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Excellent Passivation of Silicon Surfaces by Thin
Films of Electron-Beam-Processed Titanium Dioxide

Zhaoheng Ling, Jian He, Xiaoyong He, Mingdun Liao, Peipei Liu, Zhenhai Yang, Jichun Ye, and Pingqi Gao

Abstract—Dielectric of a titanium dioxide thin film is currently
re-emerging as a passivating material for high-efficiency crys-
talline silicon (c-Si) solar cells, owing to its good passivation quality
and appropriate band offset when in contact with c-Si. Here, we
demonstrate effective passivation on c-Si substrates by electron-
beam-processed titanium oxide layers, which are obtained by low-
temperature thermal oxidation of predeposited pure titanium thin
films. A derived titanium oxide layer by 3.5-nm titanium at 250 °C
yields a surface recombination velocity down to 16 cm/s. Structural
characterizations reveal that the resultant oxide layers are amor-
phous titanium dioxide. The passivation property is attributed to
Si–O–Ti bonding at the Si–titanium dioxide interface as well as to
the presence of an interfacial silicon dioxide layer. The easy pro-
cessing and high-level passivation capability make these titanium
dioxide thin films highly desirable to serve as a good passivating
choice toward high-efficiency c-Si solar cells.

Index Terms—Silicon solar cells, surface passivation, titanium
oxide thin film.

I. INTRODUCTION

PASSIVATED contacts have received broad application in
the photovoltaic (PV) devices, resulting from the great

contribution to the performance gain by remarkable reduction
of the surface recombination loss. Reduced density of interface
states (Dit) and/or depleted minority carriers (related to the fixed
charges at interface) from the surface have been achieved by em-
ploying an array of dielectrics including silicon dioxide (SiO2)
[1], silicon nitride (SiNx ) [2], [3], amorphous silicon (a-Si)
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[4], and aluminum oxide (Al2O3) [5]. Such passivation layers
have achieved great successes in the solar cells with configura-
tions like tunnel-oxide-passivated carrier-selective contacts and
amorphous/crystalline silicon heterojunction [6]–[9].

Another dielectric that is currently re-emerging as a suitable
passivating material is titanium dioxide (TiO2 ) [10], [11]. Owing
to its small conduction-band offset (ΔEc∼0.05 eV) and large
valence-band offset (ΔEv∼2.0 eV) when in contact with
c-Si, the c-Si/TiO2 heterojunction can effectively serve as passi-
vating electron-selective contact [12], [13]. Many technologies
have been explored for depositing TiO2 , including evapora-
tion [14], sputtering [15], sol-gel method [16], chemical vapor
deposition (CVD) [10], and atomic layer deposition (ALD)
[17]–[19]. Coating with 60–70-nm CVD-deposited TiO2 layers,
Thomson and McIntosh reported an effective minority carrier
lifetime (τeff) of 500 μs for 5-Ω·cm n-type c-Si float-zone (FZ)
wafers [10]. Relying on ALD-deposited TiO2 (ALD-TiO2) lay-
ers combining N2 anneal, Liao et al. received a high level of
surface passivation for n-type c-Si, with surface recombination
velocity (Seff) down to 11 cm/s [11]. The Seff has been reduced
to 2.8 cm/s when the ALD-TiO2 was further annealed in N2 and
soaked under light to fully activate its passivation quality [11].
With titanium tetra-isopropoxide as a precursor in the ALD
process, Yang and Weber deposited 10-nm TiO2 on n-type
c-Si, resulting in an implied open-circuit voltage (iVoc) of
687 mV [13]. Although ALD-TiO2 looks good for surface pas-
sivation on the base of c-Si, the ALD process needs expensive
and high-purity organic titanium sources, and it is also limited
by the low utilization of precursors. Attempts by means of other
deposition methods (e.g., RF sputtering, CVD, and Sol-gel),
however, have given only modest passivating results.

In this paper, we demonstrate a new way to fabricate thin
TiO2 passivation layers on c-Si wafers by annealing electron
beam (E-beam) deposited pure titanium (Ti) films in O2 envi-
ronment, yielding a τeff as high as 1500 μs (Seff = 16 cm/s). The
influence of the anneal temperatures and the film thicknesses on
the passivation quality is investigated. Series of structural char-
acterizations are implemented to investigate the physical and
chemical properties of the TiO2 films as well as the Si/TiO2
interface, aiming to reveal the origin of passivation.

II. SAMPLE PREPARATION AND MEASUREMENT PROCEDURE

The fabrication procedures are illustrated in Fig. 1. Double-
side-polished n-type FZ c-Si wafers with a thickness of
500 ± 10 μm, (100) surface orientation, and bulk resistivity of
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Fig. 1. Schematic of fabrication procedures for TiO2 thin films. (a) E-beam
deposited pure Ti thin films with thicknesses of 1–15 nm on c-Si. (b) Low-
temperature thermal anneal of the Ti thin films in O2 ambient. (c) TiO2 layers
that are converted from the Ti thin films.

5–10 Ω·cm were used to characterize the passivation quality.
Before Ti film deposition, the substrates were cleaned with
the standard RCA procedure [20] and dipped in a diluted hy-
drofluoric acid (HF 10%) to remove the native silicon oxide
layer. Ti films with different thicknesses were first deposited on
both sides of c-Si wafers by E-beam evaporation (Xinnan-Tech
ZZS-500) with a deposition rate of around 0.02 nm/s and pres-
sure under 6 × 10−4 Pa. When depositing on one side, the other
side of the wafer was protected by a clean glass slice to avoid
contamination. Compact thin titanium oxide films were simply
achieved by a 10-min thermal annealing in O2 environment with
temperature ranging from 200 to 400 °C.

The crystalline natures of the titanium oxide films were
measured by grazing incidence X-ray diffraction (GIXRD, D8
Advance). Chemical analysis relates to the titanium oxide films
and interfacial speciation was addressed by X-ray photoelec-
tron spectroscopy (XPS, AXIS ULTRA) and Fourier transform
infrared spectroscopy (FTIR, Nicolet 6700). The XPS measure-
ments were performed in a dedicated ultrahigh vacuum chamber
with a base pressure of < 2 × 10−10 torr. Al Kα radiation at
1486.6 eV was used in XPS, with an experimental resolution of
0.05 eV. The τeff of wafers were characterized by quasi-steady-
state photoconductance measurements, using a WCT-120 from
Sinton instruments. Neglecting Shockley–Read–Hall recombi-
nation in the bulk of the wafer, the upper limit of the Seff was
calculated according to

1
τeff

=
1

τbulk
+

2Seff

d

where d is the thickness of the Si substrate, and τbulk is
the intrinsic bulk lifetime in Si parameterized by Richter
et al. [21]. Charge densities were determined with capaci-
tance (conductance)–voltage (C–V) measurements. One-side-
polished p-type Si wafer with a resistivity of 1–5 Ω·cm was
used for the C–V measurement, and a Ti film was deposited on
the polished side followed by the oxidation process. Al circu-
lar electrode with a diameter of 1 mm was deposited upon the
titanium oxide, and a GaSn electrode was used for back con-
tact. During the C–V measurements, high-frequency (1 MHz)
measure was applied.

III. MEASUREMENT RESULTS AND DISCUSSION

For our E-beam-processed titanium oxide films, the temper-
ature of thermal annealing and the initial thickness of Ti thin
films play two key roles on the final passivating quality. For
distinguishing, the titanium oxide films were named by the
thickness of Ti films, for example, Ti_10 nm. Fig. 2 shows

Fig. 2. Relations of τeff with different annealing temperatures and Ti thick-
nesses. The temperature-dependent τeff curve (red) was extracted on a Ti thick-
ness of 6.5 nm, and the thickness-dependent τeff curve (black) was performed
at an annealing temperature of 250 °C.

the Ti-film-thickness- and annealing-temperature-dependent τeff

curves. The temperature curve in red was extracted on Ti
thickness of 6.5 nm (Ti_6.5 nm), and the thickness in black
was performed at an annealing temperature of 250 °C. As
shown in Fig. 2, a clear trend of first improving and then
reducing passivating quality with increasing thermal anneal-
ing temperature was observed, showing the best annealing
temperature around 250 °C. In order to study the influence of
the thickness of titanium oxide layers on the surface passiva-
tion quality, five symmetrical lifetime samples with Ti_2.5 nm,
Ti_3.5 nm, Ti_6.5 nm, Ti_8.5 nm, and Ti_10.5 nm were pre-
pared at the optimum annealing temperature of 250 °C (the
black line in Fig. 2). It shown that the τ eff (i.e., the level of
surface passivation) dramatically increases with the Ti thick-
ness and reaches its maximum τeff of 1500 μs at Ti_3.5 nm and
then decreases sharply above Ti_6.5 nm (780 μs) until to below
100 μs for the Ti_10.5-nm sample. The highest level of surface
passivation was given by the Ti_3.5-nm titanium oxide layers
corresponding to an Seff as low as 16 cm/s.

The enhancement in surface passivating quality at 250 °C
indicates that the thermal energy at 200 °C is not high enough
to thoroughly convert the pure Ti to titanium oxide. To eluci-
date why the passivation quality lost at 400 °C, GIXRD was
carried out to investigate the crystalline natures of the titanium
oxide films. As shown in Fig. 3(a), there is no crystalline phase
signal present in the 250 °C annealed sample, while clear crys-
talline phase signals present for the 400 °C annealed sample.
It should deserve mentioning that TiO2 films are amorphous
under 350 °C, and a metastable crystalline phase of anatase will
form beyond this annealing temperature [22]. According to the
previous reports, the TiO2 films with crystalline phase, whether
it is anatase or rutile, can only provide a poor surface passivation
on c-Si because of the related high tensile stress [17], [23]. We
can now draw a conclusion that annealing Ti film at 250 °C is
optimal for passivation because this temperature not only en-
sures a complete conversion from Ti to titanium oxide, but also
maintains the resultant film at amorphous nature.

It is reported that ALD-TiO2 gives a degradation of the surface
passivating quality for thickness above 5.5 nm, and it attributed
this to a stress-induced phase transitions inside the TiO2 films
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Fig. 3. (a) GIXRD spectra of the 250 and 400 °C processed titanium oxide
films. (b) Ti 2p and (c) O 1s XPS spectra of the titanium oxide thin layer (from
Ti_3.5 nm) on Si substrates. (d) FTIR spectra of titanium oxide layers derived
from Ti films with different thickness.

[13], [18], [23]. An amorphous TiO2 layer formed in the be-
ginning of the ALD deposition leads to a high tensile stress at
the interface, which decreases gradually with increasing TiO2
thickness and eventually becomes compressive stress, inducing
phase transitions and leading to grain growth [17], [23]. How-
ever, we cannot simply attribute the degradation in our case
to only a stress effect, because of the totally different fabrica-
tion procedures. We speculate that thickness-dependent thermal
oxidization may play an important role in this degradation al-
though lacking of more detailed supports at this time. Anyway,
the results indicate that our E-beam-processed titanium oxide
exhibits a better passivating performance than that of CVD-TiO2
and even comparable with that of ALD-TiO2 .

In order to understand the chemical oxidation state of the tita-
nium oxide at the molecular level, XPS characterizations of the
titanium oxide sample of Ti_3.5 nm were examined and showed
in Fig. 3(b) and (c), with Ti 2p and O 1s spectrum, respectively.
As shown in Fig. 3(b), the Ti 2p spectrum shows two peaks
at binding energies of 458.6 and 464.4 eV, respectively. The
peak position of Ti 2p3/2 at 458.6 eV is compared well with
the peak position for Ti 2p3/2 for Ti4+ in TiO2 (458.6–459.2
eV) and is significantly different from the Ti 2p3/2 peak of Ti2+

(454.9–455.2 eV) and Ti0 (453.7–454.2 eV) [24], [25]. With no
discernible signal for any lower valent Ti species, XPS measure-
ments confirm the presence of TiO2 on the surface. The O 1s
spectrum in Fig. 3(c) also has two peaks, which are associated
with TiO2 (530.3 eV) and SiO2 (532.2 eV) [24]. With no distinct
signals relate to the oxygen-deficient TiO2 or SiO2 have been
found in the O 1s spectrum again confirms that the derivative
from thermal-annealed Ti is mainly TiO2 . The identified SiO2
is believed to be exist at the Si/TiO2 interface, which is formed
during the oxidation process.

The FTIR spectra for the TiO2 samples formed by different Ti
films are further collected and compared in Fig. 3(d), in order to

Fig. 4. HR-TEM micrographs of c-Si/Ti (a) before and (b) after thermal
oxidization. (c) Proposed bonding structures near the Si/TiO2 interface. From
bottom to top, Si substrate, SiO2 interfacial layer, Ti-O-Si bonds, and TiO2
overlayer are shown.

reveal the roles of chemical bonds on the passivation as well as
their evolutions with film thickness. According to [26] and [27],
the absorbance peaks at about 439, 517, 670, and 1107 cm−1

are assigned to vibrational modes of Si–O, Ti–O, Ti–O–Si, and
Si–O–Si, respectively. The peak at ∼1107 cm−1 is related to the
stretching vibrational mode of SiO2 , indicating formation of a
SiO2 layer between the TiO2 film and the substrate in all films.
The other important feature to be noted here is the presence
of the Ti–O–Si absorption peak located at ∼670 cm−1, and its
relative intensity decreases with the film thickness. We propose
that the Ti–O–Si is formed between the surfaces Si- or/and Si–O
(related to the interfacial SiO2 layer) and the Ti–O groups of the
TiO2 overlayer. It is reported that when the Ti–O–Si bonding is
present at the interface, the passivating quality can be improved
significantly [28].

Cross-sectional high-resolution transmission electron mi-
croscopy (HR-TEM) images of c-Si/Ti samples before and after
thermal oxidization were shown in Fig. 4(a) and (b), respec-
tively. We can clearly see that the thickness of TiO2 is about
3.6 nm, a slight increase from the 3.1 nm for the initial Ti film.
Before the oxidization process, a clear boundary can be found
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Fig. 5. C–V characteristics of the deposited TiO2 layers.

between the Si and Ti films, and no amorphous SiO2 layer is
present at this interface. However, after the thermal oxidization,
a thin amorphous SiO2 layer with thickness about 0.5 nm can
be distinguished at the Si and TiO2 interface. Based on above
discussion, we can tentatively give a scheme of the bonding
structures, as shown in Fig. 4(c), which shows how the effective
lifetime depends on the chemical nature of the Si/TiO2 interface.
The main conclusion is that both the presence of SiO2 interfacial
layer and a high density of Ti–O–Si bonds are responsible for
the excellent passivating capability for our E-beam-processed
amorphous TiO2 thin films. Further studies will be empha-
sized on how to elevate the ratio of Ti–O–Si and Si–O–Si over
Si- bonds, through well tuning the fabrication process.

C–V measurements were performed to probe the electronic
properties of the TiO2 films, and the normalized capacitance
(conductance)–voltage curves were shown in Fig. 5. The ef-
fective insulator fixed charge density (Qox) and the interfacial
defect density (Dit) value were calculated from the curves with
the Terman method [29]. For the TiO2 film with the best passi-
vation property, a Qox of 1.16 × 1011 cm−2 and Dit of 4.77 ×
1011 cm−2eV−1 were achieved. Although the Terman method
shows an error when testing this TiO2 film, the ultralow Dit

is comparable with the CVD-TiO2 (1 − 5 × 1011 cm−2eV−1)
that was deposited on SiO2-passivated silicon [30], indicating
a high level of chemical passivation. The state-of-the-art pas-
sivation layers of SiNx /SiO2 stack, which were deposited by
plasma-enhanced CVD, have been reported possessing a Qox of
3 × 1012 cm−2 [6]. In comparison, our E-beam-processed TiO2
thin film shows even neutral property, which makes it a promis-
ing candidate to effectively passivate both n-type and p-type
c-Si wafers.

IV. CONCLUSION

In summary, we have developed a new strategy of a low-
temperature thermal oxidation method to fabricate high-quality
passivation layers of TiO2 on c-Si wafers. The thin TiO2 lay-
ers derived from 3.5-nm Ti films provide a surprisingly high
level of surface passivation with Seff = 16 cm/s on 8-Ω·cm n-
type c-Si wafers, without any postdeposition anneals. Chemical

investigations showed that the low density of interfacial defects
is related to the presence of SiO2 interfacial layer and Ti–O–Si
bonds. The C–V tests demonstrated a near neutral property for
the TiO2 layers, and the chemical passivation could dominate
the total surface passivation character. From an application per-
spective, the high surface passivation quality connected with
an easy processing offers our method a great potential for an
industrially feasible process.
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