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Delta-Doping for Enhanced III-V Tunnel
Junction Performance
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and Minjoo Lee , Senior Member, IEEE

Abstract—We show that delta-doping boosts the performance of
tunnel junctions (TJs) used as interconnects in III-V multijunc-
tion solar cells by orders of magnitude. The peak current of our
baseline TJ design consisting of p-GaAs/n-GaAs surrounded by
Ga0.51In0.49P clads is improved by a factor of ∼5 × 105. The
relative benefits of delta-doping are even stronger in TJs based on
wider-bandgap materials with reduced optical absorption. Impor-
tantly, we find that delta-doped TJs can survive the thermal loads
that would be encountered during growth of additional subcells.
Delta doping is a simple and versatile method to improve TJ
performance that can be implemented by virtually any epitaxial
growth method.

Index Terms—Delta doping, tunnel junctions (TJs).

I. INTRODUCTION

TUNNEL junctions (TJs) in III-V multijunction solar cells
(MJSCs) should be transparent or nearly transparent to

Manuscript received March 11, 2022; accepted March 24, 2022. Date of
publication June 1, 2022; date of current version June 21, 2022. This work
was supported by the ARPA-E FOCUS program under Award DE-AR0000508.
The work of Ryan D Hool and Brian Li was supported by National Aeronautics
and Space Administration Space Technology Research Fellowships under Grant
80NSSC18K1171 and Grant 80NSSC19K1174, respectively. (Corresponding
author: Minjoo Lee.)

Yukun Sun was with the Department of Electrical Engineering, Yale Uni-
versity, New Haven, CT 06520 USA. He is now with the Department of Elec-
trical and Computer Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 USA, and also with the Nick Holonyak, Jr. Micro and Nan-
otechnology Laboratory, Urbana, IL 61801 USA (e-mail: ys446@illinois.edu).

Shizhao Fan was with the Department of Electrical and Computer Engi-
neering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA,
and also with the Nick Holonyak, Jr. Micro and Nanotechnology Laboratory,
Urbana, IL 61801 USA. He is now with the Suzhou Institute of Nano-Tech and
Nano-Bionics, Suzhou 215123, China (e-mail: szfan2020@sinano.ac.cn).

Daehwan Jung was with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520 USA. He is now with the Center for Op-
toelectronic Materials and Devices and University of Science and Technology,
Korea Institute of Science and Technology, Seoul 02792, South Korea (e-mail:
daehwan.jung@kist.re.kr).

Ryan D Hool is with the Department of Materials Science and Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA, and also
with the Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, Urbana, IL
61801 USA (e-mail: rhool2@illinois.edu).

Brian Li and Minjoo Lee are with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
USA, and also with the Nick Holonyak, Jr. Micro and Nanotechnology Labora-
tory, Urbana, IL 61801 USA (e-mail: bdli2@illinois.edu; mllee@illinois.edu).

Michelle Vaisman was with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520 USA. She is now with the Bain and Company,
Boston, MA 02116 USA (e-mail: vaisman.m.a@gmail.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JPHOTOV.2022.3176217.

Digital Object Identifier 10.1109/JPHOTOV.2022.3176217

light intended for lower subcells in order to prevent parasitic
absorption, favoring the use of materials with wide bandgap
energies (Eg). However, both the tunneling probability [1], [2]
and the ability to achieve degenerate doping of both types [3]
improve as Eg narrows. Considering the heavy doping levels
involved, a further challenge for TJs is thermal degradation
during growth of additional sub-cells. Both metalorganic va-
por phase epitaxy (MOVPE) and hydride vapor phase epitaxy
(HVPE) are carried out at growth temperatures T ∼ 600 °C for
several minutes to several hours. Out-diffusion of dopants from
heavily doped TJ layers can be significant, resulting in greatly
decreased tunneling [4]. Additionally, postgrowth rapid thermal
annealing (RTA) at T = 650–800 °C has been shown to improve
the performance of both dilute nitride [5] and phosphide [6],
[7] materials grown by molecular beam epitaxy (MBE), placing
further demands on TJs.

The main performance figures of merit for TJs used in MJSCs
are specific resistance (Rspec) near the origin, which should
be minimized, and peak current density (Jpeak), which must
exceed the current density at maximum power (Jmp); for one-sun
operation, Jmp for an MJSC may be ∼10 mA/cm2, whereas for
high-concentration photovoltaics Jmp can be on the order of
∼1–30 A/cm2. Even with high radiative and quantum efficiency
in the individual sub-cells, a single low-performance TJ can
greatly hamper the efficiency of an MJSC [8], [9].

The challenges and contradictory requirements for TJs used
in MJSCs have prompted researchers to develop wide-ranging
methods to improve their performance. Boosting trap-assisted
tunneling, as opposed to band-to-band tunneling (BTBT), can
enable low Rspec, and such TJs were reported earlier with As
precipitates [10], [11] and ErAs nanoparticles to provide trap
states [12]–[14] [15]. However, Er is not commonly used in
commercial III-V growth systems. For stronger BTBT, design
features such as quantum wells [2], [16], [17] and wide-Eg

clads [4], [18], [19] have been widely reported, and both are
incorporated in the TJs described here. Delta-doping (δ-doping)
is another promising technique to improve TJ performance that is
compatible with most III-V growth methods. A δ-doping spike
is generated by simply pausing the flux of group-III sources
while maintaining the flux of the dopant and group-V sources.
The growth pauses significantly increase local doping levels
[20], while the group-V overpressure suppresses the ampho-
tericity of group-IV dopants, such as Si; Si δ-doping was earlier
used to reduce contact resistances to n-GaAs [20] where the
thermodynamically stable electron concentration is limited to
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∼5–6 × 1018 cm−3 [21]. The high n-type doping levels close
to a δ-doping spike promote BTBT by strongly bending the
bands and pushing the Fermi level into the conduction band [1],
[22]. δ-doped GaAs TJs were previously reported by DeSalvo
[23] and Ragay [24] though the performance was moderate.
More recently, Kang et al. [22] reported δ-doped GaAs TJs
with high Jpeak up to 2.74 kA/cm2, though their designs suffer
from significant optical losses due to the use of a thick 30 nm
GaAs tunnel region. Moreover, the bulk Si doping level on the
n-type side of Kang’s δ-doped GaAs TJs was 1 × 1019 cm−3,
making them unstable against thermal loading above ∼600 °C
[25]. Neither the effectiveness of δ-doping for enhancement of
TJs with low optical absorption nor their operation after thermal
loading required for top cell growth have been established in the
literature to data; both are required for δ-doped TJs to be used
in MJSCs.

In this article, we demonstrate that Jpeak (Rspec) of GaAs-
based TJ designs employing thin tunneling regions and wide-Eg

clads can be increased (decreased) by orders of magnitude via
δ-doping. We also describe TJs with high optical transparency
that fail to exhibit any Esaki peak without δ-doping while
tunneling strongly with δ-doping. δ-doped TJs are also shown
for the first time to be robust to typical thermal loads that would
be encountered in MBE, MOVPE, and HVPE.

Compared to our previous conference proceedings [26], this
article provides more growth details, additional materials char-
acterization, calculations of optical transparency, and new ex-
periments to determine how δ-doped TJs function after ther-
mal loading. In particular, we use cross-sectional transmission
electron microscopy (XTEM) to show the absence of extended
defects such as dislocations or stacking faults in δ-doped TJs. We
also provide calculations of parasitic optical absorption in all of
the investigated TJ designs, allowing the reader to gain greater
understanding of how MJSC current matching might be affected.
Finally, while our conference proceeding showed that δ-doped
TJs function after thermal loading from both MBE growth and
postgrowth RTA at 800 °C, we performed additional anneals here
at 600 °C and 700 °C to ascertain the potential performance of
δ-doped TJs in MOVPE and HVPE growth conditions.

II. EXPERIMENTS

Several design variations (Gen 1 to Gen 3, Fig. 1) were
implemented to investigate the tradeoffs between tunneling
performance, thermal degradation, and optical transparency. In
Gen 1 TJs, the effectiveness of Si δ-doping was demonstrated
using GaAs tunneling layers, yielding the best performance and
the lowest optical transparency; further details on estimated
optical losses are given below. Gen 2 TJs focused on suppressing
parasitic absorption by switching to wider-Eg materials, and as
a result, the best optical transparency was accomplished at the
cost of stronger thermal degradation. Finally, Gen 3 TJs were
designed to balance the respective advantages of the Gen 1 and
2 designs.

All TJ samples were grown via solid-source MBE at 460 °C
(as measured by pyrometry), similar to the phosphide growth
temperature used in our previous work [6], [7], and carrier

Fig. 1. Schematic layer structures of (a) Gen 1, (b) Gen 2, and (c) Gen 3 TJs
studied in this article.

TABLE I
GROWTH CONDITIONS USED IN TJS STUDIED IN THIS ARTICLE

concentrations were estimated from Hall effect measurements
of separate calibration samples; details of growth conditions
are given in Table I. δ-doping was accomplished by closing all
group-III shutters for a pre-determined time (typically several
minutes) while maintaining the molecular beam flux of both the
n-type dopant and group V species. The δ-doping dosages are
given in this article in terms of fraction of a monolayer (ML),
where the atomic density of the GaAs (001) surface is 6.26 ×
1014 cm−2; 0.01 ML therefore refers to a nominal surface dopant
atom concentration of 6.26 × 1012 cm−2. The deposition time
for the designed dosage was calculated based on dopant atomic
flux (cm−2·s−1) from bulk doping calibrations. For Gen 1 TJs,
a single δ-spike consisting of 0.01–0.08 ML coverage of Si was
inserted in the middle of the 5 nm n-GaAs tunnel layer [see
Fig. 1(a)]. Another Gen 1 TJ was grown with 2 × 0.04 ML
δ-spikes at 1.6 and 3.3 nm of the 5 nm n-GaAs layer to study
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the effects of δ-doping geometry on TJ performance. For Gen
2 [see Fig. 1(b)] and Gen 3 [see Fig. 1(c)] TJs, the following
changes were made: the p-type doping was switched from 2 ×
1020 cm−3 by Be to 9 × 1019 cm−3 by C; the GaInP clads were
replaced with p-Al0.4Ga0.6As (Eg=1.92 eV, hereafter AlGaAs),
and n-Al0.17Ga0.35In0.48P (Eg = 2.10 eV, hereafter AlGaInP),
to facilitate C-doping [27] and improve optical transparency,
respectively; the 5 nm p-GaAs layer was eliminated to improve
optical transparency. In the Gen 2 design, the n-type dopant was
switched to Te, and 3 × 0.04 ML δ-spikes of Te were inserted at
0.5, 2.5, and 4.5 nm of the 5 nm n-GaAs layer. Another version of
the Gen 2 and 3 TJs was also grown with C-doping boosted from
9× 1019 to 2× 1020 cm−3 in the p-AlGaAs. In the Gen 3 design,
the n-GaAs layer was replaced with n-In0.25Ga0.75As (Eg, bulk

= 1.02 eV, hereafter InGaAs) as a means to improve BTBT
probability due to its lower Eg and stronger propensity for n-type
doping [3], [28] at the cost of increased optical absorption; the
InGaAs layer was kept below the critical thickness of ∼6 nm.

XTEM samples were prepared by manual thinning followed
by Ar ion milling. Bright-field imaging was carried out in a JEOL
2010 microscope operated at 200 kV with a LaB6 filament using
a g = <002> two-beam condition.

Pieces were cleaved from as-grown samples, coated with
SiO2 by plasma-enhanced chemical vapor deposition to prevent
excessive anion desorption, and annealed in a tube furnace at
480 °C for 3 h to replicate MBE growth conditions for (Al) GaInP
top cells [6], [29]. After the 480 °C tube furnace annealing,
some pieces underwent additional RTA at 800 °C for 30 s in
N2 ambient, which improves MBE-grown phosphide top cell
performance [7]. Furnace annealing experiments at 600 °C and
700 °C for 3 hours were also performed on separate pieces
to study stability under thermal loads that might be encoun-
tered in MOVPE and HVPE (while the growth temperature
in HVPE is similar to MOVPE, growth times can be signifi-
cantly lower [30]–[33]). As-grown and annealed samples were
fabricated into TJs with areas of 9 × 10−5–1 × 10−3 cm2

using standard photolithography, lift-off, and wet-etching tech-
niques. Four-wire measurements were found necessary to ob-
tain reproducible current density-voltage (JV) characteristics
of TJs, and a MATLAB program was used to extract TJ
parameters.

III. RESULTS

A. Materials Characterization

Fig. 2 shows that moderate Si δ-doping neither roughens the
growth surface nor creates high densities of extended defects.
The n-GaAs tunneling layer presents a streaky reflection high-
energy electron diffraction (RHEED) pattern [see Fig. 2(a)], in-
dicative of planar growth. The RHEED pattern remained streaky
during [see Fig. 2(b)] and after the deposition of δ-spikes when
the dosage was kept no greater than 0.08 ML, indicating minimal
surface roughening; a separate experiment showed a spotty
RHEED pattern when the dosage was increased to 0.16 ML, so
an upper limit of δ-doping dosage likely exists. XTEM did not
reveal any dislocations or stacking faults initiated at the δ-doping
interface [see Fig. 2(c)]. TJs with δ-doping have no effect on the

Fig. 2. RHEED pattern (a) during the growth of n-GaAs tunnel layer of Gen 1
control TJ. (b) At the end of 0.04 ML δ-doping deposition in Gen 1 TJs, where
streaky patterns indicate minimal surface roughness. (c) Bright-field XTEM
image (g=<002>) of Gen 1 TJ with 0.08 ML δ-doping, showing no dislocations
or stacking faults in the TJs.

TABLE II
GEN 1 TJ PERFORMANCE BEFORE ANNEALING

growth surface morphology and, within the limits of XTEM,
do not contribute to significant formation of extended defects,
making them promising for use in MJSCs.

B. TJ Performance Enhancement by δ-Doping

δ-doping singlehandedly transforms the Gen 1 TJ from a low-
to a high-performance device, as evident by the orders of magni-
tude improvements in its key figures of merit. Control Gen 1 TJs
without δ-doping [see Fig. 3(a), red] are incapable of flowing
sufficient current to permit 1-sun operation (see Table II). With
the addition of just 0.01 ML of Si δ-doping [see Fig. 3(a), yellow]
the TJ performance is adequate for 1-sun operation, while a TJ
with 2 × 0.04 ML δ-doping spikes attained Jpeak = 3.59 ×
103 A/cm2. Although the total dosage of δ-doping remains the
same for both 0.08 and 2 × 0.04 ML designs and our band
simulation shows only minor differences in tunneling distance
between the two, the 2 × 0.04 ML design shows stronger TJ
performance, possibly from reduced amphoteric compensation.
Future study on the effects of δ-doping dose and location on
TJ performance could help elucidate reasons for the observed
behavior. Rspec decreased with increasing Jpeak (see Table II)
and the lowest Rspec value in this article was 1.32 × 10−4 Ωcm2

for the 2 × 0.04 ML δ-doped TJ, which is slightly lower than
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Fig. 3. (a) JV characteristics of Gen 1 TJs with δ-doping. (b) Correlation
between Cex and Jpeak as Gen 1 TJ performance improves supporting BTBT
as the tunneling mechanism. Figure adopted from [26].

the value reported by Kang et al. [22]. The decreasing value
of the excess current parameter Cex with increasing Jpeak [see
Fig. 3(b)], further emphasizes that increased BTBT is the main
mechanism for improved performance [1], [22], [34]. We deter-
mine Cex, a unitless from of depletion width, [1], [34] based on
JV data using the empirical expression J = Jex exp(Cex · V ).
Using a Poisson’s equation solver, we found a depletion width
reduction of ∼5 × , from 16.7 nm in the control device to
2.92 nm in the 2 × 0.04 ML TJ. The reduction of Cex with
increasing Jpeak points to a reduction in depletion width with
δ-doping and indicates that increased BTBT, as opposed to
increased trap-assisted tunneling, is the primary mechanism
for enhanced TJ performance where depletion width is not
changed.

C. TJs With Improved Optical Transparency

Through the use of wider-Eg materials and the reduction of
GaAs thickness, Gen 2 and 3 TJs reduced the parasitic absorption
compared to Gen 1 by up to 48%. Assuming a 1.88 eV GaInP
top cell (800 nm), we estimated the parasitic JSC loss due to
each layer of the Gen 1–3 TJs in an underlying GaAs cell [see
Fig. 4(a), based on AM1.5G spectrum]. Absorption in the GaInP
top cell and TJ layers was estimated based on layer thickness and
optical indices of GaInP, AlGaInP, GaAs, and AlGaAs. Bottom
cell JSC was calculated from the remaining spectrum using the
internal quantum efficiency of a high-performance GaAs cell

Fig. 4. (a) Calculated GaAs cell JSC loss (based on AM1.5G spectrum) under
800 nm GaInP top cell in Gen 1–3 TJs, emphasizing the benefit of wide-Eg

materials for optical transparency. (b) Evolution of Gen 2 and 3 JV characteristics
by adding 3 × 0.04 ML δ-doping (dashed) and further increasing p-type doping
in AlGaAs (solid) from control (dotted).

from our lab. JSC loss of 0.423 mA/cm2 in Gen 1 is reduced to
0.217 mA/cm2 in Gen 2 by substituting n-GaInP with 2.10 eV
n-AlGaInP and eliminating the 5 nm p-GaAs layer. Meanwhile,
Gen 3 exhibited reduced thermal degradation with the lower-Eg

n-type InGaAs layer (as shown later), at the cost of optical
transparency, causing 0.332 mA/cm2 JSC loss in the GaAs
bottom cell. The same assumptions yielded 0.156–2.62 mA/cm2

of GaAs cell JSC loss for previously reported state-of-the-art TJs
[16], [18], [35], comparable to or worse than the Gen 1–3 TJs
described here.
δ-doping, together with heavy p-type doping, was essential to

attain strong tunneling in Gen 2 and 3 TJs, as BTBT probability
exponentially decreases with increasing Eg [1]. Gen 2 and 3 TJs
without δ-doping [dotted lines in Fig. 4(b)] fail to tunnel at all.
With the addition of 3 × 0.04 ML n-type δ-doping spikes, Jpeak
values of 0.269 and 116 A/cm2 were obtained in Gen 2 and
Gen 3 TJs, respectively [dashed lines in Fig. 4(b)]. We attribute
the improved tunneling characteristics of the Gen 3 device over
Gen 2 to its use of the narrower-Eg n-InGaAs layer. Boosting the
p-type doping of the AlGaAs to 2 × 1020 cm−3 further enhanced
performance to Jpeak = 1346 and 440 A/cm2 and Rspec = 1.23×
10−4 and 2.67 × 10−4 Ωcm2 in Gen 2 and 3 TJs, respectively
[solid lines in Fig. 4(b)].
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Fig. 5. JV characteristics of Gen 1–3 TJs as-grown (solid) and after 480 °C 3 h
and 800 °C 30 s annealing (dotted), with dashed lines marking the approximate
operating current of MJSCs under 100 × (navy) and 1 × (green).

TABLE III
GEN 1–3 TJ PERFORMANCE BEFORE AND AFTER 480 °C 3 H AND 800 °C 30 S

THERMAL TREATMENT

D. Thermal Degradation of TJs

Although a decrease (increase) in Jpeak (Rspec) occurred after
annealing (see Fig. 5 and Table III), the performance of δ-doped
TJs remains sufficient for >100 × concentration. Slight perfor-
mance loss was observed in Gen 1–3 TJs after undergoing MBE
(Al)GaInP top cell growth thermal load of 3 h at 480 °C; Gen 2
showed minimal Jpeak and Rspec change while Gen 1 exhibited
∼10× Jpeak decrease (see Table III). Despite its short annealing
time, RTA at 800 °C caused large performance degradation in all
TJs (see Fig. 5 and Table III), suggesting that thermally activated
processes (e.g., dopant diffusion and/or deactivation) contribute
to performance change [16], [25], [36]. Jpeak (Rspec) of Gen
1 TJs dropped (increased) from 3.59 × 103 A/cm2 (1.32 ×
10−4 Ωcm2) to 15.2 A/cm2 (2.49 × 10−3 Ωcm2) after 480 °C 3 h
and 800 °C 30 s, but can nevertheless support MJSC operation at
∼100 × concentration with negligible series resistance losses.
The Gen 2 TJ’s performance loss was particularly strong (two
orders of magnitude Jpeak decrease and Rspec increase from
as-grown devices), possibly due to its use of relatively wider-Eg

Fig. 6. JV characteristics of Gen 1 and 3 TJs as-grown (solid) and after 600 °C
3 h (dotted) and 700 °C 3 h (dashed).

TABLE IV
GEN 1 AND 3 TJ PERFORMANCE BEFORE AND AFTER 600 °C 3 H

THERMAL TREATMENT

tunneling layers (p-AlGaAs/n-GaAs) compared to Gen 1 (p-
GaAs/n-GaAs) and Gen 3 (p-AlGaAs/n-InGaAs); Gen 2 TJs
were not included in further thermal degradation experiments.
As mentioned earlier, the use of narrower-Eg InGaAs in Gen
3 reduced its thermal degradation, providing 15.0 A/cm2 Jpeak
and 3.19 × 10−3 Ωcm2 Rspec, similar to Gen 1 after RTA (see
Fig. 5).

The Gen 1 and 3 TJs perform well after holding at 600 °C for
3 h, indicating that the benefits of δ-doping may also be robust
to MOVPE/HVPE growth conditions. Strong BTBT peaks (3.08
and 6.95 A/cm2) together with Rspec of 1.60 × 10−2 and 8.66 ×
10−3 Ωcm2 in Gen 1 and 3, respectively, support MJSC operation
up to 5–10 × concentration with <1 mV voltage drop (see
Fig. 6 and Table IV); the high-performance enabled by δ-doping
provides a large degree of headroom for thermal degradation.
The better performance and smaller degradation after 600 °C
thermal treatment in Gen 3 (blue) compared to Gen 1 (black) in
Fig. 6 reinforces the importance of the narrower-Eg n-InGaAs
tunnel Layer. Neither TJ survived 700 °C annealing for 3 h
(dashed lines in Fig. 6), and based on our findings, we speculate
that the use of C doping in the Gen 1 design could potentially
enable greater stability.

IV. CONCLUSION

In this article, we showed that δ-doping provides significant
benefits for TJs due to its strong band-bending over short dis-
tances. The use of wide-Eg materials, such as AlGaAs and Al-
GaInP in Gen 2 and 3 designs enhanced optical transparency and
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underscored the importance of δ-doping for high performance.
While the δ-doped TJs investigated here were grown by MBE,
the performance after 3 h at 600 °C indicates that the benefits
of δ-doping likely extend to both MOVPE and HVPE. Reduced
thermal degradation was obtained in the Gen 3 design by substi-
tuting the GaAs tunneling layer with narrower-Eg InGaAs at the
cost of an increase in parasitic absorption. Further reductions in
the thickness of the GaAs or InGaAs layers could lead to device
designs with lower optical losses.
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