds and saved into the MIL. The mutual information
from the MIL and previous learned features will then be used

1050 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

Fig. 9. Prediction flow optimization by the SCDL model when the preset accuracy requirements are high.

Fig. 10. Target 6 prediction accuracy improvement process.

with the DNN model to predict target 6 again. After training,
the prediction accuracy is still below the preset accuracy
threshold, as shown in Phase II of Fig. 10. Similarly, SCDL
will do feature expansion again and include sliced SBR data.
As a result, the LSTM model will be used in conjunction with
the DNN model to predict target 6. The prediction accuracy is
much improved but still not good enough, which is illustrated
in Phase III of Fig. 10. Finally, after trying with all possible
inputs and still miss the accuracy threshold, the SCDL will
enter the feature contraction phase and try to eliminate feature
that hurts the performance. The input features are removed
one by one until the accuracy meets the preset requirements,
illustrated in Phase IV of Fig. 10. The SCDL model will save
the successfully predicted target 6 into the MIL.

VI. SELF-EVOLUTION PREDICTION

RESULTS AND EXPLANATIONS

A. Types of Graphics

The data are collected from the Xilinx UltraScale+ GTY
transceiver [1], [2]. In this section, the self-evolution predic-
tion results of the SCDL model are presented. One hundred
seventy-six testing data are collected under two different
channels and various TX deemphasis settings. After the SCDL

Fig. 11. Prediction results of targets 1 and 4 using the SCDL model.

model self-evolution, some of the prediction results for the
target adaptation codes are illustrated in Fig. 11. Other pre-
diction results are shown in the Appendix. The X-axis is the
case index number, while the Y -axis is the code value. Because
each code is varying during the adaptation process, a red box
is used for each case, which can represent a target range for
each case. The black star sign is the model prediction value.
Most of the predicted code values lie in the target ranges. The
prediction results of the SCDL framework fall nicely into the
target range, showing high correlations with the real codes.

Table III shows the accuracy data for all seven targets.
In this table, two numbers are given: first attempt accuracy and
evolved accuracy. The first attempt accuracy is the accuracy at
the first run of using SCDL, where no knowledge is learned.
On the other hand, the evolved accuracy is the final output
from SCDL. In the first attempt with all features extracted from
raw data, only the first three targets can be predicted. After
self-evolution of the SCDL model, the prediction accuracies
are much improved by the self-teaching process. The accura-
cies of all codes exceeded the preset accuracy threshold (90%)
and achieved 98.9% accuracy on average across all targets.

LI et al.: SCDL MODEL FOR HIGH-SPEED RECEIVER ADAPTATION 1051

TABLE III

MODEL PERFORMANCE IMPROVEMENT BY THE
SELF-EVOLUTION OF THE SCDL MODEL

Fig. 12. Three-stage CTLE in the UltraScale+ Transceiver.

B. Prediction Explanation Using the Circuit Structure

From the previous experiments, the SCDL framework can
effectively predict the receiver adaptation codes. However,
this is not the full potential of SCDL. The capability of
SCDL would be presented to learn the circuit structure through
self-evolution. In this article, Xilinx UltraScale+ GTY trans-
ceiver [1], [2] is used as the experiment platform.

In the transceiver, an equalization technique is used to
attenuate the low-frequency component of the signal while
boosting the high-frequency component. CTLE at the receiver
end is one of the most popular linear equalization techniques,
illustrated in Fig. 12 [1]. CTLE is used to attenuate the low-
frequency component of the signal while boosting the high-
frequency component. The CTLE has three stages, namely
high-frequency gain (KH), low-frequency gain (KL), and
automatic gain control (AGC). The KL and KH are to boost
low-frequency and high-frequency contents, respectively, after
the channel. The AGC is to boost both low-frequency and
high-frequency contents.

DFE is a proven technique to mitigate ISI without amplify-
ing noise. It works by directly removing the ISI from previous
bits, allowing the current bit to be correctly sampled. The DFE
starts with a “decision slicer” to determine whether the current
symbol is high or low. The resulting symbol goes through
unit delays and multiplies with the tap weights. The weighted
delayed signals are added together and then subtracted from
the input analog signals, as shown in Fig. 13 [1]. If the tap
weights are well selected to cancel the ISI at each following
symbol, the result of this feedback loop is able to compensate
for as many taps of ISI as the DFE has. In the Xilinx
UltraScale+ transceiver, the DFE has 15 taps. The CTLE
codes and DFE taps are adaptive in the transceiver. Since the
channels used in this research have small reflections, the values
for DFE taps 5–10 lie in a particular range. Hence, only
three CTLE adaptation codes and the first four DFE taps are
considered as the model prediction targets.

With the background of the transceiver, the prediction target
to the adaptation code can be related. Table IV shows the

Fig. 13. DFE block in the UltraScale+ Transceiver.

TABLE IV

TARGET LABEL MAPPING FOR THE RECEIVER ADAPTATION CODE

corresponding receiver code of each target label. In this article,
three CTLE stages and the first four DFE taps are considered.

According to the prediction flow in Fig. 9, three CTLE adap-
tation codes have high correlations with the high-frequency
and low-frequency signal amplitudes measured from the SBR
and LPR data. This can be explained by the CTLE function.
As mentioned previously, the CTLE equalization technique is
used to attenuate the low-frequency component of the signal
while boosting the high-frequency component. The SBR and
LPR can provide high-frequency loss and low-frequency gain,
respectively. With that information, the DNN model would
predict the CTLE adaptation codes accurately.

From the DFE prediction flow in Fig. 9, the first three DFE
taps have high correlations with the sliced SBR data. The DFE
would remove the ISI from previous bits by subtracting the
sum of the weighted delayed signals from the input analog
signals. The first few DFE tap values are related to the
information after the main cursor of the SBR. In the circuit,
the DFE tap values are influenced by the previous DFE taps
because of the correlations among the DFE shift registers. This
can explain why the SCDL model chooses to use DFE taps 1–3
to predict the DFE tap 4. Moreover, from the self-evolution
process in Figs. 8 and 9, if the accuracy requirements become
strict, the SCDL model will also add CTLE adaptation codes to
predict the DFE tap 1. This phenomenon is reasonable because
there are interactions among the CTLE and DFE adaptation
process. To get better prediction results, the SCDL model
found the interactions among the CTLE adaptation codes and
the DFE tap values.

From this article, the SCDL model generates a cascaded
deep learning model structure to predict the complex receiver

1052 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 10, NO. 6, JUNE 2020

Fig. 14. Adaptation process using the SCDL model versus the IBIS-AMI
model.

adaptation progress. It can be proved that the proposed SCDL
model has the capability to find natural laws during its
self-teaching and self-evolution process. This can provide
a human useful guidance when exploring a new black-box
problem.

C. Adaptation Speed Improvement: SCDL Versus IBIS-AMI

Besides the high accuracy and the ability to catch the
underlying circuit architecture, SCDL can also generate
the RX equalization adaptation codes in terms of seconds.
Fig. 14 shows one example of an adaptation process using
the SCDL model versus the IBIS-AMI model simulation. For
the IBIS-AMI model, the simulation needs to run for millions
of bits until all the codes converge, and this process takes
significant amount of simulated bits. With the use of the SCDL
model, the bit-by-bit simulation can be bypassed and give the
accurate simulation output. With the SCDL model, the speed
of the adaptation process significantly improves from more
than 360 s (using the IBIS-AMI model) to less than 2 s (using
the SCDL model), which is 180 times improvement in the
speed.

The training process for the SCDL model is also fast.
In this article, the evolution training process would take about
24–36 h, which is much faster than the design process of the
IBIS-AMI model.

However, the limitation of the current SCDL model is
that it can only predict receiver adaptation codes, while the
IBIS-AMI model can provide a full transient simulation,
including transient waveform, eye diagram, and jitter. In the
future, more features would be added into the SCDL model.
Moreover, the current SCDL model prediction capability has
limitations. Once the max accuracy for each target is reached,
human need to design more decision steps or add more model
types in the SCDL modeling mechanism.

VII. CONCLUSION

High-speed SerDes equalization parameter autotuning, also
known as adaptation, is a complex process. A new modeling
mechanism, called SCDL model, is proposed and used in
the prediction of high-speed SerDes receiver equalization
adaptations. The process from Figs. 8 to 9 presents the evo-
lution steps for the SCDL framework. The SCDL framework
explores and evolves through each evolution run. During the

Fig. 15. Prediction results for the rest targets using the SCDL model.

training process, the SCDL model uses its own successful
experiences to self-teach its future solution search and provides
information such as the dependency/independency among var-
ious adaptation behaviors. Consequently, the SCDL model
shows a low demand for training data to promote its predic-
tion accuracy. After the training process, the SCDL model
successfully develops different solutions with various preset
accuracy tolerance with the same training data set. The SCDL
model can boost its performance by changing the prediction
flow during the self-evolution progress. To test the proposed
model robustness, two different designs are illustrated. The
SCDL model shows the high-precision prediction results for
both designs. For the adaptation speed, the SCDL model can
provide 180 times faster simulation than the state-of-the-art
IBIS-AMI modeling approach.

In summary, the proposed modeling method achieves the
following capabilities.

1) Can leverage its own experience to correct its learning
process.

2) Can find useful information from the model inputs and
mutual information during the training.

3) Can explore the underlying circuit architecture.

LI et al.: SCDL MODEL FOR HIGH-SPEED RECEIVER ADAPTATION 1053

4) Can generate output code two orders of magnitude faster
than conventional method.

Currently, only 15 channels are used in this article, which
could not cover all the conditions. The SCDL model can be
proved to have the ability to predict three CTLE codes and the
first four DFE taps in a high-speed receiver. The future work
will focus on the following.

1) Add more channel cases, for instance, high reflection,
and consider all the receiver codes, including all the DFE
taps.

2) Improve the model performance by performing sensitiv-
ity analysis and testing on other SerDes technologies.

APPENDIX

See Fig. 15.

ACKNOWLEDGMENT

This work was cooperated with Xilinx Inc.

REFERENCES

[1] B. Jiao, “Leveraging UltraScale architecture transceivers for high-speed
serial I/O connectivity,” UltraScale GTH/GTY Transceivers, Xilinx Inc.,
San Jose, CA, USA, White Paper, Oct. 2015.

[2] UltraScale Architecture GTY Transceivers, Xilinx Inc., San Jose, CA,
USA, Sep. 2017.

[3] T. Lu and K. Wu, “Machine learning methods in high-speed chan-
nel modeling,” DesignCon, Santa Clara, CA, USA, Tech. Rep.,
2019.

[4] R. Trinchero and F. G. Canavero, “Modeling of eye diagram height
in high-speed links via support vector machine,” in Proc. IEEE 22nd
Workshop Signal Power Integrity (SPI), May 2018, pp. 1–4.

[5] B. Li, P. Franzen, Y. Choi, and C. Cheng, “Receiver behavior modeling
based on system identification,” in Proc. IEEE 27th Conf. Elect. Perform.
Electron. Packag. Syst. (EPEPS), Oct. 2018, pp. 299–301.

[6] B. Li, B. Jiao, M. Huang, R. Mayder, and P. Franzon, “Improved
system identification modeling for high-speed receiver,” in Proc. IEEE
28th Conf. Elect. Perform. Electron. Packag. Syst. (EPEPS), Oct. 2019,
pp. 1–3.

[7] H. Shi, M. Xu, and R. Li, “Deep learning for household load
forecasting—A novel pooling deep RNN,” IEEE Trans. Smart Grid,
vol. 9, no. 5, pp. 5271–5280, Sep. 2018.

[8] F. Gers, “Long short-term memory in recurrent neural networks,” Ph.D.
dissertation, Verlag nicht ermittelbar, 2001.

[9] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[10] J. Močkus, “On Bayesian methods for seeking the extremum,” in
Proc. Optim. Techn. IFIP Tech. Conf. Berlin, Germany: Springer, 1975,
pp. 400–404.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.
(ICML), New York, NY, USA, 2010, pp. 807–814.

[12] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” 2016, arXiv:1609.04747. [Online]. Available: http://arxiv.org/
abs/1609.04747

[13] J. Močkus, Bayesian Approach to Global Optimization: Theory and
Applications. Norwell, MA, USA: Kluwer, 1989.

[14] B. Li, B. Jiao, C. Chou, R. Mayder, and P. Franzon, “CTLE adaptation
using deep learning in high-speed SerDes link,” in Proc. Electron.
Compon. Technol. Conf. (ECTC), May 2020.

Bowen Li received the bachelor’s degree from the
Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2014, and the Ph.D. degree
in computer engineering from North Carolina State
University, Raleigh, NC, USA, in 2020. His research
topic is “High-speed Receiver Behavioral Modeling
using Machine Learning.”

During his Ph.D., he interned in Hewlett Packard
Enterprise, San Jose, CA, USA, and Samsung
SARC, Austin, TX, USA. He has over 6 years of
experience with machine learning.

Brandon Jiao received the Ph.D. degree in elec-
tromagnetic field and microwave technology from
the Beijing University of Posts and Telecommunica-
tions, Beijing, China, in 2005.

He joined Xilinx Inc., San Jose, CA, USA,
in 2014, where he is currently a Senior Staff
Transceiver Engineer. Prior to joining Xilinx Inc.,
he worked for Intel and Nortel. His current research
interest is SI/PI methodology in transceiver and RF
applications.

Chih-Hsun Chou received the M.S. degree in com-
puter engineering from the University of Louisiana
at Lafayette, Lafayette, LA, USA, in 2011, and
the Ph.D. degree in electrical engineering from the
Department of Electrical and Computer Engineering,
University of California at Riverside, Riverside, CA,
USA, in 2017.

He is currently with Xilinx Inc., San Jose, CA,
USA. His current research interest includes system
level design and architecture with a specific focus
on PCIe acceleration platform for machine learning
and SmartNIC.

Romi Mayder received the Bachelor of Science
degree in electrical engineering and computer sci-
ence from the University of California at Berkeley,
Berkeley, CA, USA, in 1992.

He is currently the Senior Director of the Technical
Marketing Department, Xilinx Inc., San Jose, CA,
USA. Prior to joining Xilinx Inc., he worked as
a consultant specializing in silicon die level sig-
nal and power integrity. He also consulted in the
field of design and fabrication of advanced package
technologies, including stacked silicon interconnect.

He has been employed by two companies in the Test and Measurement indus-
try, Agilent Technologies, Santa Clara, CA, USA, and Anritsu (Wiltron) Com-
pany, Atsugi, Japan, where he specialized in microwave and millimeter-wave
microelectronic circuit design and fabrication. He has published 25 patent
applications in the fields of signal and power integrity as well as semicon-
ductor process technologies.

Paul Franzon (Fellow, IEEE) received the Ph.D.
degree from the University of Adelaide, Adelaide,
Australia, in 1988.

He has worked at AT&T Bell Laboratories, DSTO
Australia, Australia Telecom and three companies
he cofounded, Communica, LightSpin Technologies,
and Polymer Braille Inc. He is currently the Cir-
rus Logic Distinguished Professor of electrical and
computer engineering with North Carolina State
University, Raleigh, NC, USA. His current research
interests center on building microsystems (systems

constructed of silicon chips, both analog and digital, and silicon micoma-
chined components) for applications in computing, communications, sensors,
robotics, and signal processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

