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Abstract— The advent of nanoscale memristors raised hopes
of being able to build CMOL (CMOS/nanowire/molecular)
type ultra-dense in-memory-computing circuit architectures.
In CMOL, nanoscale memristors would be fabricated at the
intersection of nanowires. The CMOL concept can be exploited
in neuromorphic hardware by fabricating lower density neurons
on CMOS and placing massive analog synaptic connectivity
with nanowire and nanoscale-memristor fabric post-fabricated
on top. However, technical problems have hindered such devel-
opments for presently available reliable commercial monolithic
CMOS-memristor technologies. On one hand, each memristor
needs a MOS selector transistor in series to guarantee form-
ing and programming operations in large arrays. This results
in compound MOS-memristor synapses (called 1T1R) which
are no longer synapses at the crossing of nanowires. On the
other hand, memristors do not yet constitute highly reliable,
stable analog memories for massive analog-weight synapses
with gradual learning. Here we demonstrate a pseudo-CMOL
monolithic chip core that circumvents the two technical problems
mentioned above by: (a) exploiting a CMOL-like geometrical chip
layout technique to improve density despite the 1T1R limitation,
and (b) exploiting a binary weight stochastic Spike-Timing-
Dependent-Plasticity (STDP) learning rule that takes advantage
of the more reliable binary memory capability of the memristors
used. Experimental results are provided for a spiking neural
network (SNN) CMOL-core with 64 input neurons, 64 output
neurons and 4096 1T1R synapses, fabricated in 130nm CMOS
with 200nm-sized Ti/HfOx/TiN memristors on top. The CMOL-
core uses query-driven event read-out, which allows for mem-
ristor variability insensitive computations. Experimental system-
level demonstrations are provided for plain template matching
tasks, as well as regularized stochastic binary STDP feature-
extraction learning, obtaining perfect recognition in hardware
for a 4-letter recognition experiment.
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I. INTRODUCTION

OVER the last fifty years, microchip technology has
been shaped by an admirable, aggressive trend towards

miniaturization known as Moore’s Law [1], [2]. At the time
of writing, Intel is already fabricating its new Loihi-2 neuro-
morphic chip in its Intel-4 node (7nm) technology [3] and has
a roadmap for upscaling it to 18A (1.8nm) silicon technology
by 2025 [4]. However, the silicon crystal structure has a
unit lattice of 0.543nm with a nearest Si atom distance of
0.235nm [5]. This severely limits Moore’s law in terms of the
viability of simply continuing to miniaturize Si based devices.
In the context of molecular electronics [6], Likharev proposed
the concept of CMOL (CMOS + molecular electronics)
[7], [10], by which nano-scale molecular devices could be
combined with CMOS technology, exploiting the third dimen-
sion and thereby boosting overall device density. When the first
link between resistive thin-film switches and memristors was
reported in 2008 [12], many researchers had great expectations
because these devices could potentially be sandwiched at the
intersection of nano-wires, implementing very high density
non-volatile analog memories massively interconnected with
lower-density CMOS neurons [11], [12], [13]. Hopes were also
raised that CMOL-type hardware structures could be exploited
to fabricate massively interconnected neuromorphic systems
capable of natural on-line learning [14], [15], [16].

Reality quickly showed, however, that memristors suffer
from several technical limitations, which have so far hindered
the commercial development of true CMOL chips for both
neuromorphic and other types of applications. In this work,
we employed a hybrid CMOS-Memristor technology [17]
which uses filamentary HfOx memristors. This type of mem-
ristor requires an initial step in which filaments are formed by
applying a relatively high voltage (in the range of 4-5V) while
limiting the maximum current flowing through the device.
To do this, each memristor requires an in-series “selector”
device, which in this technology is an nMOS transistor.
The combined series-connected nMOS-memristor structure
is typically referred to as a “1T1R” memory element or,
in the context of neuromorphic computing and engineering,
as “1T1R synapses”.

Another technical limitation of currently available filamen-
tary HfOx memristors is their poor capability for programming
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Fig. 1. Illustration of the CMOL approach with an N×N array of 2D cells,
each with one input and one output, all fully-connected.

and holding analog values robustly and reliably. Some progress
in this respect is being made recently [18], [19], but the analog
programming requires slow iterative procedures because of
the inherent stochastic behavior and relaxations observed. The
practical recommendation is to use them as binary memory
elements by setting them to either a high resistance state
(HRS), with a typical resistance in the range of 100k� or
above, or a low resistance state (LRS), with a typical resistance
in the range of 10−20k�. These memristors also show strong
inter-device mismatches in their HRS/LRS values, and high
write/erase cycle-to-cycle variability for the same device.

Consequently, circuit and system designers need to cir-
cumvent these technical limitations by developing electronic
circuit techniques and architectures compatible with such
limitations. Here we demonstrate, for the first time, a CMOL-
like monolithic neuromorphic core fabricated in low-power
130nm CMOS-memristor technology. On one hand, we pro-
pose a geometrical layout arrangement technique that allows
1T1R synapses and neurons to share area within a unit
tile, thus approaching the original CMOL concept. On the
other hand, we exploit a previously reported STDP (spike-
timing-dependent plasticity) learning rule variant [21] which
relies exclusively on binary weights by using stochasticity to
control full-range rather than gradual weight updates. Thus,
we demonstrate a physical implementation of a memristor-
based binarized Spiking Neural Network with an unsupervised
STDP-like learning method, which can be an alternative or
complementary to supervised backpropagation binary neural
networks [22].

The paper is structured as follows. Next Section introduces
the CMOL concept and how we have adapted it to the
present RRAM technology constraints. Section III describes
the stochastic binary STDP learning rule used. Section IV
describes the implemented CMOL-core chip. Section V pro-
vides extensive experimental results, and finally Section VI
provides the conclusions and future outlooks. Section VII
includes an appendix with a brief illustration of a more generic
synaptic crossbar.

II. PSEUDO-CMOL MEMRISTOR CROSSBAR

The CMOL approach or architecture was proposed in
2005 by Likharev [7] in the context of molecular electronic
devices. The basic idea is illustrated in Fig. 1, where an
N × N 2D array of cells lies under a slightly tilted nanowire
crossbar.

Each cell in the array has one input terminal (for example,
the red dots in Fig. 1) and one output terminal (for example,
the green dots in Fig. 1). Each output terminal (green) of
each cell connects to a slightly tilted vertical nanowire. Each
input terminal (red) of each cell connects to a slightly tilted
horizontal nanowire. Each vertical nanowire connects only to
one output (green) terminal, and each horizontal nanowire
connects only to one input (red) terminal. The tilted angles

Fig. 2. Illustration of CMOL arrangement with AER communication.

are set in such a way that this is guaranteed. At the crossing
of each vertical and horizontal nanowire there is a synaptic
device. The scheme represented in Fig. 1 therefore shows a
system with N ×N = N2 pre-synaptic circuits fully connected
to N × N = N2 post-synaptic circuits using N2 × N2 =
N4 memristors.

In the case of a Spiking Neural Network (SNN) System, the
cells in Fig. 1 would be receiving and sending spike events
through Address-Event-Representation (AER) communication
channels, for example compact serial AER-links [8], [9]. AER
assigns to each neuron an address or ID that identifies it.
Every time a neuron generates a spike, its address (or ID)
is communicated to its destinations through this communi-
cation network, which can be intra-chip, inter-chip, inter-
PCB, etc. High-flexibility programmable inter-connectivity,
either between the internal layers or between other layers
allocated to other CMOL crossbars, could thus be configured
through the use of AER mappers and routers. Fig. 2 illustrates
a multi-chip system assembled on a PCB (printed circuit
board), where chips communicate through AER with their
neighbors in the same PCB or outside the PCB. Each chip
contains an array (or arrays) of tiles massively interconnected
with a nano-scale memristive synaptic fabric. Each tile would
contain one or more neurons plus additional communication
and configuration circuitry.

In the chip presented in this paper, the memristor technology
used was not yet ready to implement the CMOL concept
exactly as described above, because each nano-scale memristor
required one non-nanoscale NMOS transistor in series. This
memristor-NMOS compound is called 1T1R. As a result, each
synaptic element not only resulted in a non-nanoscale area of
3um × 5um (as illustrated in Fig. 3(a)), but also required
CMOS real estate. In the present chip we therefore used a
pseudo-CMOL approach, in an effort to adapt the original
CMOL concept to the restrictions of the available technology.
The transformation of the 64 × 64 computational crossbar
architecture into the corresponding physical pseudo-CMOL
layout architecture is illustrated in Fig. 4.

Fig. 4 shows, on the left, a standard 64 × 64 synaptic
crossbar with 64 pre-synaptic neurons at the bottom and,
on the right, 64 post-synaptic neurons. From Fig. 3(a) we
know that in our technology each 1T1R synapse has a size
and pitch of 3μm × 5μm. To maximize crossbar density, the
64×64 synapse should therefore be placed at a 3μm horizontal
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Fig. 3. (a) 1T1R cell physical layout of size 3 μm × 5 μm. Memristor area
is about 200nm × 200nm. The thick-oxide nMOS transistor requires a width
of W = 6.7 μm and a length of L = 0.5 μm and is split into two fingers.
(b) Layout of one macro-cell (or tile) with 8 × 8.1T1R synapses, one pre-
synaptic neuron and one post-synaptic neuron. The macro-cell has a size of
55 μm × 51 μm, and can be assembled into arrays of macro-cells.

pitch and a 5μm vertical pitch. However, this would require
a presynaptic neuron layout with a 3μm pitch, resulting in
very thin but extremely long, practically non-viable, cells.
Similarly, post-synaptic neurons would require a vertical pitch
of 5 μm, resulting again in cells that would be extremely
wide if viable at all.1 To avoid this and produce a realistic,
viable layout, we used the following pseudo-CMOL approach
to draw the topological layout. The 64 pre-synaptic and post-
synaptic cells were grouped together in groups of 8, as shown
in the center of Fig. 4. The 64 × 64 synapses were grouped
into 8 × 8 sub-groups, each having 8 × 8 synapses. The
layout was divided into 8 × 8 identical macro-cells or tiles.
Pre-synaptic neurons 1 to 8 were assigned to the first column
of macro-cells. Pre-synaptic neurons 9 to 16 were assigned to
the second column, and so on. Similarly, post-synaptic neu-
rons 1 to 8 were assigned to the first row of macro-cells (see
Fig. 4, center). Post-synaptic neurons 9 to 16 were assigned
to the second row, and so on. The 64 × 64 synaptic crossbar
was drawn in such a way that the groups of 8 × 8 synapses
were drawn at maximum density of pitch 3μm × 5μm, but
each 8 × 8 group was drawn in the upper left corner of
each macro-cell. This resulted in the layout shown in Fig. 4
right, where each macro-cell includes an 8 × 8 subset of
the synaptic crossbar, one pre-synaptic neuron and one post-
synaptic neuron. This way, the layout of the neurons could
be made much more compact. All synapses preserved their
original 64 × 64 synaptic crossbar connectivity, since the
64 horizontal rows and 64 vertical lines were unaltered, with
pre-synaptic neuron 1 connecting only to the first column of
synapses, pre-synaptic neuron 2 only to the 2nd column, and
so on. Likewise, post-synaptic neuron 1 connected only to
the first row of synapses, post-synaptic neuron 2 only to the
second, and so on. The connectivity of synapses, pre-synaptic
neurons, and post-synaptic neurons was thus preserved. The
Appendix illustrates a more generic layout arrangement.

Fig. 3(b) shows the final layout of one such macro-cell,
with the 8 × 8 sub-array of 1T1R synapses at top left, the
layout of the post-synaptic neuron at bottom right, and the
pre-synaptic neuron at top right. The 8 × 8 array of macro-
cells, including 64 × 64 = 4096 1T1R synapses + 64 pre-
synaptic neurons + 64 post-synaptic neurons, occupies an area
of 440μm × 408μm.

1Given the layout rules of the technology used, the limited number of metal
layers for routing (4), and the complex structures within the pre- and post-
synaptic neurons in Fig. 3(b), we are certain such a fine pitch layout would
have been impossible, besides introducing massive parasitic couplings.

In practice, we do not use tilted lines to emulate CMOL.
Fig. 5(a) shows a simplified overview of the CMOL-core
layout with 8 × 8 unit macro-cells, and Fig. 5(b) shows one
such macro-cell. The vertical (pink) lines are fabricated in
metal-3 while the horizontal (green) ones in metal-4. 1T1R
devices are at their respective intersections. The unit macro-
cell in Fig. 5(b) includes a horizontal segment (fabricated in
metal-2) named to_col that crosses all eight columns crossing
the macro-cell, and a vertical segment to_row (fabricated in
metal-1) that crosses all eight rows crossing the macro-cell.
The layout of the macro-cell is unique and both segments
to_col and to_row are not connected to any column or row.
The macro-cells are connected at the next hierarchy level,
as indicated with thick dots in Fig. 5(a). This connectivity
pattern complies with the pre- and post-synaptic neuron label-
ing presented in Fig. 4 right, and makes unnecessary to tilt the
wires as in Fig. 1 (we tilt the “lines” of interconnecting dots
instead). In our fabricated macro-cell, the pre-synaptic neuron
output is hard-wired to segment to_col, and the post-synaptic
neuron output to segment to_row. By adding a minimum of
switches it is straight forward to swap these connections, and
thus transpose the weight matrix [37], [38], [39]. However, for
the STDP application we were targeting this was not required.
The peripheral decoders activate one pre-synaptic neuron in
one of the macro-cells and one post-synaptic neuron in another
one (or same) simultaneously, to access one specific memristor
for forming, writing, erasing or reading. This would be the
programming mode. In inference mode, one full column is
activated at a time, while all post-synaptic neurons would be
integrating.

Additionally, the event read-out scheme implemented is
based on the query-driven approach [23]. In this approach
post-synaptic neurons are accessed by querying their address,
which allows to dynamically adjust their thresholds individ-
ually, a key feature for both (a) the implemented STDP rule
discussed later and (b) allowing to calibrate for mismatch each
neuron.

III. HARDWARE IMPLEMENTATION OF STOCHASTIC

BINARY STDP LEARNING

Spike-timing-dependent plasticity (STDP) [24] is a bio-
logical mechanism for synaptic learning which refines the
traditional Hebbian rule [25]. Different kinds of STDP algo-
rithms have been proposed for machine learning and neuro-
morphic computing applications [26], [27], [28], [29]. After
the emergence of memristor devices, it was demonstrated
that STDP behavior emerges naturally when specially shaped
pre- and post-synaptic spikes are applied at both sides of a
memristor [14], opening up the possibility of implementing
STDP learning in neuromorphic hardware [15], [30].

For one single synapse connecting two neurons, a generic
STDP rule modifies the synaptic weight wi j as a function ξ of
the time difference �t between pre- and post-synaptic spikes
(�t = tpost − tpre). The typical time-based STDP function
is shown in Fig. 6(a), where positive (causal) �t increases
the weight (synaptic potentiation) and negative (anti-causal)
�t decreases the weight (synaptic depression). Smaller values
of �t (in absolute value) produce larger weight changes. The
right-hand side (�t > 0) weight update is triggered whenever
a post-synaptic neuron generates a spike, updating all synapses
connected to it with a pre-synaptic neuron spike not older than
Tmax . Similarly, the left-hand side (�t < 0) weight update is
triggered whenever a pre-synaptic neuron generates a spike,
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Fig. 4. Transformation of a 64 × 64 memristive crossbar core into CMOL-like layout.

Fig. 5. (a) Simplified CMOL-core layout overview consisting of 8 × 8 unit
macro-cells. (b) Layout overview of one macro-cell.

updating all synapses connected to it with a post-synaptic
neuron spike not older than Tmin . Different computational
simplifications for the update function ξ have been proposed
to boost computing speed. Some of these simplifications
were exploited in this study for more efficient, compact
hardware.

The first simplification, illustrated in Fig. 6(b), defines a
narrow positive time window (0, Tp) where a fixed amount
of potentiation is applied, while a fixed depression is applied
otherwise, but only for positive values of �t between Tp
and Tmax . Note that only the right-hand side is implemented,
thus triggering weight updates only after post-synaptic spikes.
An extension of this learning function proposes extending
Tmax → ∞ [31], [32], [33], forcing weight updates for all

Fig. 6. Illustration of different SDTP update functions. (a) Time-domain
Original, (b) time-domain one-sided narrow-positive, (c) rank-order narrow
positive, (d) rank-order narrow positive stochastic.

synapses connecting to a firing post-synaptic neuron, even in
the absence of any prior pre-synaptic spike.

In another simplification or abstraction, some researchers
have proposed versions of the STDP function where the time
variable has been removed and substituted by the rank-order of
occurrence of spikes [31], [34], [35], [36]. This alternative con-
sists of ordering the spikes as they are generated and ignoring
their precise times. Fig. 6(c) shows the order-based learning
function equivalent to Fig. 6(b), where ξ is a function of the
rank-order difference of occurrence of spikes n. This simplified
updating rule still needs to be able to implement small changes
�wi j in the synaptic weights, and thus requires continuous
analog or, at least, multi-valued memristive devices. In the
study described in this paper, the memristive devices available
were used as binary devices, meaning that a synapse was
either fully ON or fully OFF. For this reason, we used the
stochastic order-based STDP function shown in Fig. 6(d)
[20], [21]. Every time a post-synaptic neuron generated a
spike, this function assigned a probability of long-term poten-
tiation PLT P to its synapses with a pre-synaptic spike sep-
arated by 0 < �n < Np in the rank-order, and assigned
a probability of long-term depression PLT D to the rest of
its synapses. The weights were updated only when a post-
synaptic spike was generated, but they remained unchanged
with the generation of pre-synaptic spikes [21]. As each
synapse was implemented by a memristor, we were able to
associate binary synaptic values to both the high resistive state
(HRS) and the low resistive state (LRS) of the memristive
device.
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Fig. 7. (a) Evolution of the neuron thresholds θth of the 64 post-synaptic
neurons during STDP learning using a behavioral model of the algorithm in
Matlab. The input patterns for training were the ones shown in Fig. 15(a).
A neuron state was defined between 0 (reset state) and 1. All neurons had
an initial threshold θth = 0.5, and every time a single neuron generated a
post-synaptic spike, the algorithm increased it by 0.04 (saturating at 1) while
its input synapses were updated following the STDP rule. This plot illustrates
the evolution of these thresholds. (b) 2D representation of the final values
of the synaptic weights associated to the 4 post-synaptic neurons in (a) with
the same colors. The white pixels represent memristors in HRS, while the
colored ones correspond to LRS pixels. The yellow neuron did not learn
any feature (random weights and minimum threshold), while the red neuron
clearly learned a feature present in several letters. The green and blue neurons
showed different intermediate learned features.

Although stochastic binary STDP was proposed origi-
nally in 2013 [20], for realistic size systems a number of
regularization techniques are required [21]. In the rest of
this paper we will use acronym SB-STDP to refer to this
regularized version. To first illustrate SB-STDP learning we
simulated it in Matlab using behavioral models, with 64 pre-
and 64 post-synaptic neurons and 4,096 binary synapses with
initial random values. Every time a post-synaptic neuron j
reached its threshold, a post-synaptic spike was produced, and
the algorithm would check the list of its pre-synaptic spikes
with �n < Np , identifying the pre-synaptic neurons i1, i2,
etc. which had a direct influence on the spiking post-synaptic
neuron. All synapses given by (i1, j), (i2, j), etc. would be
activated with a probability PLT P , while all other synapses
connected to neuron j would be deactivated with a probability
PLT D . At the same time, the threshold of output neuron j
would be potentiated to make that neuron less sensitive (e.g., it
would become more difficult for this neuron to fire again).
This way, after receiving enough pre-synaptic spikes, several
post-synaptic neurons would become more specific to certain
input features. Fig. 7 illustrates MATLAB simulations of the
proposed SB-STDP rule when the 64 input neurons received
the simple binary 8 × 8 visual input stimuli images shown
later in Fig. 15(a). Fig. 7(a) shows the evolution of the neuron
thresholds as their respective synapses were updated after
firing. The neurons that experienced threshold increases were
the ones learning patterns. In Fig. 7(a), we have highlighted
4 neurons with thicker lines. Three of them (the red, blue and
green ones) underwent learning and the fourth (the yellow one)
underwent no learning. The corresponding learned weights are
shown in Fig. 7(b). As can be seen, the neurons that underwent
learning resemble some of the input patterns from Fig. 15(a),
while the one that did not undergo any learning remains in the
initial random state.

Adaptive threshold per individual neuron can be imple-
mented in our core thanks to the query-driven read-out.
This way, every time an output neuron is accessed for
read-out, its dynamic threshold voltage is set individually
during read-out (see around description of Fig. 9(c) in
Section IV).

Fig. 8. Fully integrated hybrid CMOS-memristor chip. (a) Chip micro
photograph, (b) layout of central pad-ring core circuit, (c) 1T1R synapse,
(d) chip cross-section photograph indicating memristor location, (e) zoom-in
view of memristor.

IV. FULLY INTEGRATED MONOLITHIC NEUROMORPHIC

CMOS-MEMRISTOR CMOL-CORE

In this work we designed, fabricated, and tested an inte-
grated CMOL-like memristor-CMOS core with a memristor
crossbar emulating synaptic connections and CMOS circuits
implementing pre- and post-synaptic neurons. An array of
4,096 (64 × 64) resistive memory devices in a one-transistor-
one-memristor (1T1R) configuration was implemented, inter-
leaved with the CMOS circuitry, in a CMOL-like geometrical
layout approach, using a 130nm CMOS technology with
200nm Ti/HfOx/TiN memristors on top. Fig. 8(a) shows a
photograph of the 5mm2 fabricated chip, which included
several other test circuit structures, surrounded by a red dotted
square, bonded on its package. The CMOL-core described
in this paper is included in the central pad ring, the layout
of which is shown in Fig. 8(b) (lower left green area).
The other fabricated test structures are not shown in this
layout drawing. The CMOL-core, with its 64 input neu-
rons, 64 output neurons, and 4,096 1T1R synapses, occupied
an area of 415μm × 450μm. This area is slightly larger
than the one given by multiplying the single macro-cell in
Fig. 3(b) by 8 × 8 (408μm × 440μm). This slight difference
is given by small overhead introduced when building the final
array.

Fig. 8(c) shows the 1T1R synaptic configuration required for
the 130nm RRAM-CMOS technology used [17]. The nMOS
transistor could not be of minimum size as it needed to drive
high currents to guarantee reliable erase operations. In this
technology it also had to be a thick oxide (i.e., bulkier)
transistor to allow for the higher voltages required for forming,
writing, and erasing. A microscopic view of the monolithic
integration of the 1T1R device within the CMOS substrate
is shown in Fig. 8(d), together with a graphical description of
the fabrication process used to build the memristive devices on
top of the chip [17]. A microscopic view of the Ti-HfO2-TiN
nanodevice is shown in Fig. 8(e).
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Fig. 9. Illustration of the operation of the fabricated on-chip memristor-
CMOS CMOL-core. (a) Crossbar schematic, (b) time waveforms, (c) simpli-
fied post-synaptic circuit schematic.

A. Description of On-Chip Operation

Fig. 9(a) shows a simplified schematic diagram of the
CMOL-core implemented on-chip, with 64 pre-synaptic neu-
rons (each one connected to a vertical line V prei ) and
64 post-synaptic neurons (each one connected to a horizontal
line V post j ), interconnected all-to-all through a crossbar of
64× 64 1T1R synaptic devices. The maximum current allowed
through the memristors is controlled by Vg, which is shared
by the gates of all the selector transistors. Every time a pre-
synaptic neuron i sends an input spike, it reduces the voltage of
V prei from 2.4V to 2.1V for the duration of Tspike as shown
in Fig. 9(b), while V post j remains constant at 2.4V for all
post-synaptic neurons j. This produces a voltage difference
of 300mV in all the 1T1R devices in column i, generating
a current I post j = 300mV/Rij , where Rij represents the
resistance of memristor i j in series with its selector. If the
memristor is at HRS, and assuming an average memristor-
selector series resistance of 100k�, the generated current will
be 3μA on average. If the memristor is at LRS, and assuming
an average memristor-selector series resistance of 10k�, the
generated current will be 30μA on average, as illustrated in
Fig. 9(b). A simplified diagram of the post-synaptic neuron
is shown in Fig. 9(c), where the input current I post j is
compared against a reference Ire f = 10μA. If the input
current is larger than the reference, digital signal Vcomp
will be high and digital signal Vs will be low, enabling a
certain amount of current IC through transistor M1 during
Tspike , discharging capacitor Cmem (125fF) by a given amount.
Transistor M1 acts as a charge pump, with bias voltage Vb
setting the value of Ic, and thus setting the size of the charge
packet δq = Ic × Tspike that discharges membrane capacitor
Cmem . Each charge packet decrements the membrane capacitor
voltage by δVc = δq/Cmem . Membrane capacitor voltage Vc
is compared against a reference voltage Vre f , output voltage
Vo indicating that the threshold has been reached. Neuron
threshold voltage Vre f can be set individually for each output
neuron, thanks to the query-driven read-out, as required for the
STDP rule described in Section III, as illustrated in Fig. 7(a).2

2The query-driven read-out consumes 2 × nlev clock cycles per output
neuron, where nlev is the number of threshold levels per neuron. In our case,
we used an FPGA clocked at 50MHz, so that each clock cycle is 20ns. For a
common threshold for all neurons (nlev =1), the query-driven read-out for the
full core (64 neurons) takes 2.56μs. We typically set nlev = 13 levels, as in
Fig. 7(a), resulting in a worst case 33.3μs.

Fig. 10. Illustration of the operation of the fabricated on-chip memristor-
CMOS CMOL-core.

Consequently, the query-driven read-out, if implemented per
core, is negligible compared to the typical learning dynamics
of spiking neural networks. Transistor M2 is used to reset the
capacitor voltage to V creset > Vre f . Note that in the physi-
cal neuron circuit, incoming spikes discharge the membrane
capacitance and the voltage is reset to a maximum value after
spike generation. This is the opposite of what happens in
biology or in standard computational models, although this
is transparent from the system level operation point of view.
When making the neuron less sensitive by “potentiating” its
threshold, the physical threshold voltage Vre f should therefore
be progressively decreased, as opposed to what happens with
the computational threshold illustrated in Fig. 7(a).

V. EXPERIMENTAL RESULTS

A. Test Setup

Fig. 10 shows a diagram of the complete hardware platform
used to perform the tests described in this work. The dashed
area includes the blocks implemented on-chip while the rest of
the blocks were implemented on an FPGA connected to the
chip. As mentioned earlier, the fabricated chip CMOL-core
included 64 pre- and 64 post-synaptic neurons with a crossbar
of 4,096 1T1R memristors with all-to-all connectivity. On the
FPGA, the following blocks were included:

• A block which sent input spikes to the pre-synaptic
neurons on the chip.

• A block which queried all post-synaptic neurons on
the chip in order to identify which ones reached their
threshold, and reset them.

• A memory block where the pre-synaptic stimulation input
spikes were written before the experiment and where the
post-synaptic spikes were saved during the experiment for
further analysis.

This experimental setup was used to characterize the mem-
ristive network for two different scenarios: a first set of
experiments where the memristors were programmed off-line
beforehand for inference operations and a second experi-
ment where we demonstrated on-line SB-STDP learning per-
formance for unsupervised feature learning and consequent
classification [21].

A photograph of the test setup is shown in Fig. 11, with
the two different boards: a test PCB including the fabricated
chip and some external components used to generate the
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Fig. 11. Illustration of the operation of the fabricated on-chip memristor-
CMOS CMOL-core.

TABLE I

DESCRIPTION OF MEMRISTOR OPERATIONS

Fig. 12. Characterization of all 1T1R synapses at both HRS and LRS.
(a) Measured resistances, (b) measured currents.

necessary voltage and current biases, and a configuration
PCB with a Spartan 6 FPGA. This FPGA was used to run
different algorithms and configure the chip for each specific
test. The tests involved modifying the state of each individual
memristor and implementing inference and stochastic binary
STDP algorithms. Operations associated with modifying or
reading the state of the memristors were controlled by the
FPGA by enabling and disabling certain switches in the
test PCB in order to apply specific voltages to the 1T1R
devices for a given time. There were 4 different operations:
Form, Write, Erase and Read. Each operation required the
application of a voltage pulse to one individual 1T1R struc-
ture. This pulse was defined by its duration (Tspike) and
the 3 voltages Vtop, Vbottom and Vg (see Fig. 8(c)). Table I
details the pulses applied to Form, Write, Erase and Read the
memristors.

B. Characterization of Memristors

Once all 4096 memristor devices had been formed, ‘Erase’
pulses were applied sequentially to all of them repeatedly. The
resistance of each memristor was then measured, obtaining
the values represented by the blue dots in Fig. 12(a), cor-
responding to HRS. ‘Write’ pulses were then also applied
sequentially to all the devices repeatedly, and the resistances
were measured again, obtaining the values represented by the
red dots in Fig. 12(a), corresponding to LRS. Most HRS
values were above 100k� and most LRS values were below

15k�. The current sensing circuit used measured resistance
values of between 6k� and 200k�. Values outside this range
produced saturation. The horizontal line in Fig. 12(a) repre-
sents a 30k� resistance (with 10% mismatch-induced range),
which was considered as a limit between HRS and LRS. Plot
Fig. 12(b) represents the physically measured currents driven
by each 1T1R synapse to the post-synaptic neuron when the
corresponding pre-synaptic neuron sent an input spike. The red
dots represent the current driven when the memristors were in
LRS, the blue dots represent the current driven when they were
in HRS. A current comparator in the post-synaptic neuron
(see Fig. 10(c)) was used to check if the received current
was larger than a threshold, discriminating between an LRS
memristor (active synapse) and an HRS memristor (inactive
synapse) to obtain binary synaptic behavior.

This way, each neuron integrates a fixed charge packet
when the memristor is in LRS, and does not integrate any
charge packet when in HRS. Therefore, the post-synaptic
neuron computing precision is totally insensitive to memristor
variability, as long as the neuron can safely discriminate
between LRS and HRS. The down-side of this approach is that
only one column can be activated at a time during inference.
However, in Spiking Neural Networks (SNNs) input events
typically come in event-by-event. Thus, if the column can be
activated for a short time (200ns in our case, as explained next
in C.1) this is not a severe drawback.

As shown in Fig. 12(b), a threshold of 10μA (with ±10%
mismatch-induced deviation) was sufficient to distinguish
clearly between the two cases. In this figure, the full 4k
memristor array was set repeatedly to HRS or LRS until the
measured resistances were clearly separated into two non-
overlapping HRS/LRS regions.

C. Template Matching Inference Experiments

Since each post-synaptic output neuron was connected to
all 64 pre-synaptic input neurons through 64 1T1R MOS-
memristor synapses, for the inference experiments it was
possible to program a template with 64 pixel values for each
output neuron, one value for each synaptic connection. In this
experiment each input neuron encodes the value of a pixel
in an 8 × 8 binary pattern. Since we had 64 output neurons,
a total number of 64 templates could be programmed on the
memristive crossbar, so that every time the input neurons
provided one of the 64-bit input patterns, a single output
neuron would match the most similar pattern and fire an
output spike. Each inference experiment therefore required
a set of 64 8 × 8 binary images. Results are given below
for two template matching inference experiments, each one
with a different choice of input patterns: the first had human-
meaningful patterns of varying numbers of active pixels, and
the second had human-meaningless patterns but with a fixed
number of active pixels.

1) Experiment Using a Set of Selected ASCII Characters:
In a first experiment, a set of 64 ASCII characters was
considered, including 25 capital letters, 25 lower case let-
ters, 10 digits (‘0’ to ‘9’), and plus (‘+’), minus (‘−’),
slash (‘/’) and backslash (‘\’) characters. For all of them,
the corresponding Arial font character was down-sampled to
obtain an 8 × 8 pixel image with 1-bit color depth (binary
image). The 64 characters obtained are shown in Fig. 13(a).
Having different numbers of active pixels, and with a high
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Fig. 13. Experimental demonstration of an inference example on the CMOS-memristor chip. (a) Ideal input patterns, (b) retreived patterns, (c) schematic
crossbar description, (d) simulated raster plot, (e) measured raster plot, (f) simulated confusion matrix, (g) measured confusion matrix.

level of overlap between templates, identifying 64 different
characters is not a trivial problem even under ideal conditions.
For this reason, a perfect performance cannot be expected for
this experiment. However, the aim of this test is to compare
the experimental results with those obtained from behavioral
simulations.

Each of these 8×8 characters was encoded in 64 memristors
connected to a single output neuron, so that each memristor
encoded one pixel and each output neuron was programmed
to recognize one of the 64 characters. For that purpose, the
FPGA was programmed to read all 64 × 64 pixel values
sequentially, and ‘Write’ or ‘Erase’ each memristor, depending
on whether the corresponding pixel was ‘1’ (black) or ‘0’
(white). Once all 64 × 64 memristors in the chip had been
programmed, their resistances were measured, obtaining the
templates shown in Fig. 13(b). Ideally, all memristors asso-
ciated to a black pixel should have had a resistance value of
around 10k� (LRS), while all those associated to a white pixel
should have had a resistance value of around 100k� (HRS).
In practice, we observed a certain degree of stochasticity
in the behavior of the devices: sometimes they were not
programmed properly or attained a resistance value some-
where between LRS and HRS. In any case, all programmed
characters were noisy but clearly recognizable by visual
inspection.

A schematic description of this experiment is shown in
Fig. 13(c). The input image was converted into a spike train
which was sent to the input layer of neurons (each pixel
connected to an input neuron). Each neuron in the output
layer corresponded to a certain template (a character, in this
example). The all-to-all synaptic connections corresponded
to the memristive crossbar, and were programmed with the
pattern values.

After all the synaptic values had been programmed in
the memristive crossbar, the inference experiment consisted
of sequentially presenting all 64 input characters to the
CMOL-core. To do this, each character was converted into
a spike train (one 200ns spike per black pixel) which was
sent to the corresponding pre-synaptic input neuron by the
FPGA. The spike list for each character was repeated several

times. This experiment was first simulated in Matlab using
a behavioral model of the system. For each input spike, the
current flowing through all 64 memristors connected to the
corresponding input neuron was calculated using each spikes’
physically measured resistance. This way, 64 input currents
were obtained for all 64 output neurons. For each output
neuron, the input current was compared to a threshold Ith
(10μA). When the current was larger than this threshold, the
capacitor voltage Vc representing the membrane potential, was
updated by δVc. If the new Vc value reached the neuron
threshold Vth , an output spike was sent and all neurons
were reset.

This experiment was simulated introducing a random vari-
ation to δVc in order to emulate the mismatch between
neurons in the chip. The raster plot obtained is shown in
Fig. 13(d), where the Y-axis represents the 64 output neu-
rons (indicating each one’s programmed character) and the
X-axis represents spike times in milliseconds. Each red cir-
cle indicates the beginning of the playback of each input
character, and each blue cross represents an output spike.
This realistic simulation showed a number of incorrect spikes
which did not match the input character being processed.
Symbol ‘b’, for example, had several black pixels in common
with other symbols, and in the simulation corresponding
to this plot, the output neuron associated to symbol ‘b’
had a larger δVc value. This neuron was therefore likely
to attract other similar input symbols, as represented in
Fig. 13(d) by input symbols ‘L’, ‘c’, ‘d’, ‘h’ or ‘n’, among
others. The corresponding confusion matrix is shown in
Fig. 13(f).

The confusion matrix represents the complete output activity
generated by the network, with the 64 input characters on the
X-axis and the 64 output neurons on the Y-axis. For each
input character, a number of output spikes were generated,
in general by different output neurons. Each position in a
given column encoded the ratio of events generated by each
output neuron while a given input character was being applied,
with white representing 100% of the events and black 0%. For
example, and focusing again on output neuron ‘b’, there were
many active pixels in the corresponding row in Fig. 13(f), with
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Fig. 14. Experimental demonstration of the pre-programmed inference example on the CMOS-memristor chip, with random connected input patterns of
equal length. (a) Ideal input patterns, (b) retreived patterns, (c) simulated raster plot, (d) measured raster plot, (e) simulated confusion matrix, (f) measured
confusion matrix.

TABLE II

COMPARISON WITH SOME REPORTED STATE-OF-THE-ART SPIKING NEURAL PROCESSING CHIPS

several input symbols wrongly recognized as ‘b’. The ratio of
correct spikes over the total number of output spikes obtained
was 60.78% in this simulation. After performing 100 sim-
ulations with different values of δVc (random mismatch),
a statistical distribution of this ratio of correct output spikes
was obtained, with a mean value of 52.93% and a standard
deviation of 7.09%.

The same experiment was then repeated in hardware. For
this, the spike list was written on the FPGA, which was
programmed to the spikes to the chip while scanning and
resetting the output neurons. The generated output spikes
were saved on the FPGA, obtaining the raster plot shown
in Fig. 13(e), which shows very similar behavior to the one
observed in simulation. The corresponding confusion matrix is
shown in Fig. 13(g). When we computed the performance of
the template matching experiment, a ratio of 57.91% correct
spikes was obtained, only slightly lower than the simulated
result. Here too there were some incorrect classifications. For
example, the ‘R’ symbol had many pixels in common with
other symbols like ‘B’, ‘E’, ‘F’ or ‘P’. That explains why all
those input symbols (and others) appear misclassified as ‘R’
in Fig. 13(e) and (g).

2) Experiment Using Random Irregular Connected Shapes:
For a second inference experiment, 64 random irregular
shapes were considered. 64 input images were created with
8 × 8 pixels, each irregular shape being formed by only
8 pixels. To provide a reasonable separation between all

64 images, each shape was generated starting from a different
seed pixel and letting it grow randomly inside the image,
maintaining continuity. Fig. 14(a) shows the chosen set of
64 images.

The 64 irregular shapes were used as inputs for this second
template matching experiment. First, they were encoded in the
memristive crossbar by programming LRS if a template pixel
was black or HRS if it was white. The resistive values of all
the memristors were measured, obtaining the results shown
in Fig. 14(b).

After all the synaptic values had been programmed in the
memristive crossbar, the inference experiment consisted of
sequentially presenting all 64 input symbols to the network,
as in the previous experiment.

This experiment was first simulated using the same Matlab
model, obtaining the raster plot shown in Fig. 14(c) and
the confusion matrix shown in Fig. 14(e). The performance
of this simulation was computed by calculating the ratio
of correct spikes over the total number of output spikes,
obtaining 82.73%.

This experiment was also repeated on-chip, obtaining the
raster plot shown in Fig. 14(d) and the confusion matrix
shown in Fig. 14(f). Behavior was very similar to that
observed in simulation. When the performance of the tem-
plate matching experiment was computed, a ratio of 81.79%
correct events was obtained, slightly lower than the simulated
result.
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Fig. 15. Experimental demonstration of online STDP learning for classification with the CMOS-memristor CMOL-core. (a) Input feature patterns, (b) crossbar
schematic diagram, (c) simulation results, (d) experimental results, (e) random memristor values before training and (f) after training, (g) learned memristor
values grouped by learned features.

This second experiment showed better performance than the
first, both in simulation and experimentally, because the input
patterns were generated with a fixed number of active pixels
and a low ratio of active versus total pixels, while maximizing
the separation between patterns.

D. Total Chip-Core Power and Inference
Energy Measurements

By measuring the chip’s power supply current during repeti-
tive inferences, we obtained an average total current consump-
tion for the CMOL-core of IV dd = 2.3m A. Power supply
voltage for this chip was Vdd=4.8V. Therefore, the total power
chip consumption at maximum inference rate was 11mW.
Inferences had a periodicity of Tp = 220ns (200ns at high
level and 20ns at inter-spike stand-by level). Each input spike
acted simultaneously on nsyn = 64 memristors. Consequently,
the overall chip-total effective energy per synaptic operation
is given by

ES O P = IV dd × Vdd × Tp/nsyn = 37.95 p J (1)

For comparison, Table II shows the energy per synaptic
operation for other related works reported in the literature.
In addition, we also list the equivalent effective total charge
drained from power supply per synaptic operation �QS O P =
ES O P/VD D, for which our approach outperforms the
rest.

E. Stochastic-Binary STDP Learning Experiment
for Classification

A more complex classification experiment was used to
demonstrate the SB-STDP feature learning algorithm on the

CMOL-core, following previous computational work [21].
A set of 4 binary letters (A, B, C, and D) with a resolution
of 32 × 32 pixels was used as input data. Each 1024-pixel
input letter was divided into 16 sub-images, each with a
resolution of 8 × 8 pixels, as shown in Fig. 15(a). Each
8 × 8 sub-image, which represented a “feature” of the full
letter, could be translated directly into spike trains connected
to the 64 input neurons on the chip, as illustrated in Fig. 15(b).
Each input letter was therefore transformed into a sequence
of 16 “features” represented by spike trains. The structure
of the neural network is represented in Fig. 15(b), with two
layers of 64 neurons fully connected and implemented on-chip
(SB-STDP layer) followed by a classification layer imple-
mented off-chip with 4 output classification neurons
corresponding to input letters A, B, C, and D. For the SB-
STDP experiments, we used two different phases: a first
phase to train the SB-STDP feature extraction layer, and a
second phase to train the classifier layer. We also trained
the classification layer with untrained random weights in the
SB-STDP feature extraction layer. This way, the classifier
layer was trained under two different conditions for the prior
feature-extraction layer: one random and one trained through
SB-STDP. This would allow us to assess whether SB-STDP
was improving the discrimination capability of the classifier:
that is to say, whether SB-STDP could learn features that
were sufficiently relevant to help the classifier layer achieve
better performance. We will now briefly describe the learn-
ing phases of the feature extraction layer and the classifier
layer.

1) Stochastic-Binary STDP Feature-Extraction Layer
Learning Phase: The SB-STDP learning algorithm consists
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of several steps. Initially, random weights are assigned to
all synapses in the SB-STDP layer (for each output neuron,
half of the weights are set randomly to ‘0’ and the other
half to ‘1’). In the next step, the network processes a list of
input spikes so that the algorithm can search for correlations
between pre- and post-synaptic spikes and modify the
weights, allowing the output neurons to learn certain features.
While processing the input spikes, the algorithm keeps an
ordered list of the last pre-synaptic neurons which have sent
a spike. The last 64 pre-synaptic spikes are therefore saved,
and all the neurons included in that list are kept as the list
of firing input neurons. Every time a post-synaptic neuron
reaches its threshold, the algorithm uses that list to identify
all synapses with correlating pre- and post-synaptic activity
for that output neuron. All correlated synapses connected
to that neuron are thus set to ON (LRS programmed) with
a certain probability PLT P , and the uncorrelated synapses
connected to that neuron are set to OFF (HRS programmed)
with a certain probability PLT D . The threshold of the active
output neuron is then potentiated in order to make that neuron
more selective, making it more difficult for it to learn new
patterns. Finally, the algorithm reads the total number of
LRS memristors connected to the output neuron and modifies
the state of some of them in order to keep that number
equal to a given fixed value NL RS . If the measured value
is lower than NL RS , some HRS memristors are randomly
chosen to be set to ON to compensate the difference. If the
measured value is larger than NL RS , some LRS memristors
are randomly chosen to be set to OFF to compensate the
difference. These steps were followed to implement the SB-
STDP learning algorithm [21] for the first feature extraction
layer.

2) Classification Layer Learning Phase: To validate the
online SB-STDP learning algorithm, we implemented the
network shown in Fig. 15(b) with the input patterns presented
in Fig. 15(a). A single experiment consisted of sequentially
processing the 16 8 × 8 fractions of letter A, followed by
the 16 fractions of letter B, and then those of letters C and
D. Considering each 8 × 8-pixel fraction as an input stim-
ulus, the whole experiment involved sequentially processing
64 stimuli, each of which belonged to either letter A, B, C or
D. After training both the SB-STDP and the classification
layer, the aim of the experiment was for each classification
neuron A, B, C and D to generate output spikes while the
corresponding input letter was being processed, to indicate
that the letter had been recognized. If classification neuron A
generated a spike while the network was processing a fraction
of letter A, that spike was considered correct, otherwise
incorrect.

The weights in the SB-STDP layer were trained directly
on the chip first, following the algorithm described above,
while the weights in the classification layer were trained using
the following rule. Each classification neuron j ( j = A, B,
C, D) received input spikes through 64 synapses with analog
weights wi j (i = 1 . . . 64). Once the SB-STDP layer had been
trained, the 4 input letters were presented with the SB-STDP
algorithm disabled. Once the 16 stimuli associated to letter
A had been presented, each SB-STDP layer output neuron i
(i = 1 . . . 64) in the chip generated a total number of
spikes Ni A . When all the stimuli associated to letters B,
C and D had been presented, the numbers of spikes Ni B ,

NiC and Ni D were obtained for each of the 64 post-synaptic
neurons in the SB-STDP layer. If all those spikes were
projected to the classification neurons, we were able to add all
numbers of spikes generated by the SB-STDP layer for each
input letter, obtaining NA , NB , NC and ND (N j = �Nij ).
Using these numbers, we assigned each synaptic weight the
value wi j = Nij /N j , where i = 1 . . . 64 represents the index
of an SB-STDP layer output neuron and j = A, B, C, D
represents the index of a classification layer output
neuron.

After using the spikes generated by the chip to train the
classification layer, we used the weights trained for the classi-
fication layer to process those spikes again off-chip, obtaining
a list of spikes generated by the 4 classification neurons. For
each input letter presentation A, B, C and D, we counted
the number of spikes generated by each classification neuron,
obtaining Nclass A , Nclass B , NclassC and Nclass D . Considering
that symbol j would be recognized if Nclass j was larger than
any of the others, a decision was made for each input symbol
based on the largest number of spikes among all the Nclass j .
This decision could be correct or incorrect, depending on
whether j matched the input symbol or not. The decisions
obtained were DA , DB , DC and DD (D j = 1 when correct
and D j = 0 when incorrect). These numbers gave us a number
of correct spikes Ncorrect (spikes generated by the correct
neuron) and a number of incorrect spikes Nincorrect (spikes
generated by the other 3 incorrect neurons together). After
processing the 4 input letters, we obtained the ratio of correct
spikes as Rev = Ncorrect /(Ncorrect + Nincorrect ), and the ratio
of recognized letters as RR = � j D j/4.

This second phase for training weights in the classifica-
tion layer was repeated for random untrained weights in the
SB-STDP layer. For that purpose, all input letters A, B,
C and D were processed by the SB-STDP layer with learning
disabled, and the spikes obtained were used to train and
validate the classification layer, following the same proce-
dure as that described above and obtaining network perfor-
mance measurements (Rev and RR) which can be compared
with respect to those obtained using SB-STDP learning.
This allowed us to assess the benefits of using SB-STDP
feature learning for the first layer in helping the classifier
layer.

To validate the network implemented on-chip, we first
simulated its behavior with Matlab and then compared the
experimental results with the simulation results.

3) Simulation Results: First, we implemented the com-
plete SB-STDP learning algorithms described above, including
the training of both the SB-STDP and classification layers,
in Matlab. In the simulations, we included a simple model of
the mismatch in neuron current Ic that we had found between
post-synaptic neurons on-chip. This mismatch was the dom-
inant non-ideal effect, as it produced a different discharging
slope in the capacitor voltage for each neuron. Due to this
effect, several neurons needed to integrate different numbers
of input spikes before reaching the threshold. We modeled
this mismatch in Matlab by adding a random number to the
capacitor current. More specifically, we used a membrane
capacitor current with a mean value of Ic = 10n A and a
standard deviation of 2.5n A, representing a mismatch of 25%.
This value produced a simulated behavior consistent with the
experimental data. To compensate the mismatch, we modified
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the threshold of each output neuron when SB-STDP learning
was disabled.

In this framework, one single simulation consisted of the
following steps:

• Step 1. We programmed the memristor crossbar with
random values, assigning each memristor either HRS or
LRS with equal probability.

• Step 2. With these random values, we first processed
all the input spikes with SB-STDP learning disabled,
obtaining a list of output spikes generated by the 64 post-
synaptic neurons. Using these spikes, we trained the
classification layer only. Once the classification layer
was trained, we again presented all the input patterns
to the full network. From the spikes generated by the
classification neurons, we computed the ratio of correct
spikes Rev and the recognition rate RR, both with random
weights in the SB-STDP layer.

• Step 3. We then reprocessed all the input spikes with
SB-STDP learning enabled, obtaining a new distribution
of memristor values in the crossbar.

• Step 4. With these learned values, we repeated step 2,
processing the input spikes once again with SB-STDP
learning disabled and using the obtained spikes to train
the classification layer. Finally, the spikes were processed
with the classification neurons. From these final spikes,
we computed Rev and RR with the learned weights in the
SB-STDP layer.

• Step 5. We evaluated the SB-STDP learning algorithm by
comparing Rev and RR before and after learning.

We repeated these steps 10 times, starting with different
initial random weight distributions, to obtain a statistical
characterization of the learning method. The results obtained
are shown in Fig. 15(c), where we can see the statistics of
the 10 experiments. Fig. 15(c) also compares the ratios of
correct spikes Rev and recognition rate RR in the system
with random weights (Step 2) with those in the system with
SB-STDP learning enabled (Steps 3-4). Each plot shows the
median value in red, the range between 25 and 75 percentile
in a blue box, and the maximum and minimum values with
black whiskers. As can be seen, when we used the network
with random values in the memristor crossbar, we obtained
a median value of correct spikes of around 35%, with a
median recognition rate RR of below 80%. When we enabled
the SB-STDP learning algorithm, however, we obtained a
considerable improvement, with median values of more than
60% for correct spikes and 100% for RR. Our next objec-
tive was to reproduce this behavior with the fabricated chip
CMOL-core.

4) Experimental Results: Here we repeated the same tests
using the hardware setup shown in Figs. 10-11. We followed
the 5 steps described in the previous section 10 times, each
time starting with a different initial random weight distri-
bution in the memristor crossbar. The results obtained are
shown in Fig. 15(d), where we can see the statistics of
the 10 experiments. Fig. 15(d) also compares the ratios of
correct spikes Rev and recognition rate RR in the network
with random weights with those in the network with SB-
STDP learned weights. Each plot shows the median value in
red, the range between 25 and 75 percentile in a blue box,
and the maximum and minimum values with black whiskers.
The red crosses represent outliers. As can be seen, when
we used the network with random values in the memristor

crossbar, we obtained a median value of correct spikes of
around 30% and a median recognition rate RR of below 40%.
When we apply the SB-STDP learning algorithm, however,
we obtained a considerable improvement, with median values
of over 50% for Rev and, more importantly, 100% for the
recognition rate RR. These results show that the neuromorphic
CMOL-core can learn online visual patters in its memristor
crossbar by applying an unsupervised SB-STDP learning
algorithm to learn more relevant features, achieving very
good final classification performance in pattern recognition
tasks.

The behavior of the SB-STDP algorithm can be analyzed
in more detail by observing the weight values before and
after learning. Fig. 15(e) shows the measured resistance of all
the memristors in the CMOL-core after programming random
initial weights. The main difference with the simulation plots
is that here we see no exact binary values, because the
figure shows the precise resistance value measured for all the
memristors. Although ideally we expected a binary behavior
for these devices, in practice we found that both Writing and
Erasing operations did not always produce an ideal effect. For
this reason, we did not measure binary resistance values for
all the memristors programmed at LRS or HRS, but instead
observed a wider distribution, including around 3% of the
1T1R devices in the border region between the two binary
values. We also found that occasionally some memristors
did not adopt the required state, i. e., they did not write
or erase when the corresponding pulse was applied. These
non-idealities might be caused by internal defects in some
devices, by the aging effect of modifying their state too
many times, or by a combination of both. More importantly,
however, our work demonstrated the robustness of the network
architecture and the learning algorithm, which provided very
good recognition results even with memristors subject to such
limitations.

Fig. 15(f) shows the resistance values of all the memristors
after SB-STDP learning. Note the difference with the initial
random distribution in Fig. 15(e). Fig. 15(g) shows the learned
patterns for each output neuron arranged as 8×8 images. It can
be seen how most of the patterns learned by the output neurons
correspond to some of the 8 × 8 fractions of letters presented
in Fig. 15(a), as also indicated by the simulation results. Each
neuron therefore learned a certain pattern corresponding to one
of the 4 input letters, allowing the classifier to combine all
64 neurons properly and project them into the 4 classification
neurons. This is a major improvement on the recognition rate
shown in Fig. 15(d).

VI. CONCLUSION AND FUTURE OUTLOOK

This paper presents a full monolithic CMOS-memristor
CMOL-like realization of a neuromorphic event-driven spiking
neural network chip computing CMOL-core. The CMOL-core
comprises 64 pre-synaptic neurons, 64 post-synaptic neurons
and 4,096 1T1R memristive synapses. The monolithic tech-
nology used is CEA-LETI 130nm fabrication process, which
uses ST-Microelectronic’s 130nm CMOS up to the metal-4
layer with added 200nm HfOx memristors on top plus an
additional metal-5 interconnect layer. The CMOL-core and
its 4k memristive synapses have been exhaustively tested and
experimental computing applications have been demonstrated,
including template matching experiments and regularized sto-
chastic binary spike-timing-dependent plasticity (STDP). All
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Fig. 16. Illustration of layout tiling with asymmetric crossbar.

the transistors used in the chip design were thick oxide transis-
tors powered at 4.8V. This was a conservative decision made
at the beginning of the design process, as it was the first time
the technology had been made available outside LETI. The
experimentally measured chip-total energy efficiency gave a
figure of merit of 38pJ per synaptic operation (or, equivalently,
its inverse as 26.3G synaptic operations per second per Watt).
This energy efficiency can, in principle, be easily reduced by a
factor of 3-to-4 by using lower voltage transistors, powered at
1.2V, for all circuit operations except for forming, writing, and
erasing memristors. In this technology, the footprint of one
1T1R synapse is 3μm × 5μm = 15μm2. LETI is currently
finalizing plans to use these memristors in 28nm [43] and
22nm FDSOI technologies [44]. The 1T1R footprints for these
technologies are expected to be 0.112μm2 and 0.047μm2,
respectively. This would potentially improve synaptic density
by 2-3 orders of magnitude, dramatically improving the effi-
ciency of the CMOL approach presented here.

Research is also ongoing into the use of two-terminal
nano-scale selector devices to replace the current 1T NMOS
transistor [45]. These two-terminal selectors would operate
more similarly to a diode (or diffusive memristor) and could
be sandwiched in series with the regular synaptic memristor at
the same nano-wire crossing (named 1S1R). This would open
the doors to true CMOL realizations, as originally envisioned
by Likharev [7], and to multiple layers of synaptic fabrics
in 3D [16]. Such 1S1R synapses could be fabricated with
a pitch of about 100nm in a 22nm technology per layer,
resulting in a synaptic density of 100 synapses per μm2 (this
is, 108 synapses per mm2).3

Another interesting undergoing research for removing the
need of selectors, is the development of forming-free or born-
on memristors [46]. Memristor forming is the most critical
operation demanding the need of a selector, as the forming
voltage is typically higher than the required write voltage.
However, if all memristors have a smaller forming than writing
voltage and the latter is reasonable stable among memristors
within a selector-less crossbar, then it is possible to rely on a
Vwrite/2 scheme [47] to safely address individual memristors
for write or erase operations.

Another ongoing line of research into improving density
and energy efficiency is the use of memristive synapses with
analog weights [19], [48], [49], [50], [51], [52], [53], [54].
Using analog weights for synapses can potentially reduce
the number of synapses and neurons required to perform
the same computations [21]. At the moment there are some
published works reported in exploiting multi-level analog

3The human cortex has about 2000cm2 with 2×1010 neurons and
104 synapses per neuron, resulting in 109 synapses per mm2.

values per memristor, however as of today, for good separation,
low resistances are required [52], [53] and also there is a
stochastic relaxation behaviour that takes several seconds after
programming, thus slowing down the time efficiency of analog
programming [19], [54].

Possible future developments include not only increasing
the CMOL-core size and density by exploiting improved
technologies, but also using these CMOL-cores as modules
in large-scale single- or multi-chip systems where they can
be re-configured and interconnected in a modular fashion
to assemble larger neural layers or multi-layer computing
systems.

Finally, another interesting future outlook would be to
replace the query-driven read-out by a native event-driven
read-out. However, this would require the development of
in-neuron circuitry for adapting and memorizing the individ-
ual firing thresholds for each neuron. Once reliable analog
memristor memories with small incremental and stable updates
become available, this would be a very interesting feature to
add in a compact manner.

APPENDIX

Here we illustrate the more generic case of asymmetric
crossbars. Fig. 4 illustrates the case of a square crossbar with
M = 64 pre-synaptic neurons, N = 64 post-synaptic neurons,
and N × M = 4096 synapses, but with N = M . In general,
however, in multi-layer neural networks, the number of pre-
and post-synaptic neurons is different. For this, let us consider
that M = p× N . Fig. 16 illustrates this case. There are n rows
of tiles and m columns of tiles. But now each tile contains p
pre-synaptic neurons, one post-synaptic neuron, and p synaptic
sub-crossbars each of size n × m. This way, the total number
of post-synaptic neurons is N = n × m, the total number of
pre-synaptic neurons is M = p × n × m, and the total number
of synapses is (n × m × p) × (m × n) = M × N .
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