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Testing Scalable Bell Inequalities for Quantum
Graph States on IBM Quantum Devices
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Abstract—Testing and verifying imperfect multi-qubit
quantum devices are important as such noisy quantum devices
are widely available today. Bell inequalities are known to be
useful for testing and verifying the quality of the quantum devices
from their nonlocal quantum states and local measurements.
There have been many experiments demonstrating the violations
of Bell inequalities, but they are limited in the number of qubits
and the types of quantum states. We report violations of Bell
inequalities on IBM Quantum devices based on the scalable
and robust inequalities maximally violated by graph states as
proposed by Baccari et al.. The violations are obtained from
the quantum states of path graphs up to 57 and 21 qubits
on a 65-qubit and two 27-qubit IBM Quantum devices,
respectively, and from those of star graphs up to 11 qubits
with quantum readout error mitigation (QREM). We are able
to show violations of the inequalities on various graph states
by constructing low-depth quantum circuits and by applying
the QREM technique. We also point out that quantum circuits
for star graph states of size N can be realized with circuits
of depth O(+/N) on subdivided honeycomb lattices which
are the topology of the 65-qubit IBM Quantum device. Our
experiments show encouraging results on the ability of existing
quantum devices to prepare entangled quantum states and
provide experimental evidence on the benefit of scalable Bell
inequalities for testing them.

Index Terms— Quantum computing, IBM quantum, bench-
marking, graph state, bell inequality.

I. INTRODUCTION

ONLOCALITY of quantum states—first discovered by

Bell [2]-is an intriguing consequence of quantum
mechanics in which correlations among quantum bits cannot
be explained by classical statistics. In particular, the nonlo-
cality implies the so-called Bell inequalities that are violated
by entangled (or, nonlocal) quantum states but not by any
classical (or, local) correlation. To demonstrate the violation of
Bell inequalities, various concepts and experimental tools were
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developed [3]. One of them is the CHSH inequality [4], which
can be used to test the nonlocality of two qubits. The CHSH
inequality is also extended by many works, such as that by
Ito et al. [5] whose inequality allows a wider range of quan-
tum states to violate the classical bounds, or the CHSH-like
Bell inequalities for three quantum bits or more, such as the
Mermin’s inequality for Greenberger—Horne—Zeilinger (GHZ)
state [6] and the Bell inequality for graph states [7].

The Bell inequalities soon find their applications for wit-
nessing entanglement [8], [9] and for self-testing [10], [11]
quantum devices. The latter is useful for certifying the quan-
tumness of the devices by statistical tests on the correlations
resulting from the quantum states they produce without the
knowledge of their internal functioning. However, most of the
existing Bell inequalities require measuring correlations on
quantum graph states whose number scales exponentially [7],
[12] or polynomially [13], [14], [15] to the number of qubits.

Recently, Baccari et al. [1] proposed a family of CHSH-like
Bell inequalities that are both scalable and robust. The scalabil-
ity comes from the fact that the new inequalities can be tested
by measuring correlations on quantum graph states whose
number scales only linearly with the number of qubits. The
robustness stems from the obvious gap between the maximally
possible quantum correlation and the classical correlation in
their inequalities. They show the fidelity of graph states can
be lower bounded by the linear function of the violation
magnitude of their inequalities. The scalability and robust-
ness of the new CHSH-like Bell inequalities are therefore
potentially beneficial for self-testing noisy quantum devices
available today.

At the same time, we have been witnessing the proliferation
of near-term quantum devices [16], [17], [18], [19], [20]. Some
quantum devices are even widely accessible in the cloud.
Here we focus on the IBM Quantum superconducting devices.
Currently, IBM Quantum Experience makes over 25 quantum
systems online among which 7 quantum devices are open
for public use. Since the start of the service in 2016, IBM
Quantum processors are getting larger and more sophisticated.
The 54-qubit device (ibmg_rochester) appeared in 2019,
the 65-qubit device (ibmg manhattan) in 2020, and the
127-qubit device (ibm_washington) in 2022.

In addition, IBM Quantum Experience adopts the quantum
volume (QV) [21] as the metric of capabilities and error rate
of the processors. This metric, in a nutshell, is decided by the
system size and the max depth of the effective quantum circuit
for the randomized model circuits on the device [21], [22].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-8266-7690
https://orcid.org/0000-0003-1005-6705

YANG et al.: TESTING SCALABLE BELL INEQUALITIES FOR QUANTUM GRAPH STATES 639

TABLE I

BAsIC PROPERTIES OF IBM QUANTUM DEVICES USED IN OUR
EXPERIMENTS. THESE VALUES REFLECT THE DEVICE
STATUSES IN JANUARY 2022

name processor # qubits QV  CLOPS
ibm_washington  Eagle rl 127 64 850
ibmg _brooklyn Hummingbird r2 65 32 1500
ibmg_montreal Falcon r4 27 128 2000
ibmg_mumbai Falcon r5.1 27 128 1800
ibm_cairo Falcon r5.11 27 64 2400
ibm_hanoi Falcon r5.11 27 64 2300
ibmg_toronto Falcon r4 27 32 1800
ibm_kawasaki Falcon r5.11 27 32 -

The higher QV means the better capacity of the device. The
following Table I lines up IBM Quantum devices over 20-qubit
available from The University of Tokyo, where the CLOPS
denotes the circuit layer operation per second, representing
how many layers of a QV circuit a quantum processing unit
(QPU) can execute per unit of time.

Those devices offer testbeds for investigating the quan-
tum states they produce, i.e., to see if such topologically-
limited noisy devices can entangle more qubits and in which
way. For example, Wei et al. [23] experimentally demon-
strated the ability to produce GHZ states up to 18 qubits
on a 20-qubit IBM Quantum device measured by their pro-
posed scalable entanglement metric. Gonzalez et al. [24] and
Huang et al. [25] used Mermin-type Bell inequalities to con-
firm the entanglement of GHZ states up to five qubits. Nev-
ertheless, the previous experiments are limited, and difficult
to verify different types of entangled quantum states that may
depend on the restriction of underlying quantum devices and
the scalability of the Bell-inequality metrics they chose.

In this work, we address the task of testing noisy quantum
devices with various quantum graph states based on the
family of CHSH-like Bell inequalities of Baccari er al
Graph states have many applications in quantum information
processing, and some of them are compatible with the qubit
layout topology of current IBM Quantum devices, whose
qubits are sparsely connected. Since the inequalities of
Baccari et al. are designed to be maximally violated by graph
states, we used their inequalities to check how well the graph
states are prepared on IBM Quantum devices. In particular,
we construct path graphs, star graphs, and the qubit-connection
graph corresponding to the physical qubit connectivity on
the QV32, 65-qubit ibmg_brooklyn device, the QV32,
27-qubit ibm_cairo, ibm_hanoi, ibm_kawasaki,
ibmg mumbai, ibmg toronto devices, and the QV128,
27-qubit ibmg montreal device. Most of these devices
appeared in the period from 2020 to 2021.

Through the experiments, we observe the violation of full
65-qubit connection graph states. We also observe the maxi-
mum violation of path graphs up to 57-qubit and the maximum
violation of star graphs up to 11-qubit with the efficient quan-
tum readout error mitigation (QREM) by Yang et al. [26].
These experimental results also support both the ability of
IBM Quantum devices to create the well-entangled large
quantum states and the applicability of the scalable CHSH-like
inequalities by Baccari er al. to the entanglement witness

and device benchmarking of the growing near-term quantum
devices.

These violations are made possible by shallow-depth circuits
for the corresponding graph states. Namely, path graphs are
from quantum circuits with depth two as used in [27], and
star graphs on five-qubit or larger are from quantum circuits
avoiding SWAP gates following a similar construction shown
in [23]. We also provide a generalization of quantum circuit
design of N-qubit star graph states within depth O(v/N)
on the subdivided honeycomb lattice structure, which is the
typical topology of current IBM Quantum devices.

The rest of the paper is organized as follows. Section II pro-
vides a brief introduction to graph states, the Bell inequalities
of Baccari et al., and the quantum readout error mitigation
used in our experiments. Section III explains how to make
shallow quantum circuits for graph states on the IBM Quantum
devices whose qubits are sparsely connected. Section IV shows
the experimental results on IBM Quantum devices showing
their ability to entangle more qubits than reported before.
Section V concludes with a discussion of the results and future
works.

II. PRELIMINARIES
A. Graph State

First, we consider a simple undirected graph G = (V, E),
where V = {0,..., N — 1} is a set of vertices and £ =
{{u,v}lu,v € V,u # v} is a set of edges. Let n(v) denote
the set of all neighbours of v, that is, the vertices that are
connected to v; let also n[v] := n(v) U {v} be the vertex set
containing v and its neighbours.

Then the graph state |y) is generated from a product state
|[+)®IVI by applying the controlled-Z gates CZ(i, j) between
the qubits i and j corresponding to the edge (i, j) € E.

lye) =[] ¢z, pHl+=". (1)

(i,))eE
This state can also be characterized by stabilizer formalism.
Let (/')((] ) be the Pauli X operator which acts on the qubit j.
Likewise, let aéf ) be the Pauli Z operator which acts on the
qubit j. Then the set of stabilizer generators of graph state

lwa) is {Gp},cy Where

Gy=0y'® X) o). 2)
ien(v)
This means |yg) is the simultaneous eigenstate of all of the
stabilizer generators in {G,},cy.
For example, the pictures of the five-qubit star graph state
and the five-qubit path graph state are shown in Fig. 1.

B. The Scalable Bell Inequalities of Baccari et al.

The Bell inequalities of Baccari et al. is designed as a
family of robust and scalable Bell inequalities for self-testing
quantum devices. This can be considered a generalization
of CHSH inequality [4], which is suitable for demonstrat-
ing the nonlocality between two qubits. While the previous
Bell inequalities for self-testing would scale exponentially in
terms of the size of required resources, the inequalities by
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Star Graph Sg

Path Graph Ps

Fig. 1. Graph states associated with a star graph S5 (left) and path graph
Ps (right) respectively. Each vertex corresponds to each qubit with |4) state
and each edge corresponds to applying the controlled-Z (CZ) gate between
the associated qubits.

Baccari et al. scale linearly to the system size. In this work,
we used their inequalities to conduct the benchmarking of
large quantum devices available through cloud access and
measured the nonlocality of quantum states on them.

We recall the original notations of the scalable Bell inequal-
ities of Bacarri et al. here. Selecting a vertex subset (i.e. a set
of qubits) F C V satisfying Yu,v € F, n[u]Nn[v] = ¢, the
general form of their proposed physical correlation among N
particles which form a graph structure G becomes

Ig(F) = Z deg(v)<(Ag’) +A§D)) H Agi)>

veF ien(1)

-3 (- a) 11 47

ien(v) jen(l)
+ 0 1 3)
igUuEF ”[D] jen(l)

where AI(;) represents the observable labeled with b € {0, 1}
on the particle (or qubit) i. Their inequalities show that this
physical correlation I (F) is upper bounded by ﬁg (F) and
,[)’g (F) shown below, for the classical parties and the quantum
parties, respectively.

BE(F) = D deg(v) + N — |F|

veF

BE(F) = 2V2-1)D deg(v) + N — |F|

veF

“)

We can see S (F) and 2 (F) will become distinct for general

G G &
graph size N, if the sum of the degrees of vertices in F
increases in proportion to N.

Baccari et al. also showed that /G (F) reaches the maximum
quantum violation when each operator Az(;l) takes A(()l) =
%(a)((l) —i—ag)) ,Agl) = %(a)((l) —ag)) if i e F, A(()l) =
a}((i), A(li) = aéi )if i ¢ F. In this setting, the total correlation
I (F) becomes

I6(F) =Y | deg®) (G,) + D (Gi)

veF ien(v)
+ 2

i1¢Uyer nlol

where every stabilizer operator G; is used once.

(Gi). (5

Besides, choosing a feasible vertex subset F would maxi-
mize the gap between ,[)’(C; and ﬁg , which makes the violation
on real devices clearer. The optimal choice of F for path
graphs is to choose every two vertices, and the optimal choice
for star graphs is to choose the central node. Or for N-node
star graph Sy, Ig(F) becomes quite simple, as described in
the following form (6).

Iy =AW = ) {o 0 o)

W2y <a§)a§j)> 6)

ieV\{1}

The measurement operation of IBM Quantum devices is per-
formed in the Pauli Z basis (the computational basis). To mea-
sure a qubit in the Pauli X basis, we can apply the Hadamard
gate on it and measure the qubit in the Pauli Z basis.

C. Quantum Readout Error Mitigation (QREM)

Since the noise level is crucial and quantum error correction
(QECQ) is not yet available on the current quantum computers,
we have to reduce the noise effects in classical postprocessing
to achieve better performance. Quantum readout error miti-
gation (QREM) is one of the most practical quantum error
mitigation techniques, targeted to reduce the effect of readout
noise from the measurement results. The workflow of QREM
is to calibrate the readout noise by running each computational
basis state for the first step and then reconstructing the calibra-
tion matrix as a noise channel. For the next step, the mitigated
probability distribution is obtained by applying the inverse
of the calibration matrix to the noisy measurement result.

In experiments, we used the efficient QREM algorithm by
Yang et al. [26]. This algorithm scales O(ns?) time for the
measurement result with n-qubit and s shots thanks to its
assumption that the unmeasured states are ignorable for sparse
measurement results with few measured states. Applying
QREM would significantly improve the measurement results
as shown in [26], where they demonstrated the fidelity of GHZ
states by mitigated results increased over 1.5 times higher than
the fidelity by raw results.

ITII. QUANTUM CIRCUIT CONSTRUCTION

In this experiment, we used IBM Quantum 65-qubit device
(ibmg_brooklyn) and 27-qubit devices (ibm_cairo,
ibm_hanoi, ibm_kawasaki, ibmg _montreal,
ibmg mumbai and ibmg toronto). On these devices,
we investigated the correlations of path graph Py, star graph
Sw, and the connection graphs of each device.

All the devices have the heavy-hexagonal qubit connection
structure. We used the circuit designing techniques used by
Wei et al. [23] and Mooney et al. [27] to prepare shallower
quantum circuits.

A. Preparing the Path Graph States

Path graph state |y p, ) can be prepared by shallow circuits
with depth two as shown in [27]. This is completed by
preparing |+)®" state first, then applying the controlled-Z
gate to every other edge of the path, and finally applying the
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0) —{H]
0) —{H|
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Fig. 2. Quantum circuit for the 7-qubit path graph state with the con-
stant depth construction. After preparing the uniform superposition state by
Hadamard gates, controlled-Z gates are applied in a parallel way.

Fig. 3. Qubit layout of the path graph states on each IBM Quantum device.
Each figure shows the qubit layout of 65-qubit devices and 27-qubit devices,
respectively. The numbers on the figure represent the virtual positions on the
physical qubits. The graph size is expanded from the qubits with smaller
virtual indices to the qubits with larger virtual indices. These orders and
locations of the qubits are chosen to maximize the length of path graph states
on each device.

controlled-Z gate to every other remaining edge. The quantum
circuit creating the graph state of the path graph Py is shown
in Fig. 2.

To make the path graph with the constant depth circuit on
each device, we used the qubit layout in Fig. 3. The violation
for path graph states is tested from the size two up to the
maximum size that can be taken on each device.

B. Preparing the Star Graph States

Since star graphs are equivalent to GHZ states in terms of
local Clifford operations [28], the quantum state corresponding
to the star graph can be obtained from the GHZ state by
applying the local Hadamard gate to every qubit except for
the qubit representing the central node in the graph. That is,
assuming that the central vertex is labeled by 0, the following
equation holds.

sy) = (1® H¥Y D) lyGnz,) )

Then the remaining task is to prepare the GHZ state in
a shallower manner, for which we can use the technique as
shown in [23]. The main idea of this technique is that GHZ
states can be prepared without qubit swapping operations on
any tree-structured physical connection of qubits. The GHZ
states are realized by applying the Hadamard gate to an initial
qubit and then applying the X gate to other qubits controlled
by the initial qubit. Since all qubits in the GHZ state are
equivalently entangled, we can apply the controlled-X gates to
different pairs of qubits in parallel by properly changing the
control qubits. By doing so, it is possible to realize a shallower
circuit with depth O(+/N) for a star graph state with size N
on the topology of IBM Quantum 65-qubit devices. The proof
is given in the following discussion.

We first describe the construction of tree graph state |yr,)
with tree depth d and see what the physical qubit topol-
ogy should be taken. We then show such a graph can be
embedded into the topology of the subdivided honeycomb
structure. In order to create a quantum circuit, we start from
vertex 0. If vertex O is connected with another vertex, say
vertex 1, we can add it to the tree, making |yr,) with depth
one.

Next, if one of the vertices 0,1 has degree three or
larger, connected with vertex 2, and the other vertex has
degree two or larger, connected with vertex 3, then we can
simultaneously add vertices 2,3 to vertex 0, 1. This time,
the created tree |wr,) has the depth two, with three outer
vertices on the qubit topology connected to different vertices
of |wr,). Going one step further, if two of three neighbor-
hoods of |y7,) have degree two or larger, and the remaining
neighborhood has degree three or larger, then we can make
|wr,) in one step, and assure four additional neighborhoods

for |yr,).
In this way, the size of tree graph (or tree graph state) we
can prepare with depth d is at least N = 1 d(d + 1) + 1.

The condition that the physical qubit topology should satisfy
to achieve this construction is that they can add d — 1 vertices
with degree two and at least one vertex with degree three.
Such structure can be easily found in subdivided honeycomb
because every vertex with degree two in the subdivided
honeycomb is adjacent to vertices with degree three, and vice
versa. Note that the argument above can be applied to other
two-dimensional lattice structures.

In our experiments, we prepared the star graph |yg,) of
size¢ N = 2,---,39 on 65-qubit devices, and of size N =
2,---,27 on 27-qubit devices. The detail of how we prepared
star graphs on each device is shown in Fig. 4.
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Fig. 4. Qubit layout of the star graph states on each IBM Quantum device.
Each figure shows the qubit layout of 65-qubit devices and 27-qubit devices,
respectively. The numbers on the figure represent the virtual positions on the
physical qubits. The graph size is expanded from the qubits with smaller
virtual indices to the qubits with larger virtual indices. The central vertex of
the star graph is set to qubit 0.

0) —{H]
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[n)
"

[an)
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>

[an)
>

|0) D

Fig. 5. Quantum circuit for the 7-qubit star graph state with O (v/N) depth
constructed according to the restriction of qubit connection on IBM Quantum
devices. The first Hadamard gate followed by controlled-X gates makes the
7-qubit GHZ state and the final parallel Hadamard gates convert the GHZ
state to the star graph state. Note that the depth of controlled-X gates is three
since some of the controlled-X gates are parallelized.

In general, the qubits with small single and two-qubit
operational errors are selected. The circuit example of the
7-qubit star graph on the devices is shown in Fig. 5.

C. Preparing the Qubit-Connection Graph State for Each
Device

The graph structure of the qubit connection of each quantum
device we used can be seen as a subdivision of the honeycomb

Fig. 6. Qubit layout of the connection graph states on each IBM Quantum
device. Each figure shows the qubit layout of 65-qubit devices and 27-qubit
devices, respectively. The numbers on the figure represent the positions of
virtual qubits. In order to prepare the subdivided honeycomb graph with the
whole qubits on the device, we first apply the controlled-Z gate on the red
edges, then on the blue edges, and finally on the green edges. The “focused”
qubits in the inequalities of Baccari et al. are set to [1,6,8,12,17,19,23,26] for
27-qubit devices, and [3,6,9,10,17,21,24,25,26,31,35,38,44,47,54,56,59,62]
for the 65-qubit device.

graph. Let us define this graph of size N as T Hy. Since the
maximum degree of T Hy is three, it is shown to be three-
edge colorable by Vizing’s theorem [29]. Therefore, we can
prepare the quantum circuit for 7Hy in circuit depth three.
The specific construction of 7 Hy corresponding to the graph
structure of each device is explained in Fig. 6.

D. Measurement Grouping

In the experiments, we also adopted the technique
called measurement grouping, which has been convention-
ally used [30], [31], [32], [33], [34], [35], [36], [37]. With
this method, we can efficiently utilize the current limited
quantum computational resources by reducing the number of
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Correlation of Path Graphs (ibm_cairo) Correlation of Path Graphs (ibm_hanoi)

Correlation of Path Graphs (ibmq_montreal)

Fig. 7.

Correlation of Path Graphs (ibmq_kawasaki)

Correlation of Path Graphs (ibmq_brooklyn)

—— Classical bounds
—— Quantum bounds

—— mitigated (proposed. least norm)

Correlations of path graphs on each quantum devices. The red lines denote the upper bounds of classical correlation of the inequalities of

Baccari et al., and the blue lines denote the upper bounds of quantum correlation of the inequalities. The purple and black lines represent the measured

correlation on real devices with and without QREM, respectively.

observables that otherwise should be measured separately. The
idea of the measurement grouping is to create a grouped
observable from the observables sharing the same measure-

ment basis. For example, the observable ¢ )((O)aél) and aél)a )((2)

can be grouped into a)((o)aél)a)((z). After measuring the grouped
observable, we can recover the probability distribution of each
observable by just taking the marginal distribution on the
qubits that the observable covers.

The minimum number of grouped observable in the inequal-
ities of Baccari er al. for a graph state |wg) is characterized by
the chromatic number yg of its associated graph G. Since the
observables in the inequalities of Baccari et al. correspond
to the stabilizers of the graph state, the vertices with the
measurement basis ox in the grouped observable form the
independent set of G. This concludes that the yg different
measurement observables are enough instead of measuring all
N different observables in the inequalities.

Since the path graph and the star graph are all 2-colorable,
the stabilizers of those graph states can be grouped into
two observables. For the path graph, the grouped observables

become <a)((0)aél)a)((2)aé3) - > and <0§))0}((1)0é2)0}((3) e > For

o

the star graph whose center is (3ubit 0, the grouped observables
o

)((0) él) éz)ag) o éo)a)((l)a)((z)af) o

Since the connection graph of the heavy-hexagonal structure
on the IBM Quantum devices is three-colorable, the number of
observables in the measurement process can also be reduced

from N to three.

become <a and <a

IV. RESULTS OF EXPERIMENTS

The python codes of this experiment are available at [38].
The result of each experiment is averaged over the constant
8192 shots. This can be justified by Hoeffding’s inequality.
The unbiased estimator (O) of Tr(Op) for the observable O
on the noisy state p can be bounded by Pr[|(O) — Tr(Op)| >
5] < exp(—s0%/2) with the shot count s [39]. This means the
probability that the expectation value greatly deviates from

the true expectation value will be exponentially small to the
error rate and the shot count. If we set s = 8192, even the
probability that the gap between (O) and Tr(Op) is larger
than 6 = 0.05 is at most 3.6 x 107>,

The correlations for path graphs obtained from the experi-
ments on each device is shown in Fig. 7. The correlations for
star graphs on each device are shown in Fig. 8. The purple
lines are the raw correlations without QREM, and the black
lines are the correlations with the proposed QREM method
by [26] using its least norm formulation. Fig. 9 shows the
term-wise mitigated correlations in (6) for each size of star
graphs. For example, the curve labeled by O indicates the
expectation value of <J)((O)ag)~~agvfl)> in (6) for graph
size N =2,3,4,---, and the curve labeled by “3” indicates
the expectation value of <a)((0)aé3)
N =4,5,6,---.

From Fig. 7, we observe the path graphs violate the inequal-
ity with a clear gap from classical bounds without QREM
on most of the devices, while the plots of ibm_cairo
and ibmg toronto show the worse correlations that do
not violate the classical upper bounds. However, when the
QREM method is added, the correlation of path graph state
for every size and on every device violated the classi-
cal bounds. With QREM, the measured correlations on the
devices except for ibm_cairo almost reach the theoreti-
cal upper bound of quantum correlation. Besides, thanks to
the constant-depth circuit preparation of path graph states,
the plots of path graphs on each device seem to grow
stably to the system size between the classical bound and
quantum bound. Therefore, we may say the path graph
state can be well prepared on the current IBM Quantum
devices.

As for the star graph states, the raw correlations without
QREM only violate the classical upper bounds up to four to
six qubits on each device. With the proposed QREM, the max-
imum size of violation increased to size 11 on ibm_hanoi
and ibmg toronto, to size 10 on ibm_cairo and

> in (6) for graph size
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Correlation of Star Graphs (ibm_kawasaki) Correlation of Star Graphs (ibmq_brooklyn)

correlation value
correlation value

Correlation of Star Graphs (ibmq_toronto)
~—— Classical bounds
~—— Quantum bounds
aw
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correlation value

Fig. 8. Correlations of star graphs on each quantum devices. The red lines denote the upper bounds of classical correlation of the inequalities of Baccari et al.,
and the blue lines denote the upper bounds of quantum correlation of the inequalities. The purple and black lines represent the measured correlation on real

devices with and without QREM, respectively.
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Fig. 9. Term-wise correlations of star graphs on each quantum device without QREM. The labels on the left edge represent the term-wise correlation labels
for 27-qubit devices. The labels on the right edge represent the term-wise correlation labels for 65-qubit devices (ibmgq_brooklyn only). The numbers of the

labels are the indices of stabilizer operator associated with the virtual positions of qubits. For example, the correlation of the first term <o‘)((0) aéz) . .0§N71)>

(©0)

in (6) is represented by the label “0”, and the correlation of the fifth term <az a)((4)> in (6) is represented by the label “4”.

ibmg_montreal, to size nine on ibmg_brooklyn, and
to size seven on ibm_kawasaki and ibm_mumbai.

These small violation sizes compared to the violation sizes
of path graph states can be explained by the circuit depth.
Unlike the constant depth circuit for path graph states, the
circuit depth of the star graph state scales O(+/N) to the graph
size N. A deeper circuit depth would be more vulnerable to
decoherence which is one of the dominant noises in the current
near-term quantum devices.

We founded out the biggest cause that prevents the star
graph states from getting higher correlations is the significantly

low correlation of the observable (o )((O)ag) e aéN_l)) for the
central vertex (qubit 0). The decrease of this correlation is clear
between the graph sizes 10 and 11, as shown in Fig. 9, and
it even scored negative values which are particularly obvious

on the device of ibm_kawasaki.

The difference of correlation between the central vertex
and the other vertices might be explained by the differ-
ence between the two grouped measurement observables

and <aéo)a)((l)a)((2) The first
observable corresponds to the original observable for the cen-
tral vertex. The second observable is the grouped observable
of all the observables for the leaf vertices. We will discuss
below how the measurement results of these two observables
contain the noise effects.

The measurement operation of the second observable
giaéo)ag)ag)ag) . > for the star graph state is performed by

rst applying the Hadamard gates on the qubits except for
qubit 0, and then measuring all the qubits in the computational
basis. This operation corresponds to measuring the GHZ
state in the computational basis. Since the GHZ state ideally
has only the all-zero state and the all-one state, the noisy

<a§°)a§)a§2)a§3)---> 0)53)...)
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TABLE II
CORRELATION VALUES OF THE WHOLE-QUBIT HONEYCOMB GRAPH ON
EACH DEVICE. THE ﬂg AND ﬂg REPRESENT THE THEORETICAL
UPPER BOUNDS OF CLASSICAL CORRELATION AND QUANTUM
CORRELATION RESPECTIVELY. THE “RAW ﬁg” AND “MITI-
GATED Fg DENOTE THE MEASURED QUANTUM CORRE-
LATIONS WITHOUT AND WITH QREM RESPECTIVELY.

HERE THE PROPOSED THE QREM WITH LEAST
NORM METHOD Is USED

device ﬂg ,6’2 raw 58 mitigated 58
ibmg _brooklyn 88 121.97 94.58 £0.120 96.79 £0.12
ibm_cairo 36 50.08 41.054+0.075 41.39 +£0.07
ibm_hanoi 36 50.08 44.21 +£0.060 44.61 £ 0.06
ibm_kawasaki 36 50.08 44.74+0.060 45.39 +0.05
ibmg_montreal 36 50.08 38.54+0.080 38.82 4+ 0.08
ibmg_mumbai 36 50.08 39.94 +0.080  40.86 4 0.08
ibmg_toronto 36 50.08 30.52+0.100 32.21 +0.10

probability distribution of the GHZ state measured by the
computational basis would still hold high probabilities for
these two states, which would result in a higher expectation
value. Accordingly, the correlations of the leaf vertices in the
star graph recovered from the latter observable would reflect
the performance of the GHZ state.

On the other hand, after applying the Hadamard gate

to the qubit O in order to measure the first observable
1056
of superposition in the star graph state would increase more.
This state is equivalent to the quantum state after applying the
Hadamard transform to all qubits of the GHZ state. Therefore,
those results might exhibit more noise effects of T1/T2 relax-
ation. In addition, the correlation of the central vertex of the
star graph would accumulate all the errors that happened in
the N-qubit system, while the correlations of leaf vertices only
use the subsystem that their original stabilizer observables are
in charge of. This might also be the cause of the difference
in the performance between the correlation associated with
the central qubit and the correlations associated with the other
qubits.

We also report the violation of the CHSH-like Bell inequali-
ties by Baccari et al. in the subdivided honeycomb graph using
whole qubits on both the 65-qubit device and the 27-qubit
devices. The correlations of the full connection graph state
associated with the qubit structure of each device are listed in
Table II. This result implies that these IBM Quantum devices
except for ibmg_toronto have the ability to prepare a large
graph state unique to its qubit layout using its whole qubits,
with rather good accuracy. Especially the 65-qubit connection
graph states on ibmg_ brooklyn achieves the largest graph
state preparation on IBM Quantum Experience.

> in the computational basis the number

V. CONCLUSION

Through our experiments, we support the benefits of the
CHSH-like inequalities proposed by Baccari et al. [1] in terms
of its scalability and robustness. The inequalities of Baccari
et al. enabled us to demonstrate the nonlocality of large
quantum states up to the 65-qubits graph state. This implies
the advantage of using their inequalities over using Mermin’s

inequality in the experiments by [24], [25], because Mermin’s
inequality has an exponential number of terms to the graph
size.

Using Baccari et al.’s remarkable Bell inequalities, we also
support the ability of existing IBM Quantum devices to prepare
well-entangled large graph states on them. We report in this
work the violation of the inequalities for several graph states
with a large number of qubits. Using shallow circuits with
a constant depth [27], we have seen path graphs violate the
inequalities up to the maximum size on each IBM Quantum
device. In particular, for the IBM Quantum 65-qubit device,
path graphs showed its quantumness up to size 57. We also
checked the violation of classical bounds for the graph state
corresponding to the graph structure of each quantum device
with its whole qubits. Our result reports the violation of star
graphs up to size six which can be further improved up to
11 by applying QREM. These are the largest graph states on
star graphs at the moment and our experiments can be seen as
one of the milestones demonstrating the performance of IBM
Quantum devices.

For future work, a possible improvement in circuit prepa-
ration can be found in the experiments by Wei et al. [23].
During their experiments, they added a collective 7 -pulse on
all qubits in order to refocus low-frequency noise and reduce
dephasing errors using the idea of Hahn echo [40]. As they
applied the z-pulse between the entangling process of GHZ
states and the disentangling process which undo the entangling
process, 7 -pulse becomes most effective for certain time inter-
vals decided by T1/T2 relaxation times. Since our experiments
do not have the structure of symmetry in terms of entangle
process and disentangle process, partial insertion of z-pulse
into the entangled qubits might improve the correlations
instead of the direct insertion of z-pulse in the middle of our
circuits. This might significantly improve the low correlation
of the observable associated with the central qubit in star graph
states. Other ideas for decreasing the dephasing errors, such
as dynamic decoupling methods discussed in [41], might also
help us improve the total correlations of the inequality.

In conclusion, our results for the large quantum states
greatly owe to the scalability of the Bell inequalities proposed
by Baccari et al. and we experimentally support the usefulness
of their inequalities as a powerful tool for the entanglement
verification of large quantum states and for the benchmarking
of upcoming near-term quantum devices.
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