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Abstract— A technological platform is established for scalable
flexible hybrid electronics based on a novel fan-out wafer-level
packaging (FOWLP) methodology. Small dielets are embedded in
flexible substrates we call FlexTrate. These dielets can be inter-
connected through high-density wirings formed in wafer-level
processing. We demonstrate homogeneous integration of 625
(25 by 25) 1-mm2 Si dielets and heterogeneous integration of
GaAs and Si dielets with various thicknesses in a biocompatible
polydimethylsiloxane (PDMS). In this paper, 8-µm-pitch die-to-
die interconnections are successfully implemented over a stress
buffer layer formed on the PDMS. In addition, coplanarity
between the PDMS and embedded dielets, die shift concerned
in typical die-first FOWLP, and the bendability of the resulting
FlexTrate are characterized.

Index Terms— Fan-out wafer-level packaging (FOWLP),
flexible hybrid electronics (FHE), flexible substrate, heteroge-
neous integration, high-density interconnect, polydimethylsilox-
ane (PDMS).

I. INTRODUCTION

IN THE past decades, flexible device works can be mainly
divided into three categories: the first one is the use

of organic semiconductors that are deposited on flexible
substrates in sheet-level processing or roll-to-roll process-
ing [1]–[3]. The second strategy utilizes thin-film transistor
fabrication on flexible substrates [4], [5]. The third approaches
rely on transfer technologies that can allow the integration
of an extremely thin monocrystalline inorganic semiconductor
layer on flexible substrates such as silicon-on-insulator and
III–V semiconductors on Si [6], [7]. Although the perfor-
mance of the organic semiconductors has relatively improved
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recently [8], [9], the performance of inorganic monocrystalline
semiconductors represented by Si and III–V compounds will
not be achieved by the organic semiconductors.

On the other hand, flexible hybrid electronics (FHE) com-
bine the flexibility of flexible substrates with the performance
of inorganic monocrystalline semiconductor devices to create
a new category of electronics [10], [11]. Traditional rigid/flex
packages enable us to integrate thick Si dies on flexible
substrates [12], [13]. However, these technologies are not
based on wafer-level packaging (WLP), and in addition, the
flexibility is limited by their rigid substrates. More recently,
in order to enhance the flexibility of the rigid monocrystalline
semiconductors, ultrathin dies are mounted on flexible sub-
strates [14], [15]. This is because such thinned dies can be
more flexible and follow curved profiles. However, ultrathin
dies are very sensitive to applied stresses [14] by which both
the performance degradation and property deviation would be
induced with small bending radii. Lee et al. [16] have reported
that the retention time of thinned dynamic random access
memory having planar capacitors is shortened when the die
thickness is less than 50 μm.

We have been working on holistic heterogeneous sys-
tem integration using silicon interconnect-fabric (Si-IF) that
can eliminate the organic laminates and achieve the drastic
reduction of interconnect length between hardened intellectual
property dies “dielets” integrated on Si wafers at small interdie
spaces [17], [18]. In our FHE approach, the rigid dielets
are embedded in flexible polymeric substrates we call Flex-
Trate that is fabricated at the wafer level using an advanced
die-first fan-out WLP (FOWLP) technology. Classical FOWLP
is expected to reduce package sizes, shorten interchip wirings
by eliminating laminates, and integrate dies in rigid epoxy
mold compounds (EMCs) [19], [20]. Several redistributed
wiring layers (RDL)-first approaches with and without wafer-
level processing have been reported for rigid [21] or flexible
[22], [23] device system integration. Compared to RDL-
first FOWLP with die/flip-chip bonding processes, die-first
FOWLP is cost effective [24]. If the die shift issues in
die-first FOWLP are mitigated, the production yield would
be further increased, leading to drastic cost reduction. The
biggest advantage of the die-first FOWLP is that wire bonding,
printable wiring, and solder bumping are not required for
connecting the neighboring dies and there are no additional
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Fig. 1. Schematic comparison of die integration for FHE. Ultra-thin/large
die bonded on flexible substrate (left). Small/thin/rigid dielets embedded in
flexible substrate “FlexTrate” (right).

packaging processes due to the embedded structure [25], [26].
In our embodiment of this approach, the high flexibility is
achieved by the unique structure of FlexTrate consisting of
the hard and soft segments analogous to how a bicycle chain
is flexible in spite of rigid chain components. As depicted
schematically in Fig. 1, the dielets themselves are not expected
to bend, whereas the polymer regions are bent in between
the dielets which act like the joints in the bicycle chain.
Heterogeneous dielets are embedded in a flexible substrate,
and then electrically connected with high-density interconnects
formed in wafer-level processing. Similar structures using rigid
device islands interconnected with horseshoe wirings have
been developed for stretchable electronics [13], [22], [23],
but the fabrication concept of these systems is consider-
ably different from FlexTrate based on scalable WLP using
embedded Si dielets that are assembled in a face-down con-
figuration. Landesberger et al. [27] have presented a quite
similar approach to our FOWLP-based FlexTrate although
they employ ultrathin Si dies having equalized die thicknesses
and the dies are bonded in a face-up configuration [27].
Due to our advanced die-first FOWLP, the FlexTrate allows
scalable integration of heterogeneous dielets with various
thicknesses and much tighter interconnect formation than the
conventional rigid/flex packages fabricated in sheet-level or
roll-to-roll processing. In addition, fine-pitch interconnects can
be formed at the wafer level. Nowadays, inkjet printing can
draw very fine wirings in parallel, but the wire thicknesses are
limited [28]. FlexTrate with inorganic monocrystalline semi-
conductor dielets can realize highly integrated flexible device
systems without using low-performance organic semiconduc-
tors, ultrathin devices/dies, and colloid-/paste-based wirings.

In this paper, we demonstrate fine-pitch (<10 μm)
interconnect formation on a biocompatible polydimethylsilox-
ane (PDMS) in which Si dielets are embedded by using the
advanced die-first FOWLP technology. In addition, coplanarity
between PDMS and dielets and die shift concerned in typical
die-first FOWLP are characterized to implement the new flex-
ible device system integration processes. High-density inter-
connect formation on the elastically deformable/stretchable
PDMS rubber without cracks is very challenging compared
with that on rigid EMCs. From a reliability point of view,
the bendability of the FlexTrate is also evaluated by cyclic
bending test.

Fig. 2. Process flow of FlexTrate fabrication.

II. EXPERIMENTS

A. Materials

A biocompatible PDMS “Silastic MDX4-4210 (Dow)” was
used in this paper. The biocompatible PDMS consisting
of a base resin and a curing agent was uniformly mixed
and defoamed with a planetary centrifugal mixer (THINKY,
ARE-310) prior to compression soft molding.

Rivalpha 3195M and 3195V (Nitto denko) were used as
the first and second temporary adhesives, respectively. The
mechanically peelable layer was typically laminated at room
temperature on the first Si handler. The other thermally remov-
able layer was attached on the PDMS and dielets.

B. Measurement

The surface profile was measured with noncontact white
light interferometer (cyberTECHNOLOGIES, CT100) and a
contact-type stylus (Veeco, DEKTAK 150). The water contact
angles were determined with the goniometer (VCA3000S,
AST Products, Inc., Billerica, MA, USA). Resistances
were measured with the probe station with probes (model:
7T-J3/20×1.25,” taper: 200–220,” radius: 2 μm, overall length:
1.25,” American Probe & Technologies, Merced, CA, USA)
and probers (Model 350, The Micromanipulator Co., Inc.,
Carson City, NV, USA) equipped with a count multimeter
(5491B, BK PRECISION, Yorba Linda, CA, USA) and a dc
power supply (E3644A, Agilent).

C. Fabrication

The 100-μm-thick 1-mm-sqaure Si dielets were fabricated
by plasma dicing in GINTI, Tohoku University, Sendai, Japan.
Fig. 2 shows the total process of FlexTrate fabrication.
A temporary adhesive 3195M was laminated on the first
Si handler. Then, the Si dielets were precisely aligned in
a face-down configuration on the adhesive formed on the
first handler using a K&S APAMA die to wafer assembly
tool. A biomedical grade PDMS was applied on the die-
on-wafer structure, followed by vacuum defoaming with a
vacuum level of <133 Pa from the high-viscous PDMS
sandwiched with the second Si handler for 30 min or more.
The second handler has another temporary adhesive 3195V.
The subsequent compression mold with the second handler
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is done with a wafer bonder (SUSS Micro Tec, SB6) with
a compression force of 600 N. The first handler was then
thermally debonded at 130 °C for 2 min, and subsequently,
the hundreds of the Si dielets were transferred to the second
handler. Prior to the following metallization processes, a thin
stress buffer layer (SBL) of Parylene-C and a photosensitive
planarization layer SU-8 2001 (Microchem) were sequentially
formed with a parylene coater (Specialty Coating Systems,
PDS 2010,) and simple spin coating on the PDMS/dielets,
respectively. By using standard photolithography processes
with a vacuum evaporation technique, fine-pitch Au wirings
(10-nm-thick Ti as an adhesion/barier layer and 200-nm-
thick Au) were deposited on the SU-8/Parylene-C/Si dielet
array and the surrounding PDMS at the wafer level. Au inter-
connects were formed by wet etching with chemicals of
an iodine complex/potassium iodine/wafer 1/4.2/294.8 (wt%)
mixture for Au and a buffered fluoric acid (hydrogen fluo-
ride/ammonium fluoride 1/6 wt%) for Ti. On the other hand,
Cu wirings were formed by PVD and wet etching with a
mixture of acetic acid/35% hydrogen peroxide/wafer 1/1/18 by
weight. Finally, the FlexTrate was thermally debonded at
180 °C for 1 min from the second handler. The flexible,
tough, and less stretchable properties of the Parylene-C can
prevent the wires from being elongated, following thermal
and mechanical deformation of the PDMS. However, since
the nonphotosensitive Parylene-C is conformably deposited on
the small steps formed at the interface between the PDMS and
embedded dielets, the additional photosensitive spin-on layer
SU-8 is required to planarize the step and electrically contact
to the dielets through the Parylene-C.

III. RESULTS AND DISCUSSION

A. Coplanarity Evaluation

High coplanarity between PDMS and embedded dielets
after wafer-level compression molding is needed to integrate
fine-pitch interconnects on FlexTrate. If the coplanarity is
low, defocusing when using steppers and large proximity gaps
when using mask aligners lower their lithographic resolution
for patterning. As shown in Fig. 3, 625 (25 by 25) pieces of
Si dielets are successfully transferred from the first handler to
the second one. The 3-D surface profiles are measured with
a surface metrology system (cyberTECHNOLOGIES, CT100)
equipped with confocal white light. These data are analyzed
and the average coplanarity between molded PDMS and trans-
ferred dielets in addition to the intradielets are summarized
in Fig. 4. The PDMS is cured at room temperature. From
the coplanarity of the intradielets, almost all dielets shows
the die tilt with the height gaps of within 1 μm. Concerning
coplanarity among the PDMS and embedded dielets, the high
frequencies are obtained from 1 to 4 μm and the maximum
height gap is below 6 μm. These height gaps including die tilt
are attributed to die placement and PDMS curing conditions:
the die placement force is 5 N/chip (=5 MPa).

Fig. 5 shows the effect of PDMS curing temperature and
adhesive thickness (10 or 50 μm) on these height gaps. Here,
die placement force of 2 N/chip is employed. The minimum
die tilt of the intradielets is obtained by room-temperature

Fig. 3. (a) Cross-sectional schematic and (b) 3-D surface profile of Si dielets
embedded in molded PDMS after transfer to the second handler.

Fig. 4. Coplanarity between (a) intradielets and (b) PDMS and dielets.

Fig. 5. Impact of PDMS curing temperature and adhesive thickness on height
gaps of intradielets and between PDMS/dielet.

PDMS curing and the 10-μm-thick temporary adhesive. How-
ever, the die tilt is not significantly affected by these condi-
tions. On the other hand, the impact of these conditions on
the height gap between the PDMS and Si dielets is high. The
height gaps can be reduced down to 1 μm when we employ
the 10-μm-thick temporary adhesives and room-temperature
PDMS curing. These results indicate that elevated curing
temperature of PDMS softens the adhesive layer, resulting
in dielet sinking down into the layer during compression
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TABLE I

PROPERTIES OF A BIOCOMPATIBLE PDMS FOR FLEXTRATE AND A
NONBIOCOMPATIBLE RIGID EPOXY USED IN TYPICAL FOWLP

molding. We assume the differences given by the adhesive
thickness would be resulted from their softening behavior at
elevated temperature between the two adhesives: one is a
thicker thermally removable layer and the other is a thinner
mechanically peelable layer. Several micrometers in the height
gap between the PDMS and dielets can be mitigated by the
subsequent planarization process with SU-8 to be formed on
a conformably deposited Parylene-C layer.

B. Die Shift Challenges

Die shift is a serious problem in current die-first FOWLP
using rigid EMCs. In [19], the average die shift is beyond
40 μm and maximum die shift is nearly 80 μm. This large die
shift would be given by thermal cure shrinkage, low adhesion
strength between temporary adhesives and dies, and CTE
mismatch between EMCs and dies. The EMCs including silica
fillers have relatively low CTE that is one-order magnitude
lower than typical epoxies. However, the die shift cannot be
restricted, and thus, the die shift issues are solved by die
preshift that makes deliberate misplacement of dies in their
pick-and-place process to account for drift [19]. The prediction
can compensate for the die shift, but that is not perfect. Nowa-
days, lithography tools are dedicated to FOWLP applications,
and for instance, steppers can accurately follow the large
die shift in a die-by-die alignment mode [29]. Although the
allowable values for die shift depend on lithographic tools,
large die shift definitely reduces WLP density and production
yield/throughput for patterning.

In this paper, a biocompatible PDMS elastomer is employed
as a flexible substrate. The thermomechanical characteristics
of the biocompatible PDMS “Silastic MDX4-4210 (Dow)” and
a rigid EMC including silica fillers used in a typical FOWLP
research [30] are summarized in Table I for comparison. The
elongation at break of the PDMS is quite high, compared with
the EMC. The PDMS has high CTE with respect to both Si
and Cu, 300 versus 3 and 17 ppm/K, respectively. The glass
transition temperature Tg of the PDMS is much lower than
room temperature. The huge difference from the rigid epoxy
is the 0.5 MPa of Young’s modulus that is four orders of
magnitude lower than the EMC.

The PDMS has large α1 showing a CTE at below Tg .
However, the Tg is much lower than room temperature, which
means thermal stress accumulated with Young’s modulus
and CTE (α1) mismatch in the temperature regions ranging

Fig. 6. Die shift evaluation: a flow of sample fabrication and Vernier patterns
formed on (a) dielets and adhesives and (b) photographs of the Vernier patterns
and (c) die shift values obtained before and after PDMS curing at 80 °C for
30 min.

from room temperature to Tg is experimentally zero [31].
According to the Stoney equation [32] simply calculated with
the following PDMS/EMC/Si parameters: Young’s modulus:
0.5 MPa/22 GPa/190 GPa, CTE: 300/7.5/2.6, PDMS/EMC
curing temperature: 80 °C/125 °C, and 0.272 for Si Poisson
ratio, the 300-mm-diameter Si wafer warpages of the PDMS
and EMC with a thickness of 500 μm are 1.8 μm and
2.4 mm, respectively. The biggest difference is due to the
low Young’s modulus of the PDMS. Although the Stoney’s
equation can well assume the film thickness to be less than
1/20 of the substrate thickness and is effective for smaller
substrate [33], [34], general elastomers represented by PDMS
will be estimated to apply extremely low stresses so as not to
drift embedded dies.

To accurately evaluate die shift between before and after
PDMS curing, Vernier scale patterns are formed on the tem-
porary adhesive. The process flow is shown in Fig. 6(a),
where a 50-nm-thin Cu layer is deposited on the thermally
releasable temporary adhesive (Rivalpha 3195M) laminated
on a 500-μm-thick glass wafer by PVD, followed by wet
etching to make the Vernier patterns. The dielets having
the corresponding Vernier patterns were fabricated in GINTI,
Tohoku University, by using Cu wet etch and plasma dicing
processes. The resolution of the Vernier patterns is 0.2 μm and
we can evaluate the die shift within 5 μm with the Verniers.
These dielets are gently placed upside-down on the temporary
adhesive with the flip-chip bonder (K&S, APAMA): placement
force is 5 N/mm2 at bottom stage temperature is 60 °C. The
adhesion strengths of the temporary adhesive before and after
Cu PVD and patterning are 0.75 and 0.60 MPa. The shear
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Fig. 7. Photomicrographs of 1-mm2 multidielets placed on the first Si handler
(die pitch: 1.8 mm): (a) bird-eye view. Photomicrographs of 1-mm2 multi-
dielets transferred to the second Si handler: (b) top view and (c) magnified
top view.

bonding strengths are measured with a multipurpose bond
tester (Dage Co., 4000Plus). We evaluate the die shift before
and after PDMS curing at 80 °C for 30 min by wafer-level
compression mold with the second Si handler.

The typical images before and after PDMS curing is shown
in Fig. 6(b). As compared with these images, the die shift is
hardly observed after PDMS curing. The initial die placement
errors are nearly 5 μm or more because the alignment marks
formed at the center of the die placement position on the
temporary adhesive is unclear due to the roughened surfaces
of black particles as a thermal bubbling component in the
thermally removable layer. Surprisingly, the die shift can
be compensated by using the PDMS even though the shear
bonding strength between the Rivalpha surface and dielets
is not high. The reason why the extremely low die shift is
obtained is probably due to the excellent thermomechanical
properties of the PDMS such as very low Young’s modulus,
low curing temperature, and low Tg much lower than room
temperature. Also, we cannot ignore the use of middle-sized
wafers with a diameter of 100 mm in this paper. The images
are captured in the position 30 mm away from the center of
the wafers with a high-resolution digital microscope (Keyence,
VHX-6000). The die shift works are still going to well know
the mechanism and further investigate the die shift in the
subsequent PDMS transfer and metallization processes.

C. Process Integration With High-Density Interconnect

As shown in Fig. 7, 6252 1 mm × 1 mm dielets were assem-
bled on the first Si handler, and were successfully transferred
to the second handler at 130 °C. Then, the metallization with
evaporated Ti/Au is performed on the PDMS and embedded
Si dielets covered with a 1-μm-thick oxide layer on the top.
However, adhesion between the metals and the PDMS is
quite low. Therefore, a surface modification step was inserted
into the process to enhance the adhesion between the metal
and PDMS. By using an UV/O3 treatment, the water contact
angle is dramatically decreased, and consequently, the PDMS
surface is rendered highly hydrophilic, as shown in Fig. 8.
These hydrophilic surfaces can increase the adhesion strength
between the metal and PDMS as seen from pictures insets
in Fig. 8. The Scotch tape adhesion test was based on ASTM D

Fig. 8. Water contact angle shift as a function of PDMS surface modification
time with UV/O3 (black) or O2 plasma (red) and images after Scotch tape
test for adhesion strength evaluation.

3359-87 method B. Another surface modification with oxygen
plasma (power: 65 W, O2 flow: 100 sccm, and etching time:
30 s) can further reduce process time.

In the metallization process, photoresists are used for the
metal patterning as a mask material for photolithography
processes. However, cracks were generated in the use of
a standard positive photoresists (Microchemicals, AZ5214E)
in the cooling step after spin coating and the subsequent
prebaking. Thus, we propose the use of an SBL between
the metals and PDMS. Parylene-C was employed as an SBL.
In addition, the surface of the PDMS after transferring it
on the second handler is not perfectly smooth because of
the small steps at the interface between the PDMS and Si
dielets. SU-8 is employed as a planarization layer by spin
coating. The spin-on photosensitive material also helps to open
contact holes down to dielets through their top passivation
in the future works. Generally, Parylene-C has low adhesion
to various polymeric materials and Si/glass substrates [35].
Although several surface modification techniques have been
reported [36], [37], the adhesion enhancement between the
PDMS and parylenes is still a big concern. To enhance the
Parylene-C/PDMS adhesion, we newly utilize vinyl triace-
toxy silane (AP3000, Dow) that is well known to be an
adhesion promotor for BCB (benzo cyclobutene resin) to Si
substrates [38]. After PDMS surface modification with oxygen
plasma, AP3000 was spin coated on the treated PDMS. The
vinyl functional groups would react with free radicals gener-
ated in CH2 = C< double bonds of di-para-xylylene resulted
from the pyrolysis of the Parylene monomers in the next step.
Then, the Parylene-C surface is treated with the oxygen plasma
in the same conditions again, SU-8 2001 was coated and cured,
followed by Ti/Au deposition with an EB evaporator (CHA,
solution). After deposition of the metals, the adhesion strength
is evaluated by the Scotch tape test. As seen in the image
inserted into the bottom left in Fig. 8, the adhesion at the
interfaces of Au/Ti, Ti/SU-8, SU-8/modified Parylene-C, and
Parylene-C/modified PDMS is very high.

Photoresists can be coated on the metal deposited on the
SBL without cracks and dewetting. In addition, the SBL
formation can allow the metal deposition without microcracks
reported in [39] by mitigating the CTE/elongation/modulus
mismatches between the PDMS and metals. As a result,
Ti/Au wirings with the SBL are electrically connected between
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Fig. 9. Optical images of intradielet/fine-pitch wirings formed on Si/PDMS
in wafer-level processing.

Fig. 10. Relationship between the resistances and wire lengths formed on a
PDMS before removal from the second handler.

Fig. 11. Resistances formed on FlexTrate: 200-nm-thick Au wires and
5-μm-thick Au wires before/after debonding.

the adjacent dielets. 8-μm-pitch Au wirings (line/space
3.4/4.6 μm) are successfully formed on the array of Si dielets
and the surrounding PDMS, as shown in Fig. 9. Fig. 10 shows
that excellent linear relationships are obtained by I–V mea-
surement of the fine Au wirings with the minimum wire width
of 3 μm.

In this paper, since wafer-level processing is employed,
metal layers can be readily thickened by using wafer-level
electroplating. Au electroplating was supported by Electroplat-
ing Engineers of Japan Ltd., Kanagawa, Japan. As shown in
Fig. 11, the 200-nm-thick Au wire resistances are significantly
decreased down to nearly 1/30 when thick Au wires with a

Fig. 12. Photographs of FlexTrate demonstrators. (a) Wearable and (b) rol-
lable 100-μm-thick/1-mm-sqaure 625 Si dielets embedded in PDMS, and a
cross-sectional image of PDMS embedding heterogeneous dielets composed
of (c) GaAs and Si with various thicknesses.

Fig. 13. Resistance comparison between before and after 1000-cycle bending
with curvature radius of 10 and 5 mm for 100-, 40-, 20-, and 10-μm-width
Cu wirings formed on Si dielets embedded in PDMS: Cu thicknesses are
(a) 600 nm and (b) 5 μm.

thickness of approximately 5 μm are used. The low resistances
are kept even after final PDMS removal from the second
handler, as shown in Fig. 11.

The FlexTrate embedding large numbers of the 1-mm-
sqaure Si dielets in the PDMS can be attached on the curved
profiles such as the human arm, Fig. 12(a), and a pen,
Fig. 12(b). Fig. 12(c) shows the cross section of a FlexTrate
embedding heterogeneous dielets composed of a 440-μm-thick
GaAs dielets and three 1-mm-sqaure Si dielets with various
thicknesses of 50 and 100 μm. As seen from Fig. 12(a)–(c),
rigid dielets can be bent in any chosen direction by the
flexible PDMS between the dielets. These FlexTrate with the
heterogeneous dielets embedded in the biocompatible PDMS
can be implanted into the human body including the brain.

D. Bendability

The bendability of the FlexTrate having embedded dielets
is evaluated with an endurance testing system: tension-free
U-shaped folding tester (DLDMLH-FS/Yuasa). Fig. 13 shows
the resistances of FlexTrate test vehicles having 600-nm- and
5-μm-thick Cu wirings formed on the PDMS embedding
1-mm2 Si dielets with a thickness of 100 μm. Cu wirings
are required for FHE desiring low-resistance applications such
as wearable sensors, whereas Au/Ti wirings are desirable for
implantable use due to their high biocompatibility. Four-point
probe patterns are used for the resistance evaluation. The
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Fig. 14. (a) SEM images and (b) enlarged photomicrographs of 600-nm-thick
Cu wirings formed on FlexTrate with dielets embedded in PDMS before and
after bending.

Cu interconnections are 15 mm long and 100, 40, 20, and
10 μm in width. The resistances are compared before and
after 1000 bending with a curvature radius of 10 mm and the
subsequent additional 1000 bending with the radius of 5 mm.
As a result, both the Cu interconnects between the neighboring
dielets embedded in the PDMS are still connected without
delamination. The resistance changes are within 2% on aver-
age after the sequential bending. In contrast, 200-nm-thick Cu
wirings hardly survive the thermal debonding process. From
these results, the wide ranges of Cu thicknesses are turned out
to be applicable for the FlexTrate.

Comparison of some of state-of-the-art FHE under stress
is summarized in [40]. The 20-μm-thick Si fabricated by
dicing before grinding and 15-μm-thick Si fabricated by
controlled spalling techniques exhibit the reliable curvature
radii of 20 mm [40] and 6.3 mm [41]. These studies show good
CMOS characteristics under the bending conditions; however,
repeated bending is not evaluated. Our new FHE “FlexTrate”
achieves high durability of 2000 cycle bending in total with
curvature radii of 10 and 5 mm as mentioned above.

Fig. 14(a) and (b) shows the SEM images and photomi-
crographs of the test vehicles before and after bending with
the radius of 10 mm. The left image is captured just after
debonding from the second handler at 180 °C. Several wrinkles
are observed between the dielets even before bending when the
600-nm-thick Cu wirings are employed. The cracks resulted
from the wrinkles are probably formed in the brittle SU-8 on
the SBL Parylene-C that is plastically deformed. However,
the two polymers SU-8/ Parylene-C formed on the PDMS
mitigate the stresses applied when thermal debonding and
mechanical repeated bending. On the other hand, compared
to 600-nm-thick Cu wirings, half of the 10- and 20-μm-
wide Cu wirings with the thickness of 5 μm are working
after additional bending of the curvature radius of 2.5 mm.
In addition, the 40- and 100-μm-wide Cu wirings exhibit
almost the same resistances as the initial values when the wire
is thickened. It should be stressed that FlexTrate fabrication
process has a wide margin for wire thickness.

From simulation results using ANSYS, it is found that larger
interdielet spaces and thicker dielets give smaller stresses to
the PDMS underneath metal wires without SBL. We are still

on going the stress mapping research of FlexTrate and working
on the stress simulation analyses of the embedded dielets and
wirings formed on SBL.

IV. CONCLUSION

We have integrated FlexTrate using the new technology plat-
form based on advanced die-first FOWLP for next-generation
FHE. The 3-μm-feature Au wirings are successfully formed
on the PDMS in which Si dielets are embedded and planarized.
High coplanarity, low die shift, and high repeated bendability
are achieved by FlexTrate. The fabrication process of Flex-
Trate with 10-μm-feature Cu interconnects exhibits a wide
margin for wire thickness in 1000 cycle repeated bending
with a curvature radius of 5 mm or less. This heterogeneous
integration using monocrystalline Si dielets embedded in flex-
ible substrates enables high-performance and scalable flexible
device systems with high-density interconnects to create highly
integrated wearable and implantable electronics.
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