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Abstract— In-memory computing (IMC) has emerged as one
of the most promising candidates for distributed computing
frameworks such as edge computing, owing to its unrivalled
energy efficiency and high throughput. By leveraging arrays
of emerging devices, such as resistive random access memories
(RRAM), to implement massive parallel computation, IMC over-
comes the main limitations of classic von Neumann architectures.
Meanwhile, next generation telecommunication networks are
bound to rely ever more intensively on matrix computations
to allow simultaneous transmission and reception over multiple
spatial channels, an approach known as Massive Multiple-
Input Multiple-Output (MIMO). Here, we propose a closed-
loop in-memory computing circuit for the acceleration of Ridge
Regression, an algebraic prior that finds application in all phases
of a typical massive MIMO transaction, namely channel estima-
tion, uplink and downlink. Particularly, we show the circuit’s
capability to perform Zero-Forcing (ZF) and Regularized Zero-
Forcing (RZF) detection and beamforming, benchmarking its
performance in a realistic framework and comparing results
with a commercial graphic processing unit (GPU). Our results
indicate a 4 orders-of-magnitude increase in energy efficiency
and a 3 orders-of-magnitude increase in area efficiency for the
same throughput of a digital solution, supporting IMC for energy
efficient pre- and post-processing in next-generation B5G and 6G
networks.

Index Terms— In-memory computing, resistive random access
memory, hardware accelerator, ridge regression, massive MIMO.

I. INTRODUCTION

THE increasing requirements for communication in mod-
ern society have driven the advancements in broadband

cellular networks during the last decades. Since the intro-
duction of digital telecommunications in 1991, the capac-
ity and throughput of communication channels have been
steadily increased. In fifth-generation (5G) and beyond-
fifth-generation (B5G) mobile communication systems, mas-
sive MIMO (multiple-input and multiple-output) has gained
momentum as the most promising technique to improve the
spectral efficiency by means of large arrays of transmitter and
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receiver antennas. In fact, massive MIMO exhibits tremendous
improvements in terms of data rate and energy efficiency
with respect to other technologies [1]. On the other hand,
the data-intensive computation in massive MIMO, mostly
consisting of matrix-vector multiplication (MVM) and matrix
inversion, represents a significant overhead in limiting the
available throughput and energy efficiency.

Recently, in-memory computing (IMC) has shown strong
performance in terms of increased throughput and reduced
energy consumption with respect to conventional von-
Neumann computers. In IMC, computation is performed in situ
within the memory, thus eliminating the need for data move-
ment which is generally responsible for the largest part of
computing time and energy [2], [3]. Usually implemented
with crosspoint arrays of resistive switching memories, IMC
shows a high computation parallelism due to the inherent
matrix-like structure of the memory array and the possi-
bility to perform computation in the analogue domain via
fundamental physical laws, such as the Kirchhoff’s law for
summation and the Ohm’s law for multiplication. Recently,
IMC has been demonstrated for accelerating MVM in various
scenario, such as image processing [4], sparse coding [5],
deep neural networks [4] and solution of equations [6]. MVM
execution within a closed-loop circuit was shown to accelerate
computing tasks of higher complexity, such as matrix inver-
sion [7], eigenvector calculation [8], linear regression [9] and
generalized linear regression [10] with significant increase of
throughput and energy efficiency [10], [11]. Given the rele-
vance of matrix inversion and regression in modern machine
learning (ML), closed-loop inverse-matrix-vector multiplica-
tion (IMVM) circuits appear promising for accelerating a
number of real-life applications, including massive MIMO in
wireless communications.

Previously proposed RRAM accelerators for baseband
processing in massive MIMO relied on crosspoint arrays
for the sole acceleration of MVM operations within both
zero-forcing (ZF) and regularized zero-forcing (RZF), while
the computationally intensive inverse-matrix calculation was
carried out by an external digital processor [12], [13]. In this
work, we present a fully-IMC solution of massive MIMO
exploiting closed-loop IMVM circuits, thus removing the need
for a separate computation unit to perform matrix inver-
sion. After presenting the general form of MIMO technique,
we introduce a new IMC circuit for ridge regression which can
be used for the regularized zero-forcing encoding to address
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Fig. 1. Typical massive MIMO cell architecture, in which a base station
(BS) equipped with M antennas must serve K single-antenna users.

channel estimation, uplink (receive combining) and downlink
(beamforming/precoding) in massive MIMO.

In the following, we adopt the Householder notation [14],
where bold capital letters A, B denote matrices, bold lowercase
letters a, b denote vectors and lowercase letters a, b denote
scalars. · denotes matrix-vector multiplication, and is generally
omitted if the resulting expression is not ambiguous. AT and
A∗ are the real and conjugate transpose of A respectively, �·�p

is the vector p-norm and |||·|||p the induced operator p-norm.
A Hermitian positive (negative) semidefinite matrix satisfies
A � 0 (A � 0) and its singular values are σ1(A) ≥ · · · ≥
σn(A). The trace operator is Tr{A} =

n∑
i=1

Aii .

II. MIMO BACKGROUND

Fig. 1 shows a typical massive MIMO cell architecture
where a base station (BS) with Nr antennas communicates
with Nt single-antenna users or terminals. The characteris-
tics of the environment between antennas and terminals are
generally summarized by a channel propagation matrix H,
where each element hi j describes the transfer between the
j -th user and the i -th antenna. A typical model for H is the
Gaussian channel, where each matrix element is a complex
random variable given by:

hi j ∼ CN (0, 1). (1)

A more advanced model for H, taking into account the possible
correlation at either receiver or transmitter side or both, is the
Kronecker channel, given by:

H = RR
1/2KRT

1/2 (2)

where K is a Gaussian channel matrix with elements
ki j ∼ CN (0, 1), while RR and RT are the spatial correlation
matrices at the receiver and transmitter side, respectively.

Fig. 2. Time Division Duplex (TDD) protocol. Each transaction between the
users and the BS is composed of three phases. In the first phase, the users
send pilot signal to the BS to allow for channel estimation. After, the same
users transmit their uplink data. After estimating the channel, the BS decodes
the uplink data and precodes the downlink data that is transmitted to the users
in the last transaction phase.

The elements of RR and RT are given by [15]:

ri j =
{

ρ j−i i ≤ j

ρ∗
j i i > j

|ρ| ≤ 1 (3)

where different values of ρ may be used to differentiate
correlation between receivers and transmitters. The Gaussian
channel model may be regarded as a special case of the
Kronecker channel with ρ = 0. Communication between the
users and the BS typically follows the time division duplex
(TDD) protocol shown in Fig. 2 [16]. The users first send
some pre-defined messages, termed pilots, to the BS, which
enable estimating the channel matrix H. Then, the users send
their uplink data, which is decoded by the BS using the
recently estimated channel matrix. Finally, the BS pre-codes
the data to be transmitted to the users in the downlink
phase.

A. Uplink Transmission

Fig. 3a illustrates the uplink operations, where each of the
Nt terminals sends a signal x j . The latter is generally encoded
following a modulation scheme such as Quadrature Amplitude
Modulation (QAM), where a given binary word or symbol
(e.g, 0b101 or 5) is mapped onto in-phase and in-quadrature
components of a transmitted sine wave (e.g., −1 + j1) [17].
The overall signal from all users is thus given by the complex
vector x. The signal is propagated across the environment
between the users and the BS, suffering from attenuation and
phase distortion. The incoming signal at the i -th antenna is
thus given by:

yi =
Nt∑

j=1

hi j x j + wi , (4)

where wi is the receiver noise seen at the i -th antenna, which
is generally modeled by a complex-Gaussian distribution with
zero mean and σ 2

n variance, i.e. wi ∼ CN (0, σ 2
n ). The received

vector signal y then satisfies:
y = Hx + w. (5)

To estimate the originally transmitted message, the BS may use
the zero-forcing detection technique [1], where the estimated
signal reads:

x̃ = H+y = x + H+w (6)
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Fig. 3. (a) Uplink transmission model. The transmitted signal x of Nt users is propagated along the uplink channel H, and mixes with additive Gaussian
noise w at the base station side, where it is detected by Nr ≥ Nt antennas. (b) Downlink transmission model. The transmitted signal x of the Nr antennas is
propagated along the downlink channel H∗, and mixes with additive Gaussian noise w at the user side, which comprises Nt ≤ Nr terminals.

Fig. 4. (a) Regularized regression. Linear regression (red) tends to overfit data in presence of outliers, whereas ridge regression (blue) avoids overfitting by
constraining the regression coefficients. (b) Decoded symbol count for 400 uplink experiments on 64 × 64 Kronecker channels with ρ = 0.6 and SNR =
20 dB, targeting transmission of symbol 5. Noise amplification leads to high dispersion of decoded values, resulting in almost equal decoding probability
for 0, 1, 3, 4, 5 and 7. (c) Decoded symbol count for the same 400 uplink experiments of (b), using RZF. Thanks to regularization, probability of correctly
decoding symbol 5 increases.

The retrieved signal x̃ thus consists of the original signal x
plus a modified noise term H+w. The main limitation of the
ZF approach is that the noise term may be relatively large for
high condition numbers of H, which is typically the case for
channels with some degree of correlation. In such cases, the
noise term may overshadow the original signal, thus leading
to an unacceptable symbol error rate (SER), defined as:

SER = # of correctly decoded symbols

# of received symbols
(7)

where the symbol is assumed to be correctly decoded when
both extracted real and imaginary parts are closer to those of
the correct symbol compared to all other symbols.

To prevent such degradation, a regularized zero-forcing
technique may be used [1], where the received signal y is
decoded according to:

x̃ = (H∗H + λI)−1H∗y (8)

= (H∗H + λI)−1H∗Hx + (H∗H + λI)−1H∗w (9)

Thanks to the regularization term λI, the effective condition
number of the matrix to be inverted is lowered, thus preventing
a possible amplification of the noise term w. On the other
hand, regularization may affect the original message, which
may be irreversibly lost unless the λ parameter is properly
tuned. It has been shown [18] that the optimal value for
the regularization parameter, allowing for an ideal trade-off
between noise amplification and signal distortion, is given by
λ = σ 2

w/σ 2
x . An equivalent formulation for λ can be given in

terms of the signal-to-noise ratio, defined as:

SNR = E[�Hx�2
2]

E[�w�2
2]

(10)

by noting that when x is drawn from the unit-average power
constellation, i.e. σ 2

x = 1, and for sufficiently large scale
systems:

E[�Hx�2
2] = Nr Nt (11)

E[�w�2
2] = Nr σ

2
w (12)

The optimal regulation parameter can therefore be equivalently
rewritten as:

λ = Nt

SNR
(13)

The mathematical analogous for regularized zero-forcing
detection is ridge regression [19], a regularization technique
allowing to avoid overestimation by introducing an �2-penalty
on the regression coefficients. Fig. 4a shows the results of
ridge regression and linear regression for a set of data in two
dimensions, supporting the higher accuracy of ridge regression
in the presence of outliers. Correspondingly, the inherent
improvement in decoding accuracy of RZF with respect to ZF
is shown in Figs. 4b-c, where 400 uplink experiments were
conducted on Kronecker channels with ρ = 0.6 and SNR =
20 dB. In each experiment, a random vector including symbol
5 was transmitted from users to BS and decoded either with ZF
(Fig. 4b) or with RZF (Fig. 4c). When ZF was used, decoding
of symbol 5 was generally erroneous, leading to interpretation
as 0, 1, 3, 4, 5 or 7 with almost equal probability. On the
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other hand, when RZF was used, the symbol was correctly
decoded most of the time thanks to the filtering action of ridge
regression.

B. Downlink Transmission

Fig. 3b illustrates the downlink operation, where each of the
Nr BS antennas sends a signal x j which is then propagated
across the channel in the downlink direction and detected at
the i -th user side as:

yi =
Nr∑

i=1

h DL ,i j x j + wi (14)

where wi is the receiver noise seen at the i -th terminal. Thanks
to the TDD protocol, the uplink and downlink channel are
reciprocal, i.e. HDL = H∗. Consequently, the received vector
at the user side satisfies the expression:

y = H∗x + w. (15)

In a typical massive MIMO case, the user-side is not equipped
to perform decoding operations on the incoming signal. There-
fore, the received vector y should ideally match the original
message s, which can be achieved by precoding techniques at
the BS side to account for the propagation across the channel.
To this purpose, the transmitted signal x is generally computed
as a transformation of the original message s by a precoding
matrix B:

x = Bs (16)

According to the ZF technique, B is simply equal to the
pseudo-inverse of H∗ [20]. The signal is also normalized by a
scaling factor γ to satisfy a given power constraint E[x∗x] =
Ptr , from which γ can be obtained from the relationship:

γ 2 = Ptr

Tr{(H∗H)−1} (17)

The received signal at the user-side is then obtained by:
y = H∗γ Bs + w (18)

= γ s + w (19)

Similar to the uplink problem, the scaling factor γ may
become relatively small as the condition number of H
increases, due to an increase of the term Tr{(H∗H)−1}. In this
case, the noise term w is relatively large compared to the
signal s, thus resulting in an increased SER. This issue
can be overcome by RZF [20], where precoding allows to
strengthen the signal reaching each user, thus increasing the
corresponding scaling factor γ via interference between the
BS antennas. According to RZF, the pre-coding matrix reads:

B = H(H∗H + λI)−1, (20)

while γ can be obtained from the relationship:
γ 2 = Ptr

Tr{(H∗H + λI)−1H∗H(H∗H + λI)−1} , (21)

from which the signal received by the users is given by:
y = γ H∗H(H∗H + λI)−1s + w. (22)

The parameter λ must be properly tuned to avoid excessive
interference between the antennas, while at the same time
effectively improving the scaling factor γ . It has been shown
that, similar to the uplink problem, the optimal value for the
interference parameter is given by Eq. (13) [20], [21].

C. Channel Estimation

Both uplink and downlink operations require an estimate of
H to describe the propagation channel between the BS and
the users. To estimate the channel, the users synchronously
send a pre-defined pilot message to the BS. Pilot vectors
are generally extracted from a given pilot book P [22] given
by:

P = [p1|p2| · · · |pm], (23)

where each pilot vector is transmitted to the BS by the array
of user terminals, such that the received matrix Y reads:

Y = [y1|y2| · · · |ym] = HP + W, (24)

where W = [w1|w2| · · · |wm] is the noise matrix. It has been
shown that, similar to the uplink and downlink problems, the
optimal estimation is given by RZF according to [23]:

Ĥ = YP∗(PP∗ + λI)−1 (25)

where λ is given by λ = σ 2
n /σ 2

h . In the particular case of
orthogonal pilot vectors, the corresponding pilot book satisfies
PP∗ = kI, thus leading to:

Ĥ = 1

k + λ
YP∗. (26)

Instead of estimating Ĥ, the RZF can be aimed at estimating
Ĥ∗ which reads:

Ĥ∗ = (PP∗ + λI)−1PY∗. (27)

The matrix Ĥ∗ can thus be computed column-by-column (cor-

responding to a row-by-row computation of Ĥ) by applying
the estimator on columns of Y∗, i.e. rows of Y.

III. IMC CIRCUIT FOR RIDGE REGRESSION

The RZF operation for solving the problems of
uplink/downlink transmissions and channel estimation is
a data-intensive ML algorithm that is inefficiently carried out
by digital computers with von Neumann architecture. Fig. 5
shows an IMC circuit with closed-loop architecture that is
derived from the closed-loop linear regression circuit [9] to
efficiently accelerate the RZF operation. The circuit, which is
referred to as ridge regression circuit (RRC) in the following,
is composed of two crosspoint arrays each mapping the
same matrix M, two input current vectors i1, i2, and two
sets of transimpedance amplifiers (TIAs) with feedback
conductance t and −δ, where the negative conductance is
achieved by an analogue inverting buffer in the second set
of TIAs.

We first consider the case in which the first input current is
applied while the second one is not, i.e. for i2 = 0. Assuming
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Fig. 5. In-memory ridge regression circuit. Two memory arrays, each mapping the same matrix M, are connected in a feedback loop using two sets of
programmable transimpedance amplifiers. For the A1 set, the transimpedance resistance t is positive, whereas for the A2 set the transimpedance resistance δ
is negative and realized by means of an additional inverting analogue buffer. In uplink operation, input currents are applied at the i1 input, and outputs are
read at the v1 output. In downlink operation, inputs are applied at the i2 input, and outputs are read at the v2 output.

ideal operational amplifiers, the Kirchhoff’s laws at the input
terminals of the operational amplifiers read:

i1 + Mv1 + tv2 = 0 (28)

−δv1 + MT v2 = 0 (29)

from which one can extract the voltages at the first output as:
v1 = −(MT M + tδI)−1MT i1 (30)

which corresponds to the ridge regression of i1 over M with
λ = tδ. Eq. (30) is the electrical equivalent of the RZF decoder
of Eq. (8) for M = H, i1 = y and v1 = x, for the case of
real H, x and y. Also note that the same circuit can be used
for channel matrix estimation according to Eq. (27), assuming
M = P and providing rows of Y as input current i1. Trivial
steps can then be performed on the estimated matrix Ĥ∗ to
recover Ĥ.

To apply the circuit to the general case of complex channels,
the complex matrix H can be mapped in the real-valued matrix
HR according to:

HR =
[

Re(H) −Im(H)
Im(H) Re(H)

]
(31)

Similarly, complex x is mapped into the real-values xR by:
xR =

[
Re(x)
Im(x)

]
(32)

Consequently, one can obtain:[
Re(y)
Im(y)

]
= yR = HRxR (33)

The complex-transpose operation on H is now equivalent to
the real-transpose operation on HR , namely:

(H∗)R =
[

Re(H∗) −Im(H∗)
Im(H∗) Re(H∗)

]
(34)

=
[

Re(H)T Im(H)T

−Im(H)T Re(H)T

]
= HT

R (35)

When the second input is applied, i.e. for i1 = 0, the state
equations for ideal operational amplifiers read:

Mv1 + tv2 = 0 (36)

i2 − δv1 + MT v2 = 0. (37)

The output voltage v2 then reads:
v2 = −(MMT + tδI)−1Mi2 (38)

Remembering that, for tδ 	= 0, the following equality holds:
(MMT + tδI)−1M = M(MT M + tδI)−1 (39)

it is possible to reformulate Eq. (38) as:
v2 = −M(MT M + tδI)−1i2 (40)

which is the electrical equivalent of the RZF precoder of
Eq. (20) for real H.

By embedding the required algebraic computation in the
transfer function between input and output pairs, significant
energy and time saving is expected from both the programming
and computation standpoint with respect to the use of external,
inverse-matrix-dedicated computing units.

IV. SIMULATION RESULTS

The circuit and the corresponding steady-state equations
were validated for both uplink and downlink operating modes
by extensive SPICE simulations. Operational amplifiers (OAs)
were assumed to have an open-loop gain of 80dB and a
gain-bandwidth product (GBWP) of 100 MHz, whereas mem-
ory elements were initially considered to have 64-bit floating
point precision.
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Fig. 6. (a) Transient example of IMC-RRC in uplink decoding for a 64 × 32 channel matrix. The circuit converges to the solution in less than 100 ns.
(b) Computing time and (c) relative error as a function of the signal-to-noise ratio, for a balanced configuration (dashed line, t = δ = √

λ), and unbalanced
configuration (continuous line, t = 1, δ = λ) on a 64 × 32 channel. Unbalancing the resistor values of t and δ allows to contain the degradation of both
computing time and error, resulting in an almost O(1) dependence with respect to SNR. For each line, the shaded area denotes the standard deviation of
1000 simulations.

Fig. 7. (a) CDF of static error of IMC-RRC, for 100 uplink experiments
on 100 64 × 32 channels with variable channel correlation parameter ρ.
Even at high ρ � 1, the median error is still below 1%. (b) Relative error and
channel matrix condition number κH as a function of the channel’s correlation
parameter ρ. As the latter increases, both metrics suffer a similar degradation.

Fig. 6a shows an example of an uplink transient for a
64 × 32 Gaussian channel. The circuit’s convergence time
is in the order of hundreds of nanoseconds, which may
be further enhanced by increasing the GBWP of OAs [10],
[11]. When the regularization term is mapped in a balanced
configuration, i.e. t = δ = √

λ, both the convergence time
(Fig. 6b, dashed line) and relative error (Fig. 6c, dashed
line) show a dependence on the signal-to-noise ratio which
tends to worsen the circuit response. In order to retrieve
the desired behavior, an unbalanced configuration may be
used, where the transimpedance resistor t is kept constant
(e.g., t = 1) and the regulation resistor δ is swept to match
the problem requirements (e.g., δ = λ). The unbalanced
configuration allows to avoid degradation of both computing
time and relative error (Figs. 6b-c, continuous line). As the
SNR increases, δ’s impact on both metrics tends to cancel out
as δ = λ → 0, leaving only the transimpedance resistor t to
determine the circuit’s performance [10].

Fig. 7a shows the cumulative distribution functions (CDFs)
for 100 uplink transmissions on 100 different 64 × 32 Kro-
necker channels with increasing correlation parameter ρ. The
relative error increases at increasing ρ due to the correspond-
ing increase of the condition number κH of the channel matrix,
as shown in Fig. 7b [10].

Fig. 8. (a) CDF of static error of IMC-RRC, for 100 downlink experiments
on 100 64 × 32 channels with variable channel correlation parameter ρ. With
respect to uplink experiments, the median relative error increases. (b) Relative
error and channel matrix condition number κH as a function of the channel’s
correlation parameter ρ. For ρ < 0.5, the relative error degradation is mostly
independent on the condition number.

Fig. 9. Fully CMOS implementation of n-bits programmable conductive
element, using a nTnR structure. By toggling the selection bits Di , the overall
conductance between the two terminals can be linearly modulated between
G0 and (2n − 1)G0.

Similarly, Fig. 8a shows the CDFs for 100 downlink trans-
mission on 100 different 64 × 32 Kronecker channels with
increasing correlation parameter ρ. While the error is generally
higher with respect to the uplink problem, it can still be
explained by an increase of the condition number κH for
increasing ρ, as shown in Fig. 8b.

Given the intrinsically discrete nature of the problem
nonetheless, a more reliable metric for circuit performance
is SER. We first evaluated the SER for the uplink problem
for an amplifier gain α0 = 80dB and variable equivalent
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Fig. 10. Symbol error rate (SER) as a function of signal to noise ratio (SNR) in uplink decoding for (a) α0 = 80dB and variable number of bits of the
memory device, (b) 6-bits memory device and variable amplifier gain α0. In (c), colormap of the error with respect to a floating-point implementation for
different combinations of α0 and n. All lines represent the average of 10000 experiments on 64 × 32 Gaussian channels (ρ = 0), using 16-QAM modulation.
Owing to the discrete nature of 16-QAM encoding, the low-precision analogue solution is comparable with the floating-point one even with relatively low
α0 and n.

Fig. 11. Symbol error rate (SER) as a function of signal to noise ratio (SNR) in downlink precoding for (a) α0 = 80dB and variable number of bits of the
memory device, (b) 6-bits memory device and variable amplifier gain α0. In (c), colormap of the error with respect to a floating-point implementation for
different combinations of α0 and n. All lines represent the average of 10000 experiments on 64 × 32 Gaussian channels (ρ = 0), using 16-QAM modulation.
Owing to the discrete nature of 16-QAM encoding, the low-precision analogue solution is comparable with the floating-point one even with relatively low
α0 and n.

precision of the memory cell. The latter may be a memristive
cell such as a resistive switching random access memory
(RRAM) [24] or a phase change memory (PCM) [25]. For
an improved precision of the conductive element, the n-
transistor/n-resistor (nTnR) structure in Fig. 9 can be adopted.
In the nTnR structure of Fig. 9, where n = 5 was assumed,
the conductance of the i -th resistor is Gi = G02i with i
ranging from 0 to n − 1 and G0 = 1/R0 being a reference
unit conductance. The resistor can be a memristive device or
an integrated resistance, e.g. a polysilicon resistor, with fixed
conductance Gi .

Fig. 10a shows the average SER as a function of SNR for a
16-QAM modulation. Even with relatively low 5-bit precision
memories, the RRC is capable of achieving the same SER of
a 64-bit floating point implementation, thus closely matching
the theoretical SER provided by [26], [27]:

SERth = 1 −
(

1 − 2(
√

M − 1)√
M

Q

(√
3SNR

M − 1

))2

(41)

The SER was then evaluated for a given memory precision
of n = 6 bits and varying the open-loop gain α0 of the

operational amplifier. The limited gain α0 results in an error
signal between the input terminals of each amplifier in Fig. 5,
thus affecting the state equations Eqs. (30) and (40). Fig. 10b
shows the average SER as a function of SNR, highlighting
that even for relatively small gains above 40dB, the error
rate is comparable to a floating-point implementation and
the theoretical SER. The trade-off between gain and preci-
sion is summarized in Fig. 10c, showing the relative error
with respect to the floating-point implementation, computed
as:

Error = �SERFP64 − SERRRC�2

�SERFP64�2
[%] (42)

Similar results were obtained for the downlink transmission.
In particular, Fig. 11a shows the calculated SER as a function
of SNR for variable bit precision of the memory element
for a constant gain α0 = 80dB, while Fig. 11b shows the
SER as a function of SNR for variable gain α0 and fixed bit
precision n = 6. The comparison with a digital computation in
floating point double precision indicates excellent accuracy of
the RRC for n = 6 and α0 = 60dB. With respect to the uplink
problem, gain and precision requirements are generally higher
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Fig. 12. (a) Benchmark framework. Crosspoint arrays with their own program peripherals are feedback-connected to programmable TIAs. Inputs are provided
by means of current DACs, and outputs are read by means of voltage ADCs. (b) Timing phases of IMC-RRC. After programming devices in a Tp time, inputs
are applied and outputs are sampled after circuit convergence, for an overall Tc time. (c) Timing phases of a digital computing system. Data is transferred
from memory to CPU, where computation takes place in a sequence of FLOPs in TC PU time. When computation is over, data is transferred back to memory.

Fig. 13. Energy consumption and area breakdown of IMC-RRC, averaged on 4000 simulations of uplink and downlink in high and low SNR conditions
for a 256 × 128 MIMO system. (a) Area and (b) energy breakdowns of IMC-RRC using the 6T6R-CMOS weighted-resistor of Fig. 9 as memory element.
(c) Area and (d) energy breakdowns of IMC-RRC using an ideal 1R-RRAM device as memory element. 1R-RRAM outperforms 6T6R-CMOS in terms of
area occupation, but consumes more energy in the programming phase.

for the downlink case, due to both the increased circuit error
and the power normalization procedure. Nonetheless, Fig. 11c
highlights that an open-loop gain of 60dB and a 6-bits memory
precision allow to match the floating-point SER within 5% in
both downlink and uplink.

V. BENCHMARK AND SCALING STUDIES

To assess the RRC performance in realistic conditions,
we considered the circuit architecture of Fig. 12a, where
two resistive memory arrays are connected to two vectors of
programmable transimpedance amplifiers (P-TIAs), with two
vectors of current-based digital-to-analog converters (C-DACs)
and two vectors of voltage-based analog-to-digital converters
(V-ADCs). The program peripherals have the function of pro-
gramming the memory array with the estimated channel matrix
H for uplink/downlink transmission or the pilot matrix P for
channel estimation.

Fig. 12b schematically shows the sequence of operations
performed by the RRC during a computation. First, the

memory arrays are programmed using the program peripherals
in a time Tp . Analog input currents are then applied via
the C-DACs, thus initiating the transient evolution of the
output voltages. Once the output voltages have reached a value
sufficiently close to the steady state, they are sampled and
converted to the digital domain by the corresponding V-ADCs.
We call Tc the total time required by the circuit to compute
the results, including the C-DACs and V-ADCs latency and
the analogue transient time, i.e Tc = TD AC + Ttran + TADC .
For comparison, Fig. 12c illustrates the computation in an
equivalent digital system. Here, data are first transferred from
the memory to the CPU, then the RZF algorithm is digitally
carried out in a sequence of floating-point operations (FLOPs)
within a total time TC PU . Finally, the computed output is
transferred back to memory. The overall time overhead for
data movement is assumed equal to the computing time [29],
TDM = TC PU .

Fig. 13 shows the results of 4000 benchmark simulations
of the RRC, where we changed the SNR for both uplink and
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Fig. 14. Comparison of (a) throughput, (b) energy efficiency and (c) area efficiency for a 256 × 128 MIMO system. Three different implementations
are compared, namely (i) IMC circuit with a 1R RRAM crosspoint array, (ii) IMC circuit with a 6T6R CMOS memory array, and (iii) fully-digital GPU
implementation [28]. While both the 6T6R CMOS cell of Fig. 9 and a 1R RRAM cell implementation achieve the same throughput of the GPU implementation
(a), the former shows a better energy efficiency figure (b), thanks to the reduced programming overhead. The 1R RRAM implementation shows a better area
efficiency (c) thanks to the improved area density of the memory array.

Fig. 15. Scaling projections for (a) throughput, (b) energy efficiency and (c) area efficiency. All figures of merit of RRC scale favorably with size. Particularly,
the 1R-RRAM IMC implementation catches up on energy efficiency with the 6T6R-CMOS weighted resistor-based for large systems, and outperforms both
6T6R-CMOS IMC and GPU in area efficiency. The reduced programming latency for 6T6R-CMOS IMC implementation results in superior throughput with
respect to both 1R-RRAM RRC and GPU.

downlink transmissions. In all cases, we considered single-pole
operational amplifiers with GBWP = 500 MHz and α0 =
80dB. The supply voltage and currents were assumed to be
1.2 V and 10 μA, respectively, corresponding to a standby
power dissipation of 12 μW and requiring a 50 μm2 area in
a CMOS 14 nm technology [30]. For the C-DACs, we consid-
ered an 8-bit current converter with 0.4 ns latency, 0.16 mW
leakage power and 3.07 μm2 area [31]. For the V-ADCs,
we considered a 10-bit converter with 0.5 ns latency, 12.5 pJ
conversion energy and 0.01 mm2 area [32]. Fig. 13 shows
the breakdown of the circuit area (a) and energy consumption
(b) for the RRC. Being the circuit inherently memory agnostic,
i.e. its operation is independent of the technology chosen to
implement the elements of crosspoint arrays, we considered
two possible realizations of the memory elements, namely
an RRAM crosspoint or the nTnR-CMOScell in Fig. 9 at
6-bit precision (6T6R). For the 6T6R cell, we considered the
configuration bits Di to be stored in a static random access
memory (SRAM) thus requiring a programming energy of
3 fJ [33]. Polysilicon resistors (Rs = 400 
 [34]) are assumed
as conductive elements, resulting in an overall cell area of
∼ 0.46 μm2 in 14 nm technology. The least resistive state
corresponds to a resistance of 10 k
, which is obtained for

all select bits Di being at high value. Notably, the overall
circuit area is dominated by the memory array, which quickly
supersedes the area occupation of the operational amplifiers.

Figs. 13c and d show a similar breakdown for area and
energy, respectively, for a 6-bit 1R-RRAM device with a
resistance ranging from 100 k
 for the low-resistance state
(LRS) to 100 M
 for the high resistance state (HRS), and an
average programming energy of 0.6 pJ [35]. It is clear that
the 6T6R-CMOS structure is beneficial from the viewpoint of
programming energy, however is outperformed by 1R-RRAM
devices in both area occupation and energy consumption in
the computing phase, thanks to the higher density and lower
conductance of the RRAM technology.

To assess the equivalent throughput, energy and area effi-
ciency, we considered the computational complexity of RZF
given by [14]:

O(2N3
t + 6N2

t (Nr + 1) + 6Nr Nt + 2Nt ) (43)

for both uplink and downlink transmissions. For instance,
assuming Nr = 32 and Nt = 16, the computational complexity
is equivalent to 61984 FLOPs. Fig. 14 shows the calculated
throughput (a), energy consumption (b), and area efficiency
(c) for 6T6R-CMOS- and 1R-RRAM-based RRCs compared
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to a commercial FP32 GPU [28]. The throughput was calcu-
lated by:

Throughput = FLOPs

Latency [s]
(44)

and was measured in tera-FLOPs per second or TOPS. For the
IMC system, the latency is given by the sum of programming
time Tp and of the computing time Tc for RRC, i.e. TI MC =
Tp + Tc. For the GPU implementation, the latency is given by
the sum of the data transfer time and computation latency, i.e.
TG PU = TDM + TC PU � 2TC PU . The latter was estimated
considering the reported computational throughput at FP32
precision and the equivalent number of FLOPs for a 256 ×
128 MIMO system following Eq. (43), yielding a computation
latency of TC PU = 1.82 μs. The energy efficiency was
calculated by:

Energy efficiency = FLOPs

Energy [J]
(45)

and was measured in TOPS/W. For the IMC system, we eval-
uated both static and dynamic power consumption for all
circuit elements (programming peripherals, V-ADCs, C-DACs,
operational amplifiers and memory arrays), totalling a mean
energy consumption of 0.32 μJ for the 6T6R-CMOS and
0.76 μJ for the 1R-RRAM implementations respectively. For
the GPU implementation, energy consumption was estimated
considering the reported power consumption of 250 W and the
estimated latency TG PU , for a grand total of 454.56 μJ. The
area efficiency was calculated as:

Area efficiency = Throughput

Area [m2]
(46)

and measured in [TOPS/mm2]. While the digital computation
shows a similar throughput with respect to both nTnR- and
RRAM-based implementations of RRC, the IMC approach
exhibits an increase in energy efficiency by ∼1500× and
an increase in area efficiency by ∼6000×. In particular, the
6T6R-CMOS implementation outperforms the 1R-RRAM one
from the viewpoint of energy efficiency, thanks to the reduced
programming energy and latency. On the other hand, the
RRAM implementation outperforms the CMOS one from the
viewpoint of area efficiency, thanks to the high density of
RRAM devices.

To assess the scaling of the performance metric, Fig. 15
shows the calculated throughput (a), energy efficiency (b), and
area efficiency (c) as a function of Nr for IMC and digital
implementations. All figures of merit show a positive scaling
behavior with size of the MIMO system, where the numbers
of receivers and transmitters were increased at constant ratio
Nr /Nt . Scaling projections reveal that, for sufficiently large
system, the IMC approach overcomes the GPU performance
in all aspects, including throughput, owing to the intrin-
sic high parallelism of IMC. In particular, IMC shows an
increase of throughput with O(N2

r ), while energy efficiency
increases with O(N0.5÷1

r ), with 6T6R-CMOS and 1R-RRAM
implementations featuring similar efficiency at large Nr . The
area efficiency remains constant for the CMOS-based 6T6R
implementation due to both area and throughput scaling as

O(N2
r ). On the other hand, the RRAM-based IMC scales

favorably also in area efficiency owing to the reduced area
consumption of the memory array and the resulting dominant
role of the OAs area scaling trend as O(Nt ). These results
support IMC for energy efficient solution of MIMO, especially
for aggressively massive implementations with large numbers
of antennas and users.

VI. CONCLUSION

We present a novel IMC-based ridge regression circuit,
capable of accelerating all typical operations of a massive
MIMO transaction, including channel estimation, uplink and
downlink transmissions. We study its static error with respect
to floating-point precision computers and assess the design
space for amplifiers and memory cells by evaluating the
SER for various memory bit precisions. Our results indicate
that, even with relatively low gains and memory precision,
IMC-RRC is capable of closely matching the results of a
digital computer with FP64 precision. The circuit is then
benchmarked in realistic operating conditions in a custom
simulation framework, showing an improvement in energy
and area efficiency by 1500× and 6000×, respectively, for
medium-scale system sizes. Scaling projections to large scale
systems allow to estimate improvements in throughput, energy
and area efficiency by 2 to 4 orders of magnitude. These
results support IMC as a strong candidate for highly-efficient,
low-power, compact MIMO accelerators in next-generation
architectures.
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