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Abstract—Thin crystalline silicon solar cells have the potential
to achieve high efficiency due to the potential for increased voltage.
Thin silicon wafers are fragile; therefore, means of support must be
provided. This paper reports the design, development, and analysis
of an 18-μm crystalline silicon solar cell electrically integrated with
a steel alloy substrate. This ultrathin silicon is epitaxially grown on
porous silicon and then transferred onto the steel substrate. This
method allows the independent processing of each surface. The
steel substrate enables robust handling and provides a conductive
back plane. Three groups of cells with planar and textured struc-
tures are compared; significant improvements in Jsc , Voc , and fill
factor (FF) are achieved. The best cell shows an efficiency of 16.8%
with an open-circuit voltage of 632 mV and a short-circuit current
density of 34.5 mA/cm2.

Index Terms—Steel substrate, thin silicon solar cell.

I. INTRODUCTION

THE advantage of thin crystalline silicon (c-Si) solar cells is
that they not only use less silicon but also offer the potential

of achieving higher performance compared with conventional
wafer approaches due to higher open-circuit voltages. In the
1980s, Wolf predicted that the limiting efficiency was 25%. In
his calculations, the optimum cell thickness was in the range
of 50–150 μm, and practical light trapping including a textured
front surface and an optical internally reflecting back surface
was used [1]; however, there was some loss of light from the front
surface with this light-trapping scheme. Spitzer et al. predicted
a theoretical upper limit efficiency of 27% on a 15-μm silicon
cell, in which perfect front and back mirrors were assumed;
therefore, there was no light escaping from either surface [2].
However, practically these higher efficiencies have not been
realized. An efficiency of 9.75% has been reported for a 25–30-
μm-thick silicon solar cell on a metallurgical grade substrate
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[3], and an efficiency of 9.5% has been reported on a 20-μm
silicon cell on a steel substrate [4].

Since 1990, many thin silicon technologies have been re-
ported, such as mechanically or chemically thinning [5], [6],
high-temperature deposition or recrystallization on foreign sub-
strate [7], [8], low-temperature crystallization polycrystalline
thin silicon [9], [10], amorphous silicon [11], epitaxial growth
on silicon [12], and epitaxial growth on a porous silicon layer
[13], [14]. The porous silicon layer can also enable transfer of
the epitaxial layer [15]–[17]. Porous silicon layer transfer has
demonstrated high efficiencies. A 43-μm free-standing silicon
solar cell formed by porous silicon showed a confirmed effi-
ciency of 19.1%; this solar cell had a passivated emitter and rear
cell (PERC) both-sides-contacted structure, and its improved
performance was mainly due to the improved surface passiva-
tion by aluminum oxide [14]. However, such a free-standing
thin silicon wafer is fragile and difficult to handle. Another
43-μm silicon solar cell made by porous silicon layer transfer
was attached onto a resin and fiber carrier and had a confirmed
efficiency of 20.1%. The area of this cell was 242.6 cm2, and it
had an all-back-contact design: Both emitter and base contacts
were processed on what became the rear surface before layer
transfer [13], [18].

The design of our ultrathin silicon (UTSi) solar cell on steel
substrate not only leads to a robust device but also enables
the independent processing of each surface. One side of the
thin silicon is processed while it is attached to the host wafer.
Then, thin silicon is bonded to a steel carrier that provides
rigidity and integrates one of the electrical conductors. After
transferring the wafer to the steel, the other side of thin silicon
is processed. The structure of this UTSi solar cell has been
briefly described; the theoretical maximum open-circuit voltage
and efficiency were calculated by PC1D [19], and the I–V curve
and external quantum efficiency curve of the light-trapped cell
were presented [20]–[22].

The contributions of this paper are as follows:
1) description of the design of the UTSi solar cell on steel;
2) further analysis of its potential performance;
3) description of the fabrication process of this solar cell;
4) comparison of planar cell and light-trapped solar cells;
5) comparison with other layer transferred cells.

II. DESIGN

Fig. 1 illustrates the generic structure, which includes the
requirements and features for the design of the UTSi solar cell.
The requirements and features include the following [22]:

1) a thin monocrystalline Si active layer;
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Fig. 1. Generic structure of ultra-thin Si solar cell.

2) conductive bonding to conductive carrier. This enables
simultaneous back contact formation and bonding to a
robust substrate;

3) independent processing of both of the thin wafer sur-
faces. This enables the independent passivation and light-
trapping implementation on each surface.

PC1D [19], [23] is used to calculate the upper limit efficiency
and open-circuit voltage of a 20-μm silicon solar cell. Lifetimes
of the n+ front surface field (FSF) layer and p+ emitter of 10 μs
and a lifetime of the n base of 1000 μs are assumed. The max-
imum current density (Jsc) used in this model is 39.5 mA/cm2,
which was calculated, elsewhere, by assuming a Lambertian
back reflector [20]. The modeled upper values of Voc and effi-
ciency are 767 mV and 25.4%, respectively, as shown in Fig. 2.
These values are plotted as a function of surface recombination
velocity (SRV).

In addition to the PC1D model, first principle calculations are
used to calculate Voc . We first separate the surface recombina-
tion from bulk recombination by assuming SRV (sn , sp ) to be
0 cm/s so that there is only bulk recombination in the base (J0b )
and emitter (J0e ). The J0 equation becomes J0 = J0b + J0e =
qDn n2

i

Ln NA

∗tanh
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Wp

Ln

)
+ qDp n2

i

Lp ND

∗tanh
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Lp

)
, where NA and ND

are doping densities; Ln and Lp are minority carriers diffusion
lengths; Wp and Wn are the thickness; Sn and Sp are minority
carriers surface recombination velocities; Dn and Dpare minor-
ity carriers diffusivity at p and n silicon, respectively; and ni is
the intrinsic concentration.

J0 is determined by Wp

Ln
and Wn

Lp
, the ratio of thickness over

diffusion length. The maximum Voc is 758 mV for a 20-μm cell,
with an n base 18-μm, 5e15 cm−3 and a lifetime of 1000 μs, a
p+ emitter 1 μm, 5e17 cm−3 and lifetime of 10 μs. No n+ FSF
layer is considered in this calculation.

Fig. 2 shows the effect of SRV on the voltage and efficiency.
Our experimental results indicate that values around 1000 cm/s
for the SRVs are probable for our devices and can be a limit to
the higher performance of our present structures.

III. DEVICE STRUCTURE AND FABRICATION

Fig. 3 shows the detailed structure of the UTSi solar cell on
steel substrate. Each wafer surface is independently processed

Fig. 2. Efficiency and open-circuit voltage as functions of SRV from PC1D
modeling. FSRV indicates front SRV.

Fig. 3. Diagram of the ultrathin silicon solar cell on steel substrate.

the same as conventional thick wafers including surface passi-
vation, light trapping, and contact integration.

The process flow of this cell is shown in Fig. 4. The first four
steps are performed at AmberWave including the porous silicon
layer formation on p+ wafer, the epitaxial growth on porous sil-
icon, the rear surface passivation and metallization, the bonding
and transfer, resulting in an “enhanced wafer.” This “enhanced
wafer” is sent to UNSW for solar cell completion, testing, and
analysis. The finishing steps at UNSW include removal of the
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Fig. 4. Fabrication flow of UTSi solar cells. First four steps are finished in
AW, and the “enhanced wafer” is sent to UNSW for solar cell completing.

porous silicon, shallow texturing of the front surface, the front
surface passivation, the laser doping and contact plating, and
the edge isolation.

A. Process at AmberWave

The semiconductor layers are epitaxially grown by reduced
pressure chemical vapor deposition on porous silicon on heavily
doped p-type wafers at temperatures above 1000 °C [24]. This
approach was first described by Canon in 1994 [15]. These
layers include a 2-μm n+ FSF (5e17 cm−3), 18 μm n-type base
(5e15 cm−3), and 1-μm rear p+ emitter (5e17 cm−3). The n+
layer is designed to form an FSF and reduce the series resistance
due to current lateral flow. The 18-μm n base is the absorber
layer; its low doping density (5e15 cm−3) allows long minority
carriers lifetime so that photogenerated carriers can be collected
before recombining. The 1-μm p+ emitter forms a rear junction.
The design includes shallow texturing on the front (top) surface
for light trapping. This texturing is done after the epi layers
are grown and transferred, which leads to a rear junction being
required.

The rear surface process includes thermal oxide passivation,
limited area aluminum contact, and a metal mirror. A conductive
metal bond and steel substrate are added afterwards. This is
similar to a PERC [25] solar cell rear surface design whose
mostly passivated rear surface can lead to a high open-circuit
voltage. The thermal oxide provides passivation and is part of
the mirror structure. The oxide is patterned for limited area rear
contacts using photolithography. The coverage of these openings
is 0.56% of the rear surface with vias of 15 μm × 15 μm with
200-μm spacing. The Al rear contact and p+ emitter form an
ohmic contact without firing; the 1-μm 5e17 cm−3 p+ emitter

Fig. 5. Illustration of the work at UNSW. (Left) Structure of the enhanced
wafer. (Right) Finished solar cell.

Fig. 6. SEM image of shallow textured front surface (left) and the cross section
of a textured thin silicon solar cell (right).

leads to a low series resistance. Al together with SiO2 forms
a reflective rear mirror that confines light within silicon when
combined with the front texture.

The conductive bond from AmberWave integrates the UTSi
with the steel substrate. The 125-μm steel substrate acts as a
carrier as well as a rear electrode. The thermal expansion co-
efficient of the steel alloy sufficiently matches silicon over the
range of processing temperature. The proprietary conductive
bonding layer, which can be deposited using high-volume pro-
duction methods, will withstand high temperature processing
during subsequent process steps such as during the creation of
the passivation and ARC layers. Following the bonding pro-
cess, separation is initiated manually, resulting in a transfer of
the UTSi solar cell structure onto the conducting steel substrate.
This results in an “enhanced wafer.”

B. Process at the University of New South Wales

Fig. 5 illustrates the work at UNSW. First, the front surface
porous silicon layer is removed in an NH4F and H2O2 solution.
The porous silicon removal process results in a polished surface
and, it does not etch the silicon layer underneath. Then, the
front surface is etched to form shallow texturing in a KOH
solution with isopropanol and polyethylene glycol. The shallow
texturing step etches away around 2 μm silicon and results in
18-μm silicon base layer, thus much of the n+ layer is removed
during this process. The average diameter of pyramids is in the
range of 1–2 μm. This surface is shown in Fig. 6.

The front surface is then passivated by 75-nm silicon oxyni-
tride (SiON) with a refractive index of 2.0 deposited by
PECVD [26], which provides surface passivation, as well as an
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TABLE I
PERFORMANCE OF 20-μm PLANAR CELLS VERIFIED BY NREL

ID Area (cm2) Vo c (mV) Js c (mA/cm2) FF% Eff%

TS464-2 1.21 609.9 26.55 72.5 11.8
TS464-3 1.21 612.2 26.86 73.7 12.1

antireflection (AR) coating. Contacts are formed by first selec-
tive laser doping [27]. The locally heavy doping resulting from
the laser doping reduces the contact resistance. The dielectric
layer opening is in between 15 to 20 μm. Ni and Cu are plated
through the dielectric openings, which leads to the self-aligned
light-induced plating in the subsequent step. In the laser dop-
ing step, a phosphoric acid layer is applied, and a 532-nm laser
beam is used to transmit through both the phosphoric acid layer
and the SiON coating into the silicon. Silicon is brought to its
melting point temperature after absorbing the laser energy to
create a selective heavily doped region [28]. The laser doping
step patterns the front contact and leads to the local heavy dop-
ing. The Ni/Cu contact is plated using self-alignment from the
laser removal of the SiON and light-induced plating [29]. There
is a deglazing step before Ni plating to strip away any oxide
formed within the laser opening. The deglazing step needs to
be optimized for good plating without affecting AR coatings.
After metallization, these samples are isolated by laser cutting
from the rear surface followed by an HF: nitric: acetic acid edge
clean.

The last step is edge isolation which is composed of two steps.
1) A laser cuts through the steel substrate from the rear side;
2) the sample is cleaved along the laser cut line; and 3) the
cleaved edges are cleaned in diluted HNA solution, during which
the front surface is protected by photoresist, followed by pho-
toresist removal.

IV. RESULTS AND DISCUSSION

A. Results of Planar and Light-Trapped Solar Cells

1.1 × 1.1-cm2 planar devices of thin silicon on steel were
fabricated; Table I shows the performance of two planar (i.e.,
nontextured) solar cells whose efficiencies were confirmed by
the National Renewable Energy Laboratory (NREL). The rear
steel acts as the rear electrode during the measurements.

Front surface shallow texturing minimizes the front surface
reflectance, redirects photons, and traps photons reflected by
the planar rear mirror. Table II shows the performance of such
light-trapped cells and best single parameters measured, with Jsc
much higher than in Table I. Fig. 7 plots the I–V curve measured
by the NREL, and Fig. 8 plots EQE and reflection curves of
both the planar cell TS464-3 and light-trapped cell MS197-4.

B. Discussion of Results

Two MS197 cells have significantly higher Voc than the rest of
the planar cells TS464 and textured cells TS507. This difference
is reflected by their PL image as well, as shown in Fig. 9. A
higher Voc corresponds to a higher PL counts, and vice versa.

TABLE II
PERFORMANCE OF LIGHT-TRAPPED CELL CELLS AND BEST VALUES OF SOLAR

CELLS MEASURED BY NREL

ID Aperture area (cm2) Vo c (mV) Js c (mA/cm2) FF% Eff%

TS507-1 0.99 606.8 33.98 73.1 15.1
TS507-2 0.99 606.4 33.85 73.8 15.1
MS197-4 4.00 632.2 34.49 77.2 16.8
MS197-5 4.00 640.4 33.81 76.8 16.6
Best values − 642.3 34.49 78.0 −

These cells were measured using apertures.

Fig. 7. I–V curve of MS197-4 measured by NREL.

Fig. 8. EQE and reflectance curves of both planar cell (TS0464-3) and light-
trapped cell (MS197-4).

Fig. 9. PL images of TS507-2 (left) with an average PL counts 4100 s–1 and
MS197-4 (right) with an average PL count 10 400 s–1.
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Fig. 10. Efficiency improvement of thin silicon solar cell on steel verses time.

These textured cells experienced the same fabrication pro-
cess except the epi growth with all key steps monitored. The Voc
increase results from the improved material quality with reduced
stacking-fault density (SFD) from 106 to 104 cm–2. Thus, the
density of stacking faults for MS197 is approximately 1% of
those for TS507. The quality of epitaxial layer is related to the
thickness and porosity of porous silicon stack layers [30] and
subsequent H2 annealing conditions [31]. After porous etching,
the surface of the wafer has a mesoporous structure. This struc-
ture does not lend itself to high-quality epitaxy, resulting in a
form of epitaxial lateral overgrowth across the nm sized porous
openings causing high defect density. Therefore, a restructuring
of the surface was required to create a smooth uniform layer
for the subsequent growth. This restructuring occurs through
hydrogen anneal, allowing the surface pores to seal, forming
a template for homoepitaxy. The effectiveness of the anneal
was quantified by the reduction in SFD post growth, seen via
optical microscopy. During the course of the anneal experimen-
tation, the SFD decreased almost two full orders of magnitude
to ultimately 5e3 cm−2. While lower SFD should be possible
with this approach, the electrical performance increases began
to show a plateau below a SFD of 1e4 cm−2. A lifetime as high
as 195 μs was reported by the Interuniversity Microelectron-
ics Centre (IMEC) on a 50 μm epilayer with a doping density
1016 cm−3 [30]. Although we did not directly measure the life-
time of transferred epitaxial thin silicon, a same epi process
on monitor wafer (single crystal FZ) showed lifetimes of 500–
1000 μs. According to our simulation, Voc of UTSi solar cell
starts to saturate at a lifetime of 70 μs, which is equivalent to a
diffusion length of 285 μm, or 15.8 times the thickness of the
20-μm base layer. Larger lifetime would not increase the per-
formance significantly.

The light-trapped cell has better EQE response at both short
and long wavelengths than the planar cell owing to the im-
proved light trapping. The Jsc increase of 7.59 mA/cm2 (28.2%)
from TS464-3 to MS197-4 is mainly due to the effect of
light trapping.

Another difference between planar cell and textured cell is
the n+ FSF layer. To investigate if the n+ FSF layer caused per-

Fig. 11. Short-circuit current densities reached by kerfless thin-film c-Si solar
cells by porous silicon layer transfer.

formance differences, planar and textured cells were fabricated
using material from the same wafer. These two structures did
not have a significant difference in their PL, Voc , and IQE at
short wavelength. Thus, we conclude that the n+ FSF layer did
not affect the performance.

MS197 cells have higher fill factor than both TS464 and
TS507 cells. The larger area cells MS197 have less edge dam-
age (in part due to the larger size) leading to higher shunt resis-
tance. In addition, MS197 cells added an additional Ni sintering
process which formed low resistivity nickel silicide, resulting in
lower series resistance [32].

Fig. 10 plots the efficiency improvement of the UTSi solar
cell with time. At the beginning period, planar devices demon-
strated a confirmed efficiency of 12.1%. Then, light trapping
increased the efficiency to 15.1%. After that, the improved Si
and processing led to a confirmed efficiency of 16.8%.

C. Comparison With Other Layer Transferred Solar Cells

Fig. 11 summarizes the results reported on thin Si solar cells
by epi on porous Si and layer transfer. The results are reported
in work from the Institute of Physical Electronics, University
of Stuttgart [33], [34], Bavarian Center for Applied Energy
Research [35]–[38], the Institute for Solar Energy Research
Hamelin [14], [39], Solexel [13], Crystal Solar [40], IMEC
[41], and Sony [42]. The solid line is the current density ex-
pected from a single pass that assumes that the effective optical
path length equals the physical thickness of the solar cell and all
absorbed photons are collected. The University of New South
Wales—AmberWave represents the Jsc of MS197-4, which is
34.49 mA/cm2, which is higher than the single pass line and
higher than these from other cells with similar thicknesses.

There are two groupings of cell thicknesses: one at 40 to
50 μm, which can be described as “thick” in this context, and
one at less than 20 μm, described as “thin.” The UTSi solar cell
efficiency is 16.8%, which is the highest efficiency for epi on
porous layer with transfer cells thinner than 40 μm. Fig. 12 plots
efficiencies of all these cells.
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Fig. 12. Efficiency of thin-film c-Si solar cells formed by epi on porous silicon
and layer transfer.

D. Future Plan

The greatest opportunity for efficiency increase is for voltage.
Our model suggests SRV for both surfaces around 103 cm/s,
and reduction of both of these to 100 cm/s can lead to a 7.5%
(51.5 mV) increase in voltage. Further voltage increases are ex-
pected from reduced recombination on rear surface by replacing
SiO2 with advanced passivation layer and reduced surface dam-
age by the laser doping process. This improved laser process can
also lead to increased fill factor, and the front surface reflection
can be reduced with a better AR coating and finer grid lines.
The combination of these can lead to efficiencies in excess of
20%.

V. CONCLUSION

This paper has described the design, development, results,
and analysis of a UTSi on steel solar cell. High performance is
predicted on a 20-μm silicon solar cell according to our mod-
eling. Improved Si material and improved processing led to a
confirmed efficiency of 16.8%. Its efficiency of 16.8% and Jsc
34.49 mA/cm2 are significantly higher than those previously
reported in solar cells with similar thicknesses.
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