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Graph Kernels Encoding Features of All Subgraphs
by Quantum Superposition

Kaito Kishi, Takahiko Satoh , Rudy Raymond , Naoki Yamamoto , and Yasubumi Sakakibara

Abstract— Graph kernels are often used in bioinformatics and
network applications to measure the similarity between graphs;
therefore, they may be used to construct efficient graph classifiers.
Many graph kernels have been developed thus far, but to the
best of our knowledge there is no existing graph kernel that
uses some features explicitly extracted from all subgraphs to
measure similarity. We propose a novel graph kernel that applies
a quantum computer to measure the similarity obtained from all
subgraphs by fully exploiting the power of quantum superposition
to encode every subgraph into a feature of particular form. For
the construction of the quantum kernel, we develop an efficient
protocol that clears the index information of the subgraphs
encoded in the quantum state. We also prove that the quantum
computer requires less query complexity to construct the feature
vector than the classical sampler used to approximate the same
vector. A detailed numerical simulation of a bioinformatics
problem is presented to demonstrate that, in many cases, the
proposed quantum kernel achieves better classification accuracy
than existing graph kernels.

Index Terms— Quantum computing, machine learning,
bioinfomatics.

I. INTRODUCTION

AN EFFECTIVE measure of the similarity between graphs
is necessary in several science and engineering fields,

such as bioinformatics, chemistry, and social networking [1].
In machine learning, this measure is called the graph kernel,
and it can be used to construct a classifier for graph data [2].
In particular, a kernel in which all subgraphs are fully encoded
is desirable, because it can access the complete structural infor-
mation of the graph. However, constructing such a kernel is
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known as a nondeterministic polynomial time (NP)-hard prob-
lem [3]. Alternatively, a kernel that encodes partial features of
all subgraphs may be used, but to our best knowledge, this type
of method has not been developed thus far. Previous studies
have instead focused on using different features originating
from the target graphs, such as random walks [3], [4], [5],
graphlet sampling [6], and shortest paths [7].

A quantum computer may be applied to construct a graph
kernel that covers all subgraphs, because of its strong expres-
sive power, which has been demonstrated in the quantum
machine learning scenario [8], [9]. More specifically, the expo-
nentially large Hilbert space of quantum states may serve as
an appropriate feature space where the kernel is induced [10],
[11], [12]. This kernel can then be further utilized for machine
learning. We now have two approaches: the classical-quantum
hybrid approach, in which the quantum computer computes
the kernel and the classical computer uses it for machine
learning, and the pure-quantum approach, in which both the
kernel computation and the machine learning part are both
executed by the quantum computer. Of these two approaches,
in this paper we take the classical-quantum hybrid one.

In fact, there exist a few proposals for the quantum com-
putational approach to construct graph kernels. For example,
Schuld et al. [13] proposed the Gaussian Boson sampler, which
estimates feature vectors by sampling the number of perfect
matchings in the set of subgraphs. Another method used a
quantum walk [14], [15]. However, there is no existing graph
kernel that operates on a quantum circuit to design the features
obtained from all subgraphs.

In this study, we propose a quantum computing method to
generate a graph kernel that extracts important features from
all subgraphs. The point of this method is that the features
of an exponential number of subgraphs can be effectively
embedded to a quantum state in a Hilbert space using quantum
computing. Note that a naive procedure immediately induces a
difficulty; the corresponding quantum state contains the index
component, which may severely decrease the value of the
kernel. It is generally difficult to forget the index component,
as argued in [16], which we simply refer to as removing
the index component; nonetheless, we propose a protocol to
achieve this goal using a polynomial number of operations
(i.e., query complexity) under a valid condition, which is
fortunately satisfied by the features used in typical problems
in bioinformatics. We then provide some concrete protocols
to further compute the target kernel and discuss their query
complexity. Also, we prove that they require fewer operations
to generate the feature vector than a classical sampler used to
approximate the same vector. Hence, up to the difference of
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the sense of complexities, the proposed protocols have quan-
tum advantage. Lastly, we use the above-mentioned typical
bioinformatics problem to investigate whether the classifier
based on the proposed quantum kernel achieves a higher
classification accuracy than existing graph classifiers.

II. RESULTS

A. Algorithm for Graph Kernel Computation

We consider a graph characterized by the pair G = (V , E),
where V = {v1, v2, · · · , vn} is an ordered set of n vertices, and
E ⊆ V ×V is a set of undirected edges. Hereafter, we use the
notation n = |V |. Also, let d be the maximum degree of the
graph G. In this study, G is assumed to be a simple undirected
graph that does not contain self-loops or multiple edges.

The first step of our algorithm is to encode the graph infor-
mation of G onto a quantum state defined on the composite
Hilbert space Hindex⊗Hfeature. The index space Hindex is com-
posed of n qubits, which identifies a subgraph characterized
by a set of vertices represented by the binary sequence x of
length n. The feature space Hfeature is composed of m qubits,
each state of which represents the feature information of a
chosen subgraph x . The value of m depends on what feature
is used. In this study, we consider the case m = O(log n),
where each qubit represents the numbers of vertices, edges,
and vertices with a degree of 1, 2, and 3; refer to Toy Example
section for a concrete example.

Now, we assume an oracle operator that first applies
Hadamard operators to generate the uniform distribution of all
states, encodes the feature information of the chosen subgraph
identified by the index x to the function E(G, x), and finally
generates the feature state |E(G, x)�. Then, using the super-
position principle of quantum mechanics, we can generate the
quantum state containing the features of all subgraphs of a
graph G as follows:

|Ḡ� :=
�

x∈{0,1}n

|x�|E(G, x)�, (1)

where the normalized coefficient is omitted to simplify the
notation.

Next, we aim to compute the similarity of two graphs G
and G�. For this purpose, it seems that the inner product of
|Ḡ� and |Ḡ�� may be used. Note that when the two graphs
have the same feature E(G, x1) = E(G�, x2) with different
indices x1 �= x2, they should still contribute to the similarity
of G and G�, whereas the inner product of |x1�|E(G, x1)� and
|x2�|E(G�, x2)� is zero. Therefore, what we require is the state

|G� :=
�

x∈{0,1}n

|E(G, x)�, (2)

instead of Eq. (1). However, an exponential number of oper-
ations is generally necessary to remove the index state [16].
The first contribution of our study is that our algorithm only
needs a polynomial number of operations to obtain Eq. (2)
from Eq. (1) under a condition that may be satisfied in features
useful for many graph classification problems.

The algorithm to remove the index state is described in
terms of the general discrete function f as follows (see also

Fig. 1. Quantum circuit used to prepare the state (2).

Fig. 1): The state generated via the oracle operation is rewritten
as

1√
2n

�
x∈{0,1}n

|x�| f (x)� = 1√
2n

a�
k=1

�
x∈Xk

|x�|yk�,

where Xk = {x | f (x) = yk, x ∈ {0, 1}n}. Also, a = |Y |,
where Y is the range of f , i.e., Y = {yk}a

k=1. Then, we apply
H ⊗n ⊗ I to obtain

1

2n
|0n�

�
a�

k=1

|Xk||yk�
�

+ other terms, (3)

where the “other terms” contain all quantum states with index
states other than |0n�. We now make a measurement in the
computational basis of the index state; then, the post-selected
feature state obtained when the measurement result is 0n is
given by

1��a
k=1 |Xk |2

�
x∈{0,1}n

| f (x)�, (4)

which is our target state. The probability to successfully obtain
this state is

Pr(0n) = 1

22n

a�
k=1

|Xk |2. (5)

To evaluate the efficiency of the proposed algorithm, we derive
the minimum of the probability (5) with respect to the family
of set X = {X1, · · · , Xk} under the condition

�a
k=1 |Xk | −

2n = 0. Hence the problem is to maximize

L(X, λ) = −
a�

k=1

|Xk |2 − λ

�
a�

k=1

|Xk| − 2n

�
,

where λ is the Lagrange multiplier. Then, |Xk | = 2n/a
maximizes L(X, λ); thus, Eq. (5) has the following lower
bound:

Pr(0n) = 1

22n

a�
k=1

|Xk|2 ≥ 1

22n
a

�
2n

a

�2

= a−1. (6)

The above result is summarized as follows:
Theorem 1: The quantum circuit depicted in Fig. 1 gener-

ates the quantum state (4) with a probability of at least a−1.
Therefore, the quantum state (4) can be effectively generated

if a = |Y | is of the order of a polynomial with respect
to {yk}. This desirable assumption holds in the encoding
function E(G, x) that is used in the bioinformatics problem
analyzed later in this paper. For a general statement of this
fact, we introduce the following constraint on the range of the
function: the set

Xv = {x | f (x) ∈ Yv , x ∈ {0, 1}n}, n ∈ N
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Fig. 2. Quantum circuit to compute the inner product (9), which is composed
of the oracles U and U � to produce |Ḡ� and |Ḡ ��; this is followed by the
post-selection operation to obtain |G�|G �� and the swap test. The probability
of obtaining 0 as a result of the measurement on the first qubit is Pr(0) =
(1 + |
G|G ��|2)/2, which enables us to estimate the inner product (9).

and Yv specified by
n	

v=0

Yv = Y,

n	
v=0

	
v � �=v,

v �∈[0,n]

(Yv ∩ Yv �) = ∅,

are assumed to satisfy

|Xv | =
�

n

v

�
, |Yv | =



1 (v = 0)

Pol(vc−1) (otherwise)
, (7)

where Pol(vc−1) is a polynomial function with maximum
degree c − 1. These conditions lead to

a = |Y | =
n�

v=0

Pol(vc−1) = O(nc). (8)

Any encoding functions whose range is of polynomial in the
number of vertices satisfies the assumption of Eq. (7). A cou-
ple of encoding functions E(G, x) that satisfy this condition
are actually introduced in Eq. (18) and (19); then we will show
in the Numerical Experiment section that these functions lead
to good classification performance. Then, Theorem 1 can be
further refined as follows (the proof is given in the Appendix):

Theorem 2: Given the condition (7), the algorithm depicted
in Fig. 1 generates the state (4) with a probability of at least
�(

√
n/nc).

In what follows we assume that the encoding function
E(G, x) satisfies the condition (7); then the desired state
transformation (1) → (2) only requires a O(nc/

√
n) mean

query complexity. As a consequence, we are now able to
effectively compute the inner product


G|G��, (9)

as the similarity measure of the two graphs G and G� (note
that both |G� and |G�� are real vectors). The task of computing
(9) is typically done via the swap test [17]. A diagram of
the post-selection process from |0�|Ḡ�|Ḡ�� to |0�|G�|G�� is
depicted in Fig. 2. The total mean query complexity required
to prepare both |G� and |G�� and subsequently apply the swap
test to compute the inner product (9) is given by

O(nc/
√

n) + O(n�c/
√

n) = O(nc/
√

n), (10)

where n and n� are assumed to be of the same order. Note that
Eq. (10) contains the constant overhead required to repeat the

Fig. 3. Quantum circuit to prepare the state (13).

swap test circuit to compute the inner product with a fixed
approximation error. Note also that this query complexity is
given based on the assumption that, if one fails to generate the
state, the algorithm can be repeated until it succeeds. If this
assumption does not hold, the query complexity is

O(nc/
√

n) · O(n�c/
√

n) = O(n2c−1). (11)

The resulting inner product computed by the swap test is
represented by

KBH(G, G�) = kBH(G, G�) f �
G fG � , (12)

where fG = [|X1|, . . . , |Xa |]� is the column vector and the
coefficient kBH(G, G�) is given by

kBH(G, G�) = 1��a
k=1 |Xk|2

��a
k=1 |X �

k |2
.

Importantly, Eq. (12) is exactly the Bhattacharyya (BH)
kernel [18], [19], which has been successfully applied to image
recognition [19] and text classification [20].

B. Alternative Algorithm With Switch Test

Here, we show that the use of the superposition

|0�|G� + |1�|G�� (13)

can also be used to compute the inner product (9) which
eventually yields a different kernel than KBH(G, G�), yet using
the same order of queries as the previous case. Similar to
the previous case, the superposition (13) can be effectively
generated by the post-selection operation on

|0�|Ḡ� + |1�|Ḡ��, (14)

using the circuit depicted in Fig. 3. We first apply the con-
trolled H ⊗n and H ⊗n�

on the index state of Eq. (14) and then
post-select the state when the measurement result on the index
is 0n . The formal statement of the result in terms of the general
discrete functions f and g is given as follows (the proof is
given in the Appendix):

Theorem 3: Let Y and Y � be the ranges of f and g,
respectively, and let a = |Y | and a� = |Y �|. Thus, Y = {yk}a

k=1
and Y � = {y �

k}a�
k=1 with yk and y �

k elements of Y and Y �,
respectively. Also, let Xk = {x | f (x) = yk, x ∈ {0, 1}n} and
X �

k = {x | g(x) = y �
k, x ∈ {0, 1}n� } for n ≥ n�. The quantum

circuit depicted in Fig. 3 uses the oracle to prepare the state

1√
2

� |0��
x∈{0,1}n |x�| f (x)�√

2n

+ |1�|0n−n� ��
x∈{0,1}n� |x�|g(x)�√

2n�

�
.
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Fig. 4. Quantum circuit to compute the inner product (9), which is composed
of the oracles U and U � to produce |0�|Ḡ� + |1�|Ḡ ��. This is followed by
the post-selection operation to obtain |0�|G� + |1�|G �� and the switch test.
Additionally, n ≥ n� is assumed. The probability of obtaining 0 as a result of
a measurement on the first qubit is Pr(0) = (1 + 
G|G ��)/2, which enables
us to estimate the inner product (9).

Then, the final feature state of the circuit, which is
post-selected when the measurement result is 0n in the index
state, is given by

1

N fg

� |0��
x∈{0,1}n | f (x)�

2n
+ |1��

x∈{0,1}n� |g(x)�
2n�

�
, (15)

where

N fg =
���
��a

k=1 |Xk|2
22n

+
�a�

k=1 |X �
k |2

22n�

�
.

The probability of obtaining the state (15) is at least (a−1 +
a�−1)/2.

As in the previous case, by imposing the encoding functions
E(G, x) and E(G�, x) to satisfy the condition (7), the quantum
circuit depicted in Fig. 3 transforms Eq. (14) to Eq. (13) with
a probability of �(

√
n/nc +√

n�/n�c) = �(
√

n/nc), where n
and n� are assumed to be of the same order. The proof of this
result is the same as that of Theorem 2.

We have now obtained the state |0�|G� + |1�|G��, which
enables the application of the switch test [21], [22] to compute
the inner product (9). The circuit diagram, which contains the
post-selection operation, is shown in Fig. 4. The total query
complexity to compute the inner product (9) is O(nc/

√
n).

This is the same as Eq. (10), but smaller than Eq. (11); hence,
until an ideal fault-tolerant quantum computer will be realized,
this method is more efficient to compute the inner product.
The resulting inner product computed through the switch test,
which we call the SH kernel, is given by

KSH(G, G�) = kSH(G, G�) f �
G fG � , (16)

where, again, fG = [|X1|, . . . , |Xa|]�, and the coefficient
kSH(G, G�) is given by

kSH(G, G�) = 2
2n�
2n

�a
k=1 |Xk|2 + 2n

2n�
�a

k=1 |X �
k|2

.

In the Appendix, we prove that this is a positive semidefinite
kernel. Also we show there that KSH(G, G�) ≤ KBH(G, G�)
holds, implying that the SH kernel may give a conservative
classification performance than BH. Note that the generalized
T-student kernel [23] has a similar form.

C. Improved Algorithm With Amplitude Amplification

Recall that we used post-selection on the state (3):

1

2n
|0n�

�
a�

k=1

|Xk ||yk�
�

+ other terms,

Fig. 5. Quantum circuit with amplitude amplification to prepare the state (2)
(upper) and (13) (lower). The circuit that is iterated to realize the amplitude
amplification is enclosed in the dashed line.

to probabilistically produce the first term

1

2n
|0n�

�
a�

k=1

|Xk ||yk�
�

. (17)

We can enhance the first term using the amplitude amplifica-
tion (AA) operation [24], [25]) to deterministically produce the
same state (17). The clear advantage of AA is that it requires
the square root of the number of operations to obtain this
state. This is preferable over the previous repeat-until-success
strategy. This means that the query complexity to transform
Eq. (1) to Eq. (2) via AA is

O

��
a/

√
n

�
= O(

√
a/n1/4).

Similarly, transforming Eq. (14) to Eq. (13) via AA
requires a query complexity of O(

√
a/n1/4). These circuits

are depicted in Fig. 5; note that the measurement on the index
state is not necessary.

The circuit that includes the swap test and AA to compute
the inner product 
G|G�� = KBH(G, G�) is depicted in Fig. 6
(upper). The circuit length is

O(
√

a/n1/4) + O(
√

a/n1/4) = O(
√

a/n1/4).

Also, the circuit containing the switch test and AA is
depicted in Fig. 6 (lower); as in the case of swap test, the
circuit length is O(

√
a/n1/4). In particular, if the encoding

functions E(G, x) and E(G�, x) satisfy the condition (7), then
we can specify a = O(nc).

D. Time Complexity for Specific Encoding Functions

Here, we discuss the time complexity that takes into account
the number of elementary operations contained in the ora-
cle. We particularly investigate the following two encoding
functions:

Eve(G, x) = [#v, #e], (18)

Eved(G, x) = [#v, #e, #d1, #d2, #d3], (19)

where #v is the number of vertices of the subgraph specified
by x , and #e is the number of edges of x . Additionally, #d D
(D ∈ {1, 2, 3}) denotes the number of vertices that have a
degree of D. Then, from Lemmas 4, 5, and 6 given in the
Appendix, the time complexities required to calculate Eq. (18)
and Eq. (19) are

O(n(log n)2) + O(|E |(log |E |)2) = O((n + |E |)(log n)2),
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Fig. 6. Quantum circuit to compute the inner product (9); it is composed
of the oracles enhanced via AA followed by the swap test (upper) and the
switch test (lower).

and

O(n(log n)2) + O(|E |(log |E |)2) + 3 · O(n((log n)2

+d(log d)2)) = O((n + |E |)(log n)2 + nd(log d)2),

respectively. Recall that d is the maximum degree of the
graph G. The cardinality a = |Y | for the range Y can be
evaluated as

a = O(n) · O(n2) = O(n3),

in the case of Eq. (18), and

a = O(n) · O(n2) · O(n) · O(n) · O(n) = O(n6),

in the case of Eq. (19). Note that Eqs. (18) and (19) satisfy
the condition (7). Hence, the time complexity of the quantum
algorithm, assisted by AA, is evaluated as follows: in the case
of Eq. (18), it is

O((n + |E |)(log n)2) · O
��

n3/n1/4
�

= O(n3.25(log n)2),

and in the case of Eq. (19), it is

O((n + |E |)(log n)2 + nd(log d)2) · O
��

n6/n1/4
�

= O(n4.75(log n)2),

where |E | = n2 and d = n are used. In contrast, the time
complexity of typical existing graph kernels is O(n3) for the
random walk method [5] and O(n4) for the shortest paths
method [7]. Hence, our quantum computing approach for
kernel computation has a time complexity comparable to that
of the typical classical approach. However, note again that
our kernel reflects features from all subgraphs, which are not
covered by existing methods.

E. Toy Example

We consider two simple toy graphs, which are depicted
in Fig. 7, to demonstrate how to construct the corresponding
quantum feature states |G� and |G��. The encoding function is
chosen as Eved(G, x), given in Eq. (19). Note that both graphs
have 23 = 8 induced subgraphs; thus, we need n = 3 qubits
to cover all subgraphs.

Fig. 7. Structure of the toy graphs.

First, |Ḡ� ∈ Hindex ⊗ Hfeature is constructed as

|Ḡ� = |000�|0, 0, 0, 0, 0� + |100�|1, 0, 0, 0, 0�
+|010�|1, 0, 0, 0, 0� + |001�|1, 0, 0, 0, 0�
+|110�|2, 1, 2, 0, 0� + |101�|2, 1, 2, 0, 0�
+|011�|2, 1, 2, 0, 0� + |111�|3, 3, 0, 3, 0�.

For example, the term |110�|2, 1, 2, 0, 0� represents the
state of the subgraph composed of the 0th and 1st vertices
(thus, the index is 110); this subgraph has 2 vertices, 1 edge,
2 vertices with a degree of 1, 0 vertices with a degree of 2, and
0 vertices with a degree of 3 (thus, the feature is represented
by 2, 1, 2, 0, 0). Note again that the normalization constant is
omitted. Therefore, the algorithm depicted in Fig. 1 enables
us to remove the index state and arrive at the feature state
|G� ∈ Hfeature:

|G� = |0, 0, 0, 0, 0� + 3|1, 0, 0, 0, 0�
+3|2, 1, 2, 0, 0� + |3, 3, 0, 3, 0�.

The state |Ḡ�� can also be obtained in the same way as

|Ḡ�� = |000�|0, 0, 0, 0, 0� + |100�|1, 0, 0, 0, 0�
+|010�|1, 0, 0, 0, 0� + |001�|1, 0, 0, 0, 0� +
+|110�|2, 1, 2, 0, 0� + |101�|2, 1, 2, 0, 0� +
+|011�|2, 0, 0, 0, 0� + |111�|3, 2, 2, 1, 0�,

which leads to

|G�� = |0, 0, 0, 0, 0� + 3|1, 0, 0, 0, 0�
+2|2, 1, 2, 0, 0� + |2, 0, 0, 0, 0� + |3, 2, 2, 1, 0�.

Hence, by considering the normalization factor, the inner
product (i.e., the similarity of the graphs) is calculated as
follows: in the case of the swap test, it is


G|G�� = KBH(G, G�)

= 1 · 1 + 3 · 3 + 3 · 2 + 0 · 1 + 1 · 0 + 0 · 1√
12 + 32 + 32 + 12

√
12 + 32 + 22 + 12 + 12

∼ 0.8944,

and in the case of the switch test, it is


G|G� = KSH(G, G�)

= 2(1 · 1 + 3 · 3 + 3 · 2 + 0 · 1 + 1 · 0 + 0 · 1)

23

23 (12 + 32 + 32 + 12) + 23

23 (12 + 32 + 22 + 12 + 12)

∼ 0.8889.

Note that they are certainly bigger than the value 
Ḡ|Ḡ� =
0.75 computed via the naive method.
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F. Advantage Over Classical Sampling Method

In the classical case, an exponentially large resource is
necessary to compute a feature vector, corresponding to
Eq. (2), which considers all subgraphs; however, we can
utilize an efficient classical sampling method that was used
in [6] to approximate this feature vector. More specifically,
we first sample S subgraphs from the entire graph G and then
apply the encoding function E(G, x), which satisfies Eq. (7),
on those subgraphs to approximate the feature vector. The kth
component of this vector is given by

P̂xS (yk) = 1

S

S�
i=1

1(E(G, xi ) = yk),

where xS = {x1, . . . , xS} are the set of indices that identify
the sampled subgraphs. Also, 1(A) represents the indicator
function, which takes 1 when the condition A is satisfied and
zero otherwise. Now, the kth component of the true feature
vector is represented as

P(yk) = |Xk|
2n

. (20)

We then have the following theorem (the proof is given in the
Appendix):

Theorem 4: For a given � > 0 and δ > 0,

S = O

�
a − log δ

�2 log n

�
samples suffice to ensure that

Pr
����P − P̂xS

���
1

≥ �
�

≤ δ, (21)

where � · �1 denotes the L1 norm. In particular, for constant
� and δ, we have that S = O(a/ log n).

Therefore, the sample complexity of this classical method
is O(a/ log n), whereas the query complexity of the proposed
quantum algorithm is O(a/

√
n). Hence, up to the difference

of the sense of complexities, the proposed method has a clear
computational advantage. Note that the inner product 
G|G�
that is computed using the above classical sampling method
is given by


G|G�� = 1

(
�a

k=1 |Xk |)(�a
k=1 |X �

k |)
f �
G fG � ,

which differs from that computed in the quantum case
(12) or (16).

G. Numerical Experiment

Here we study the performance of classifiers constructed
based on the proposed quantum kernel, with comparison to
some typical classical classifiers. The quantum kernel was
calculated, not using the quantum algorithm but via the direct
calculation of the inner product (9), in an ideal noise-free
environment on a GPU; for the details, see the Code Avail-
ability section in Appendix. We calculate both the BH kernel
(12) and the SH kernel (16), for the two different encoding
functions Eve given in Eq. (18) and Eved given in Eq. (19).
We compare the quantum graph kernels to the following
classical graph kernels: the random walk kernel (RW) [5],

the graphlet sampling kernel (GS) [6], and the shortest path
kernel (SP) [7]. These three classical kernels are simulated
using Python’s GraKeL library [26].

We use the following benchmark datasets obtained from
the repository of the Technical University of Dortmund [27].
For the case of binary classification problems, we used:
AIDS (chemical compounds with or without evidence of
anti-HIV activity [28]); BZR_MD (dataset BZR of active or
inactive benzodiazepine receptors [29]; converted to complete
graphs [30]); ER_MD (dataset ER of active or inactive estro-
gen receptors [29]; converted to complete graphs [30]); IMDB-
BINARY (the movie genre is action or romance based on its
co-starring relationship [31]); MUTAG (chemical compounds
with or without mutagenicity [32]); and PTC_FM (chemical
compounds in the PTC dataset [33] that are carcinogenic or
non-carcinogenic to female mice [30]). As for the multi-class
classification problems, we used: 15-classes Fingerprint (fin-
gerprint images converted to graphs and divided by type [34])
and 3-classes IMDB-MULTI (the movie genre is comedy,
romance, or sci-fi based on its co-starring relationship [31]).
Due to the limitation of the GPU memory, we took graphs with
less than or equal to 28 vertices. As a result, (the number of
graphs)/(the total number of graphs) are 1774/2000 for AIDS,
296/306 for BZR_MD, 398/446 for ER_MD, 860/1000 for
IMDB-BINARY, 188/188 for MUTAG, 331/349 for PTC_FM,
2148/2148 (excluding graphs with #edges less than 1) for
Fingerprint, and 1406/1500 for IMDB-MULTI. The necessary
number of qubits is 28+ log 28+ log (28 × 27/2) ∼ 41 for the
case Eve and 28+ log 28+ log (28 × 27/2)+ log 28+ log 28+
log 28 ∼ 56 for the case Eved .

We apply the C-support vector machine (SVM), imple-
mented via Scikit-learn [35], to classify the dataset. To evalu-
ate the classification performance, we calculate the mean test
accuracy, by running 10 repeats of a double 10-fold cross-
validation. In addition, we calculate F-measure, which is used
when the number of data in different classes are unbalanced;
in fact, the numbers of data of two classes are 63 and 125 for
MUTAG and 400 and 1600 for AIDS. The SVM parameter C
is taken from the discrete set {10−4, 10−3, . . . , 103}, and the
best model with respect to C is used to compute the classifi-
cation performance. The result are summarized in Table I.

The table shows that, in many cases, the proposed quan-
tum kernel achieves better classification accuracy than that
obtained via the classical kernels. Note that the AIDS dataset
is sparse and ER_MD dataset is dense; the quantum kernels
show the better performance in both cases, implying that they
are not significantly affected by the density of the graph
dataset. In many cases, the two kernels BH and SH show
a similar performance, but there are some visible differences
depending on the dataset; this may be due to the property
KSH(G, G�) ≤ KBH(G, G�), which is proven in Lemma 2 in
Appendix. Also, although Eved has more features than Eve,
from the table we do not observe a clear superiority of the
former over the latter in the classification accuracy; we will
discuss further on this point in the next section.

Lastly let us check the probability for successfully removing
the index register; recall from Theorem 2 that the lower bound
is �(

√
n/a). Figure 8 shows the success probabilities when
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TABLE I

MEAN TEST ACCURACY (UPPER) AND F-MEASURE (LOWER) OF THE C -SVM CONSTRUCTED WITH EACH KERNEL; THE ERRORS ARE THE STANDARD
DEVIATION BETWEEN 10 REPETITIONS OF THE DOUBLE 10-FOLD CROSS-VALIDATION. QK IS THE PROPOSED QUANTUM KERNEL. RW, GS,

AND SP ARE THE CLASSICAL GRAPH KERNELS. MACRO-F1 IS USED IN THE MULTICLASS GRAPH DATASETS FINGERPRINT AND

IMDB-MULTI. THE BOLD INDICATES THE BEST PERFORMING VALUE IN THE DATASET

Fig. 8. Success probability for removing the index state. The horizontal
axis represents the number of vertices n, and the vertical axis represents the
success probability. The error bar represents the standard error.

Eq. (19) is used as the encoding function, in which case the
lower bound is �(

√
n/a) = �(n−5.5). As shown in the figure,

the actual success probability is much higher than the lower
bound, indicating that the quantum algorithm for removing the
index state will be more efficient than expected by the theory.

III. DISCUSSION

In this paper, as a main result, we provided the condition
and the protocol for removing the index state with polynomial
query complexity. The encoding function E(G, x) that extracts
features from a subgraph x , given by Eq. (18) or (19), satisfies
this condition, which allows us to construct the graph kernel
that correctly reflects features of all subgraphs. We gave a
proof-of-principle numerical demonstration to solve the prob-
lem of classifying various type of graph set containing graphs
at most 28 vertices, via the quantum simulator composed
of 41 or 56 qubits. The proposed algorithm that efficiently
removes the index states will be useful in various other
problems such as the task of counting the same words for text
classification problems using the Bhattacharyya kernel [20].

We here give a remark on the choice of E(G, x). One would
consider that E(G, x) with more features including e.g. a cycle
structure [36], which thus has a bigger range of function,
may lead to better classification performance, although it
needs more query complexity for removing the index state
and thereby constructing the kernel. (In particular, as is well
known, if E(G, x) and x are one-to-one correspondence,
we need an exponential order of query complexity to do this
task.) However, the important fact revealed by the numerical
demonstration is that such a bigger-range encoding may be not
required; actually, we found that Eve(G, x) and Eved(G, x)
lead to almost the same classification performance. This is
presumably because the proposed kernel covers all subgraphs.
Hence, a relatively simple E(G, x) might be sufficient, which
is the advantage of our quantum algorithm. In other words,
existing kernels that do not cover all subgraphs may need to
contain more features.

In this study, only simple undirected graphs have been con-
sidered. However, by extending the encoding function, we can
deal with other graphs as well. For example, by additionally
encoding the number of two edges out of multiple edges,
the graph kernel can incorporate information on the double
bonds in the molecular structure. Similarly, for directed graphs,
indegree and outdegree can be used.

A disadvantage of the kernel method is that it needs heavy
computational cost for calculating the inner products 
Gi |G j

for all pairs of (Gi , G j ) contained in the training dataset, in
order to construct the Gram matrix. The generalization of the
switch test protocol given in Theorem 3 may give a solution to
this issue. That is, we could have an algorithm that generates
a superposition |1�|G1�+ |2�|G2�+ |3�|G3�+ · · · and thereby
efficiently construct the Gram matrix by some means. This
direction is worth investigating, as it is the scheme demanded
in the field of kernel-based quantum machine learning.

The algorithms posed in this paper are all difficult to
implement on a near-term quantum device. A key approach
may be to develop a valid relaxation method of the condition,
because very precise computation of the kernel value may be
not necessary.
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APPENDIX A

PROOF OF THEOREMS

Proof of Theorem 2: Suppose that the set Xv,h satisfies

|Yv |	
h=1

Xv,h = Xv ,

|Yv |	
h=1

	
h� �=h,

h�∈[1,|Yv |]

(Xv,h ∩ Xv,h�) = ∅.

We rewrite Eq. (5) as

Pr(0n) = 1

22n

n�
v=0

|Yv |�
h=1

|Xv,h|2.

To calculate the lower bound of
|Yv |�
h=1

|Xv,h |2

subjected to the equality constraint

|Yv |�
h=1

|Xv,h| = |Xv | =
�

n

v

�
,

we define the cost function

L(|Xv,1|, . . . , |Xv,|Yv ||, λ)

= −
|Yv |�
h=1

|Xv,h|2 − λ

⎛
⎝ |Yv |�

h=1

|Xv,h| −
�

n

v

�⎞
⎠ ,

where λ denotes the Lagrange multiplier. Clearly,

|Xv,h| = 1

|Yv |
�

n

v

�
maximizes L(|Xv,1|, . . . , |Xv,|Yv ||, λ). Thus, the probability
that we obtain 0n when measuring the index state is evaluated
as

Pr(0n) ≥ 1

22n

n�
v=0

|Yv |�
h=1

�
1

|Yv |
�

n

v

��2

= 1

22n

n�
v=0

1

|Yv |
�

n

v

�2

≥ 1

22n

n�
v=0

1

βnc

�
n

v

�2

= 1

βnc22n

�
2n

n

�

∼ 1

βnc22n

22n

√
πn

= �

�√
n

nc

�
,

where we used Eq. (8) to have |Yv | = Pol(vc−1) ≤ βnc with
some constant β. Note that �(·) is defined as p(n) = �(q(n))
through two probability distributions p and q satisfying

∃n0, ∃M > 0 s.t. n ≥ n0 ⇒ p(n) ≥ Mq(n),

for real valued functions p(n) and q(n). �
Proof of Theorem 3: According to Fig. 3, we perform

the controlled-H ⊗n followed by the controlled-H ⊗n�
on the

following state

1√
2

� |0��
x∈{0,1}n |x�| f (x)�√

2n

+ |1�|0n−n� ��
x∈{0,1}n� |x�|g(x)�√

2n�

�

= 1√
2

� |0��a
k=1

�
x∈Xk

|x�|yk�√
2n

+
|1�|0n−n� ��a�

k=1
�

x∈X �
k
|x�|y �

k�√
2n�

⎞
⎠ .

Then, we have

1√
2



|0�

�
1

2n
|0n�

a�
k=1

|Xk||yk� + other terms

�

+ |1�
⎛
⎝ 1

2n� |0n�
a��

k=1

|X �
k ||y �

k� + other terms�
⎞
⎠

⎫⎬
⎭ .

The probability that we obtain 0n via the index state
measurement is given by

Pr(0n) = 1

2

��a
k=1 |Xk|2

22n
+

�a�
k=1 |X �

k |2
22n�

�
.

Owing to Eq. (6), this probability is lower bounded by

Pr(0n) ≥ 1

2

�
a−1 + a�−1

�
.

Therefore, we can remove the index state with probability
at least (a−1 + a�−1)/2. �

Proof of Theorem 4: We use the result given in [37]; for the
empirical distribution of a sequence of independent identically
distributed random variables, P̂xS , and the true distribution P ,
the following inequality holds:

Pr
����P − P̂xS

���
1

≥ �
�

≤ (2a − 2)e−Sϕ(πP)�2/4, (22)

where ϕ(p) and πP are given by

ϕ(p) = 1

1 − 2 p
ln

1 − p

p

and

πP = max
k

min{P(yk), 1 − P(yk)} = max
k

P(yk).

Here we assumed P(yk) < 1/2, which in fact holds in our
case. Note that δ in Eq. (21) is defined by the rightmost side
of Eq. (22). Now, because the true probability distribution P
is given by Eq. (20), we obtain

πP = max
k

|Xk|
2n

.

Then, from Eq. (7), we have the following inequality:
1

(n/2)c−1

�
n

n/2

�
1

2n
≤ πP ≤

�
n

n/2

�
1

2n
,

which implies

2c−1/2

√
πnc−1/2

� πP �
√

2√
πn

.

Thus, ϕ(πP) is of the order of �(ln n), and then δ can be
evaluated as δ ∼ 2aexp(−S�2�(ln n)), from Eq. (22). As a
result, we find

S = a ln 2 − ln δ

�2�(ln n)
= O

�
a − log δ

�2 log n

�
= O

�
a

log n

�
.

Therefore we arrive at S = O(a/ log n). �
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APPENDIX B

PROPERTIES OF THE SH KERNEL

A. Positive Semidefiniteness

First, we prove that the SH kernel is positive semidefinite,
which is necessary to construct a valid classifier based on the
SH kernel.

Lemma 1: Let {Gx , x = 1, . . . , N} be a set of graphs.
Then, the SH kernel (16):

KSH(G, G�) = kSH(G, G�) f �
G fG � ,

where fG = [|X1|, . . . , |Xa|]� and

kSH(G, G�) = 2
2n�
2n

�a
k=1 |Xk |2 + 2n

2n�
�a

k=1 |X �
k |2

,

is a positive semidefinite kernel; that is, the matrix
(KSH(Gx , Gy))x,y=1,...,N is a positive semidefinite matrix.

Proof: We use the following general fact; if κ1 and κ2 are
positive semidefinite kernels, then the product κ(G, G�) =
κ1(G, G�)κ2(G, G�) is also a positive semidefinite kernel.
Now, because f �

G fG � is positive semidefinite, we prove that
kSH(G, G�) is positive semidefinite. For this purpose, we define

px =
a�

k=1

|Xkx |2, qx,y = 2ny

2nx
.

Then,

kSH(Gx , Gy) = 2

qx,y px + qy,x py
.

Also we define

Li, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� j−1
k=1(qk, j pk−q j,k p j)√

2p j
� j−1

k=1(qk, j pk+q j,k p j)
(i = j)

√
2p j

� j−1
k=1(qk,i pk−qi,k pi)� j

k=1(qk,i pk+qi,k pi)
(i > j)

0 (i < j).

Below we will show that the matrix (kSH(Gx , Gy))x,y=1,...,N

is represented as

kSH = 2 L L�, (23)

meaning that kSH(G, G�) is positive semidefinite. The proof is
divided into the three cases (i), (ii), and (iii).

(i) The case x = y.�
L L��

x,x
=

x�
l=1

L2
x,l

=
x−1�
l=1

2 pl
�l−1

k=1

�
qk,x pk − 1

qk,x
px

�2

�l
k=1

�
qk,x pk + 1

qk,x
px

�2

+
�x−1

k=1

�
qk,x pk − 1

qk,x
px

�2

2 px
�x−1

k=1

�
qk,x pk + 1

qk,x
px

�2 .

Here, we define α(t), β(t) (t ∈ [0, x − 1]) as

α(t) =
t�

l=1

2 pl
�l−1

k=1

�
qk,x pk − 1

qk,x
px

�2

�l
k=1

�
qk,x pk + 1

qk,x
px

�2 ,

β(t) =
�t

k=1

�
qk,x pk − 1

qk,x
px

�2

�t
k=1

�
qk,x pk + 1

qk,x
px

�2 .

Then we have�
L L��

x,x
= α(x − 1) + β(x − 1)

2 px
.

When t ≥ 1,

α(t) + β(t)

2 px

= α(t − 1) +
2 pt

�t−1
k=1

�
qk,x pk − 1

qk,x
px

�2

�t
k=1

�
qk,x pk + 1

qk,x
px

�2 + β(t)

2 px

= α(t − 1) +
�

4 pt px +
�

qt,x pt − 1

qt,x
px

�2
�

×
�t−1

k=1

�
qk,x pk − 1

qk,x
px

�2

2 px
�t

k=1

�
qk,x pk + 1

qk,x
px

�2

= α(t − 1) +
�t−1

k=1

�
qk,x pk − 1

qk,x
px

�2

2 px
�t−1

k=1

�
qk,x pk + 1

qk,x
px

�2

= α(t − 1) + β(t − 1)

2 px
.

Thus, we obtain the following equation�
L L��

x,x
= α(0) + β(0)

2 px
= 1

2 px
= kSH(Gx , Gx )/2.

(ii) The case x < y.�
L L��

x,y
=

x�
l=1

Lx,l L y,l

=
x−1�
l=1

√
2 pl

�l−1
k=1

�
qk,x pk − 1

qk,x
px

�
�l

k=1

�
qk,x pk + 1

qk,x
px

�

×
√

2 pl
�l−1

k=1

�
qk,y pk − 1

qk,y
py

�
�l

k=1

�
qk,y pk + 1

qk,y
py

�

+
�x−1

k=1

�
qk,x pk − 1

qk,x
px

�
√

2 px
�x−1

k=1

�
qk,x pk + 1

qk,x
px

�

×
√

2 px
�x−1

k=1

�
qk,y pk − 1

qk,y
py

�
�x

k=1

�
qk,y pk + 1

qk,y
py

� .

Here, we define ρ(t), σ(t) (t ∈ [0, x − 1]) as

ρ(t) =
t�

l=1

2 pl
�l−1

k=1

�
qk,x pk − 1

qk,x
px

�
�l

k=1

�
qk,x pk + 1

qk,x
px

�

×
�l−1

k=1

�
qk,y pk − 1

qk,y
py

�
�l

k=1

�
qk,y pk + 1

qk,y
py

� ,
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σ(t) =
�t

k=1

�
qk,x pk − 1

qk,x
px

�
�t

k=1

�
qk,x pk + 1

qk,x
px

�

×
�t

k=1

�
qk,y pk − 1

qk,y
py

�
�t

k=1

�
qk,y pk + 1

qk,y
py

� .

Then we have�
L L��

x,y
= ρ(x − 1) + σ(x − 1)

qx,y px + 1
qx,y

py
.

When t ≥ 1,

ρ(t) + σ(t)

qx,y px + 1
qx,y

py

= ρ(t − 1) +
2 pt

�t−1
k=1

�
qk,x pk − 1

qk,x
px

�
�t

k=1

�
qk,x pk + 1

qk,x
px

�

×
�t−1

k=1

�
qk,y pk − 1

qk,y
py

�
�t

k=1

�
qk,y pk + 1

qk,y
py

� + σ(t)

qx,y px + 1
qx,y

py

= ρ(t − 1) +
�

2

�
qx,y px + 1

qx,y
py

�
pt + qt,xqt,y p2

t

−
�

qt,y

qt,x
px + qt,x

qt,y
py

�
pt + 1

qt,xqt,y
px py

�

× 1�
qt,x pt + 1

qt,x
px

� �
qt,y pt + 1

qt,y
py

�
× σ(t − 1)�

qx,y px + 1
qx,y

py

� .

Here,

qx,y = 2ny

2nx
= 2ny /2nt

2nx /2nt
= qt,y

qt,x

holds, and thus we have

ρ(t) + σ(t)

qx,y px + 1
qx,y

py
= ρ(t − 1) + σ(t − 1)

qx,y px + 1
qx,y

py
.

As a result, we obtain the following equation:�
L L��

x,y
= ρ(0) + σ(0)

qx,y px + 1
qx,y

py

= 1

qx,y px + 1
qx,y

py
= kSH(Gx , Gy)/2.

(iii) The case x > y. The result directly follows by
exchanging x and y in the discussion given in the case (ii);

�
L L��

x,y
=

y�
l=1

Lx,l L y,l = 1

qy,x py + 1
qy,x

px

= 1

qx,y px + 1
qx,y

py
= kSH(Gx , Gy)/2.

Summarizing, we have Eq. (23), meaning that the kernel
KSH(G, G�) is positive semidefinite.

Fig. 9. Relationship between BH (vertical axis) and SH (horizontal axis),
for the case of MUTAG dataset.

B. Relationship With the Bhattacharyya Kernel

In this paper, we proposed two kernels: the Bhattacharyya
(BH) kernel (12) arising in the case of swap test and the SH
kernel (16) arising in the case of switch test. The following
relationship holds:

Lemma 2: The BH kernel (12) is bigger than or equal to
the SH kernel (16).

Proof: Note that f �
G fG � is common in both kernels.

From the inequality of the arithmetic and geometric means,
we obtain the following inequality:

KSH(G, G�) = 2
2n�
2n

�a
k=1 |Xk |2 + 2n

2n�
�a

k=1 |X �
k |2

f �
G fG �

≤ 1�
2n�
2n

�a
k=1 |Xk |2

�
2n

2n�
�a

k=1 |X �
k |2

f �
G fG �

= 1��a
k=1 |Xk |2

��a
k=1 |X �

k |2
f �
G fG �

= KBH(G, G�).

This result means that, as a similarity measure, the SH
kernel is more conservative than the BH kernel (note that
both kernels are upper bounded by 1, because they originate
from the inner product 
G|G�). Figure 9 depicts the relation
between these kernels for the case of MUTAG training dataset;
this result implies that, in general, the difference between the
kernel values would be tiny, but as mentioned above, there will
be a solid difference in the prediction classification accuracy
in view of the conservativity of the corresponding classifiers.

APPENDIX C

TIME COMPLEXITY FOR CONSTRUCTING E(G, x)

Lemma 3: The time complexity of adding 1 to the state
|k�(0 ≤ k ≤ A) is O((log A)2).

Proof: We use the multi-controlled NOT gate Ci−1 X ,
which operates the NOT gate X on the i th target qubit, if the
value of the control qubits (i.e., the 0th, 1st, . . . , (i−1)th qubits)
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are all 1. The adder of 1 to k can be done by repeatedly
applying Ci−1 X for i = 1, . . . , log k on the state |k�. Now
Ci−1 X is composed of O(i) Toffoli gates [38]; in other words,
the time complexity for operating Ci−1 X is O(i). Hence, the
maximum of the total time complexity of adding 1 to the state
|k� is

log A�
i=1

O(i) = O((log A)2).

Lemma 4: The time complexity for preparing the feature
state |#v� of a subgraph x is O(|V |(log |V |)2).

Proof: The oracle is realized as the set of adder of 1 con-
trolled by the index state |x�; that is, if the i th index qubit is |1�
(meaning that the i th vertex is contained in the subgraph x),
then the corresponding controlled adder adds 1 on the feature
state. The index runs from i = 0 to i = n = |V |, and hence
there are totally n controlled adders. Also each controlled
adder needs O((log n)2) time complexity due to Lemma 3.
Therefore, the total time complexity is n × O((log n)2) =
O(n(log n)2).

Lemma 5: The time complexity for preparing the feature
state |#e� of a subgraph x is O(|E |(log |E |)2).

Proof: The idea is the same as that of Lemma 4, except
that the adder is controlled by the pair of index qubits
representing an edge of the subgraph x . Because there are |E |
such pairs, the total time complexity is |E |× O((log |E |)2) =
O(|E |(log |E |)2).

Lemma 6: The time complexity for preparing the feature
state |#d D� (the number of vertices with degree D, where
D = 1, 2, 3) of a subgraph x is O(n((log n)2 + d(log d)2)).

Proof: Recall that d is the maximum degree of the
graph G. First, we store the degree of the i th qubit, d , into
an auxiliary log d qubits. This can be done by performing
the adder controlled by each qubit to which the target ver-
tex is connected. This operation requires log d qubits and
O(d(log d)2) time complexity. Next, if the stored value is D,
we perform the adder controlled by the auxiliary qubits, on the
feature state. The required space of #d D is O(log n), because
#d D ≤ n. The time complexity is O((log n)2). Finally,
we initialize the auxiliary qubits by the inverse operation.
We perform these calculation recursively from the 0th qubit
to the n − 1th qubit. As a result, the total time complexity is

n × (O(d(log d)2) + O((log n)2) + O(d(log d)2))

= O(n((log n)2 + d(log d)2)).

APPENDIX D

NOTE ON THE SIMULATION METHOD

In the numerical experiment, we studied various type of
graph set containing a graph with 28 vertices, in which case
we need a quantum device composed of 56 qubits. A naive
implementation of the numerical simulator would require a
256 memory, probably larger than 1 Exabit depending on the
accuracy, which is not realistic. Hence, we adopted a parallel
GPU computation; that is, we compute |E(G, x)� for each

subgraph x and store it in each GPU memory, which thus
needs a 228 memory.

APPENDIX E
DATA AVAILABILITY

A complete set of the kernel values and the probabilities
for removing the index state are available at https://github.
com/TRSasasusu/GraphKernelEncodingAllSubgraphsQC.

APPENDIX F
CODE AVAILABILITY

The codes for computing the kernel values and the
classification protocols are available at https://github.com/
TRSasasusu/GraphKernelEncodingAllSubgraphsQC.
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