
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022 393

Adapting the RACER Architecture to Integrate
Improved In-ReRAM Logic Primitives

Minh S. Q. Truong , Liting Shen, Alexander Glass, Alison Hoffmann, Student Member, IEEE,

L. Richard Carley , James A. Bain, Senior Member, IEEE, and Saugata Ghose , Member, IEEE

Abstract— Modern computing applications based upon
machine learning can incur significant data movement over-
heads in state-of-the-art computers. Resistive-memory-based
processing-using-memory (PUM) can mitigate this data movement
by instead performing computation in situ (i.e., directly within
memory cells), but device-level limitations restrict the practicality
and/or performance of many PUM architecture proposals. The
RACER architecture overcomes these limitations, by proposing
efficient peripheral circuitry and the concept of bit-pipelining
to enable high-performance, high-efficiency computation using
small memory tiles. In this work, we extend RACER to adapt
easily to different PUM logic families, by (1) modifying the
device access circuitry to support a wide range of logic families,
(2) evaluating three logic families proposed by prior work,
and (3) proposing and evaluating a new logic family called
OSCAR that significantly relaxes the switching voltage con-
straints required to perform logic with resistive memory devices.
We show that the modified RACER architecture, using the
OSCAR logic family, can enable practical PUM on real ReRAM
devices while improving performance and energy savings by 30%
and 37%, respectively, over the original RACER work.

Index Terms— Accelerator architectures, memory architecture,
resistive RAM.

I. INTRODUCTION

THE rise of machine learning (ML) has led to the
development of many modern data-intensive computing

applications (e.g., image classification, object tracking, robotic
navigation, text prediction) that perform ML algorithms as
a key component of the larger application. Unfortunately,
data movement between the CPU and memory components
can consume as much as two orders of magnitude more
energy than that needed to process the data [1], [2], and can
be responsible for a majority of energy consumed by data-
intensive applications [3]. This is particularly costly in mobile
and edge computing platforms, where energy is a first-order

Manuscript received December 14, 2021; revised February 24, 2022;
accepted March 28, 2022. Date of publication May 12, 2022; date of current
version June 13, 2022. This work was supported in part by the Seed Grant
from the Wilton E. Scott Institute for Energy Innovation and in part by
the Data Storage Systems Center at Carnegie Mellon University. The work
of Minh S. Q. Truong was supported by the Apple Ph.D. Fellowship in
Integrated Systems. This article was recommended by Guest Editor T. Kim.
(Corresponding author: Saugata Ghose.)

Minh S. Q. Truong, Liting Shen, Alexander Glass, Alison Hoffmann,
L. Richard Carley, and James A. Bain are with the Department of Elec-
trical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213 USA (e-mail: minhsyqt@andrew.cmu.edu).

Saugata Ghose is with the Department of Computer Science,
University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
(e-mail: ghose@illinois.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2022.3171765.

Digital Object Identifier 10.1109/JETCAS.2022.3171765

design concern. For data-centric applications, to maximize
energy efficiency, these platforms ideally should avoid both
sending large amounts of data across the network and inducing
large amounts of data movement during local/edge processing.

To mitigate data movement overheads, recent works have
proposed new device innovations based on the principle of
processing-using-memory (PUM) [4], [5]. The PUM paradigm
takes advantage of electrical interactions between intercon-
nected memory cells to perform primitive computational func-
tions, in addition to the original role of the cells as data
storage. Examples of these primitives include various families
of Boolean-complete operators (e.g., [6]–[9]) and multi-bit dot
products (e.g., [10]–[13]). Such primitives can be performed
in situ on the data (i.e., the data never has to leave the
memory cell). The principles of PUM have been demonstrated
using a wide range of memory technologies, including more
conventional DRAM [8], [14]–[16] and SRAM [9], [17]–[19],
and emerging technologies such as resistive memories [6],
[7], [10]–[13], [20]–[33].1 Resistive memories are attractive
alternatives to DRAM as PUM-enabling technologies because
of their ability to perform logically-complete bitwise Boolean
operations without relying on additional compute circuitry, and
because of their higher memory densities.

In our previous work, we tackled critical device- and circuit-
level limitations that constrain resistive memory array scaling
by designing RACER (Resistive Accelerated Computation for
Energy Reduction) [34]. While large memory arrays have
traditionally been seen as an effective way to amortize both
peripheral circuit area and high PUM latencies, there is a
fundamental limit to increasing the array size in resistive
crossbar arrays (see Section II-D). RACER is the first PUM
architecture that addresses this array size limitation, rely-
ing on a novel execution model that we call bit-pipelining
to provide high throughput for many important arithmetic
operations, which enable the architecture to perform both
essential ML computations and a large variety of non-ML
functions. Even when implemented with very small (i.e.,
64 × 64) arrays based on the MAGIC logic family for
ReRAM [6], RACER provides 107× and 12× the performance
of a 16-core CPU and a 2304-shader-core GPU, respectively,
with energy savings of 189× and 17×, for many data-intensive
microbenchmarks [34]. Unfortunately, while these perfor-
mance and energy improvements are attractive, the use of

1In this work, we use the term resistive memory to refer broadly to
resistance-based non-volatile memories (e.g., PCM, MRAM, ReRAM), while
we use ReRAM to refer specifically to oxide-based switches (often referred
to as memristors).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8430-2513
https://orcid.org/0000-0002-9138-0613
https://orcid.org/0000-0003-3945-9110


394 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

MAGIC as the underlying logic family places fairly stringent
restrictions on the switching voltages of the ReRAM cells.

In this work, we explore the impact of alternate resistive
memory technologies on RACER. Specifically, we explore
how RACER can be integrated with other previously-proposed
logic families (NAND using MAGIC [6], and the multi-
primitive FELIX [7]), and we develop a new ReRAM-based
logic family approach called OSCAR (Optimized Switch-
ing Constraints for RACER), which dramatically reduces
the constraints on ReRAM switching voltages compared to
previously-proposed logic families. OSCAR supports NOR
and OR Boolean logic primitives, and can make use of either
1S1R (one selector, one resistor) or 1T1R (one transistor, one
resistor) ReRAM devices. We provide a detailed discussion
on the circuit-level changes (predominantly in the decode &
drive circuits used to assert different voltages on ReRAM array
wordlines) needed to integrate these and other logic families
into RACER.

We evaluate the modified RACER architecture using four
ReRAM-based logic families: (1) NOR using MAGIC [6], our
baseline family that was employed in the original RACER
work [34]; (2) NAND using MAGIC; (3) NAND, AND,
NOR, and XOR using FELIX [7]; and (4) NOR and OR
using OSCAR. We find that, ignoring the practicality of
switching voltage constraints, the FELIX logic family provides
an average performance improvement of 70% over the MAGIC
NOR baseline, along with energy savings of 43%, across a
range of data-intensive microbenchmarks. Our OSCAR logic
family, with its more practical switching voltage constraints
that can work with real ReRAM devices, achieves an average
performance improvement of 30% and energy savings of 37%
over MAGIC NOR.

We make the following contributions in this work:
• We propose a new ReRAM-based logic family called

OSCAR. OSCAR can support two logic primitives: NOR
and OR. Compared to prior work on ReRAM-based logic,
the device constraints for OSCAR are more practically
attainable in terms of the ratio of the set and reset
voltages. Unlike previously-proposed logic families, this
property allows OSCAR to be widely applicable across
most proposed ReRAM devices.

• We demonstrate the necessary circuit-level changes to
adapt RACER to a wide range of logic families. These
changes are generalized based on the shared characteris-
tics of different resistive memory technologies, allowing
RACER to integrate with future technologies and logic
families without major redesigns.

• We evaluate the performance and energy consumption of
different logic families on our modified RACER archi-
tecture. We provide detailed estimates of the power and
area overheads of RACER across these different logic
families.

The rest of the paper is organized as follows: Section II
provides background on PUM; Section III motivates the need
for better device switching thresholds and the need to extend
RACER to integrate with several different logic families;
Section IV explains the OSCAR logic family; Section V
describes the changes necessary to integrate different logic

Fig. 1. (a) 1T1C DRAM array; (b) 1T1R resistive memory array.

families with RACER; Section VI discusses our methodology;
and Section VII describes our evaluation.

II. BACKGROUND

In this section, we provide a brief discussion on the underly-
ing technologies that we use to build RACER, along with some
of the foundations that motivate our new logical primitive
approach (OSCAR) and motivate the need to integrate different
resistive memory technologies with RACER.

A. Access Topologies for Resistive Memories

As DRAM scaling issues continue to be difficult to
solve [35]–[37], researchers have been developing a number
of emerging memory alternatives, which are starting to reach
commercial deployment [38]–[40]. These alternatives include
resistive memories such as MRAM, PCM, and ReRAM. One
way to implement these technologies is similar to the access
topology used for DRAM. Figure 1a shows a typical 1T1C
(one transistor, one capacitor) access topology for DRAM [41],
while Figure 1b shows a similar 1T1R (one transistor, one
resistor) array topology for a resistive memory array [42].
In such an array, the access transistors are fabricated in the
front-end-of-line (FEOL) process, while the resistor elements
are fabricated amid the metallization layers in the back-end-
of-line (BEOL) process.

To eliminate the dense access transistor array in 1T1R
topologies, device and circuit researchers have envisioned a
way to integrate these emerging memory technologies fully
into the BEOL process, by using a crossbar array topology
and resistive selectors for access control [38], as shown in
Figure 2a. One resistive selector and one resistor (1S1R) in
series sit at the intersection of each row and each column,
forming a memory cell. The resistive selector element controls
access to the cell, eliminating the need for the separate column
line present in the 1T1R topology, and the resistor stores
data. Figure 2 shows a typical non-linear, bipolar, two-terminal
memory cell for 1S1R, with the resistive selector represented
as opposing diodes (as the selector is designed to prevent sneak
path currents). Because of this topology’s symmetry, we can
access data in both the column and row directions, and the
access points for 1S1R are named column lines and row lines,
correspondingly. In this topology, a single cell can be selected
by asserting predetermined selection voltages on one row line
and on one column line.



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 395

Fig. 2. (a) 1S1R crossbar access topology for resistive memory, with resistive
selectors in blue and resistors purple; (b) circuit diagram for a 1S1R memory
cell.

Fig. 3. (a) Idealized ReRAM I-V curve; (b) I-V curve of a real TaOx resistive
element, with negative differential resistance (NDR) region shown as purple
arrow.

B. ReRAM Devices

The redox-based RAM (ReRAM) cell is a non-volatile
resistive memory device that stores data in the form of a resis-
tance value, which can be changed by applying a switching
voltage that triggers a redox reaction [43]. Importantly, these
devices are bipolar, allowing them to be set to a low resistance
(logic 1) with a positive pulse and reset to a high resistance
(logic 0) with a negative pulse. Fundamentally, these elements
are compatible with both 1T1R and 1S1R access topologies.

Figure 3a shows an idealized I-V curve of a ReRAM cell
where the Vset and Vreset voltages alter the cell’s resistance
between two resistance levels.2 Figure 3b shows the I-V of a
typical TaOx resistive element, including a negative differen-
tial resistance (NDR) region where the differential resistance
dV/d I is negative. Section IV discusses the importance of
this NDR region to realize OSCAR’s logic NOR primitive.

Some prior work proposes to store multiple bits of data
per cell [44], which can enable analog multi-bit in-memory
operations such as dot products. However, multi-bit storage
requires relatively large resistance ranges in order to divide
the range up among the different multi-bit values. In contrast,
we treat ReRAM cells as digital devices that each store only a
single bit of data. This provides greater immunity to variation
in switching thresholds and resistance drift, and avoids the
need for complex analog-to-digital converters (ADCs) during
processing.

2To illustrate the non-volatile and polarity-dependent switching of ReRAM
devices throughout this paper, we use a trapezoidal-shaped element to rep-
resent the device. Application of a positive voltage to the wide end of the
trapezoid sets the device (to a low resistance), while application of a positive
voltage to the narrow end of the device resets the device (to a high resistance).
We use a black element to indicate the set (low resistance/logic 1) state, while
a white element indicates the reset (high resistance/logic 0) state.

Fig. 4. (a) Voltage assertions for MAGIC’s NOR primitive on 1S1R crossbar;
(b) possible output transitions for NOR, with arrows indicating output cell
resistance switches.

C. Logic Families Using Resistive Memories

There are several proposals to implement logic families
(consisting of one or more Boolean logic primitives) through
the direct interaction of resistive memory cells. The MAGIC
logic family [6] eliminates the load resistors required by pre-
vious work [45] and enables resistive memory to perform the
NOR logic primitive in a two-step process (output initialization
and voltage assertion). Figure 4a summarizes how MAGIC
performs NOR using three resistive cells along the same row.
Two cells are selected as the inputs to the NOR primitive by
asserting a voltage Vnor on the cells’ corresponding column
lines. At the same time, a cell is selected as the output by
grounding its column line, and the shared row line is allowed
to float at V f loat . This allows an induced current to flow from
the input cells to the output cell, initiating the output cell
switch procedure. This NOR primitive is non-destructive, i.e.,
it does not overwrite either of the input cell values.

Figure 4b illustrates the possible cell switch cases for the
MAGIC NOR primitive. Note that the output cell must be
pre-initialized to the low resistance state (logic 1) prior to
the application of the Vnor voltage to the input columns.
An important assumption for resistive-memory-based PUM
primitives is that memory state can be set in a single voltage
assertion, without closed-loop feedback. This is reasonable
given the large resistance ratios and single-bit states of these
implementations, and has been the model from the inception
of these approaches [45].

The FELIX logic family [7] builds upon the MAGIC voltage
assertion concept to provide three primitives (NAND, NOR,
OR) that can each be executed in a single clock cycle.
The availability of multiple primitives can reduce the total
execution time of an application in a PUM architecture by
allowing for logic simplification.

D. RACER Architecture

In our previous work [34], we showed that there is a
fundamental limit to how large a crossbar can be for PUM
architectures that perform whole-column operations, in which
logic primitives (as discussed in Section II-C) are applied
to an entire column of the crossbar. For an n × n crossbar
of ReRAM cells, n ≤ 200 in such architectures because
of the current carrying limit of metal wires. The array size
constraint significantly limits the throughput of existing PUM
architectures. To work around this constraint, we designed
RACER [34], a PUM architecture based on a novel bit-
pipelining execution model and the MAGIC logic family [6]



396 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 5. Tile and buffer design, showing two four-bit values (1101 in red,
0110 in blue) striped across the tiles.

to achieve high performance while using small tiles (i.e.,
64 × 64 crossbars.

In this work, we summarize two features of RACER that
are relevant to our discussion: (1) the bit-pipelining execution
model; and (2) the RACER cluster, which consists of control
and peripheral logic to enable bit pipelining, as well as
read/write (R/W) circuitry. In Section V, we discuss how to
modify the cluster’s control and R/W circuitry to integrate
RACER with resistive memory technologies beyond ReRAM,
and logic families beyond MAGIC. We refer readers to our
MICRO 2021 paper [34] for the full architecture-level details
of RACER.

1) Bit-Pipelining: RACER takes advantage of a novel exe-
cution model that we call bit-pipelining to concurrently operate
on w × n words, for a w-bit word and an n × n tile. RACER
exploits parallelism across multiple tiles by striping each
bit of a w-bit word across w tiles, as shown in Figure 5
(Tile 0 holds the least significant bit, or LSB). RACER
can realize bit-serial operations [46] by iteratively applying
column-wide Boolean logic primitives one tile at a time. As
an example, RACER performs ripple-carry addition tile-by-
tile: at each bit i , it generates the sum and carry-out bits in
Tile i for 64 different addition calculations simultaneously,
and then propagates the carry-out bits to Tile i +1 to compute
the next bit.

To enable inter-tile data transfer, RACER uses buffers,
which are 1 × 64 crossbars (made of the same device as the
tiles) that connect to a pair of tiles using programmable pass
gates (Figure 5). For our addition example, after computing the
carry-out bits in Tile i , RACER connects Tile i to Buffer i ,
copies the carry-out column into the buffer, and then connects
the buffer to Tile i +1. The buffer’s contents are finally copied
into Tile i + 1, where the column is used as the carry-in bits
for bit i + 1’s addition.

Our decoupled tile-by-tile computation allows us to pipeline
across bits in RACER. We group w tiles and their corre-
sponding buffers together to form a pipeline (we set w = 64
to support up to 64-bit computation). After Tile i finishes
its computation for the current column (i.e., for the current
n words) and passes its generated column(s) to Tile i + 1,
Tile i is free to perform another sequence of combinational
logic primitives, on another column with n different words of
data. This allows RACER to have up to w instructions in flight
simultaneously, each operating on n words at once.

2) RACER Cluster: In RACER, we exploit our observation
that many bit-serial operations perform the same Boolean logic
primitives on each bit, in order to design efficient control
logic. For such operations, RACER generates a sequence of

Fig. 6. (a) Byte group; (b) RACER cluster: 8 byte groups, 64 pipelines, and
R/W circuitry.

primitives for one tile, and then propagates the sequence from
tile to tile. A byte group (Figure 6a) contains the control
circuitry to enable bit-pipelining across eight consecutive tiles,
with one micro-op queue per tile. Each queue holds a sequence
of micro-ops, which are commands that tell RACER which
primitive to apply to a tile, and can control which columns
are operated on (and when to connect/disconnect adjacent
buffers). RACER propagates micro-ops from the head of one
micro-op queue to the tail of the next micro-op queue in
a byte group. RACER can configure whether adjacent byte
groups are connected together to allow propagation across
byte groups, which we use to enable bit-pipelining at the
8-/16-/32-/64-bit granularity. The micro-ops drive selection
voltages using per-tile decode & drive units, which serve as the
interface between the technology-agnostic byte group circuits
and the technology-specific crossbar voltages.

We group 64 pipelines into a cluster (Figure 6b), with
the pipelines in a cluster receiving commands from a single
shared byte group control unit. A RACER chip can contain
an arbitrary number of clusters depending on platform needs.
Each cluster has its own control units and peripheral circuitry,
and can operate independently of other clusters. The cluster
also contains read/write (R/W) circuitry, which can read/write
data to 64 buffers of the same pipeline in bursts. The R/W
circuitry is used to transfer data both between pipelines in the
same cluster and between clusters.

III. MOTIVATION

A. Device Motivation: Improved Switching Thresholds

A critical requirement for the logic families described in
Section II-C to function correctly is that the reset voltage Vreset

must be less than half of the set voltage Vset . MAGIC [6]
derives this relationship in detail and shows the consequences
of not meeting this criteria (failure to accomplish the logi-
cal primitive, or accidental overwrite of the inputs). FELIX
requires the same relationship between Vset and Vreset as
MAGIC.

The switching voltage constraints imposed by a logic family
are an extremely important consideration for the viability of
PUM, as it is often difficult to manipulate the switching volt-
ages of the ReRAM cells to achieve this required relationship



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 397

(as we discuss in Section IV-C). To this end, we propose a
new logical family, OSCAR, that retains the spirit of prior
works but attempts to relax the constraints on the switching
thresholds and the required load resistors to more practical
values. For practical implementation, we believe it is critical
to not constrain the switching voltages in the ways in which
the MAGIC approach does (i.e., we do not want to require
that Vreset < Vset/2).

B. Architectural Motivation: Adaptability

As RACER’s bit-pipelining execution model addresses the
array size limitation that directly affects the architecture’s
performance, it is highly beneficial for RACER to work
with many different resistive memory technologies and logic
families. The limited current carrying capacity of metal wires,
regardless of topologies and logic primitives, is fundamental to
the wire material, and is expected to hold true for any resistive
technology capable of performing whole-column operations,
not just for MAGIC-capable ReRAM.

To this end, we modify and generalize RACER’s decode
& drive units and read/write (R/W) circuitry to ensure that
RACER can be integrated with new resistive memory tech-
nologies, benefiting from technological improvements with-
out the need for major architectural redesigns. RACER was
designed to explicitly avoid exposing the programmer to
technology-specific capabilities such as the available logic
primitives, by providing a general-purpose instruction set
architecture (ISA) and a programming abstraction for the
bit-pipelining execution model. With the generalized decode &
drive units and R/W circuitry acting as the interface to specific
technology domains, this allows for the development of PUM-
specific, technology-agnostic software, which is a key need to
enable the adoption of PUM-based computing [5].

IV. OSCAR: OPTIMIZING SWITCHING CONSTRAINTS

Given the difficulties that practical ReRAM devices have
in meeting the switching voltage constraints (Vreset < Vset/2)
required for MAGIC and FELIX, we propose an alternative
ReRAM logic family, which we name OSCAR (Optimized
Switching Constraint Approach to RACER).3 As we describe
below, OSCAR enables two logic primitives: (1) non-
destructive NOR and (2) destructive OR (i.e., one of the inputs
is overwritten).

A. Non-Destructive NOR

Figure 7a shows how four resistive cells can be used to
perform the NOR primitive in OSCAR. Aside from having
two input cells and one output cell (just as MAGIC and
FELIX do), OSCAR employs a fourth load cell to correctly
balance the voltage division among the resistive cells. The load
resistor is used in a similar manner by the imply-based (IMP)
approach [28], [45]. However, unlike the IMP approach (which
requires a separate intermediate resistance value), the value of
the load resistor in OSCAR can be anything between Ron

3Apologies to Jack Lemmon, Tony Randall, Walter Matthau, and Jack
Klugman, the original movie/television Felixes and Oscars, respectively.

Fig. 7. (a) Voltage assertions for OSCAR’s NOR primitive on 1S1R crossbar;
(b) possible output transitions for NOR, with arrows indicating output cell
resistance switches.

(logic 1) and Rof f (logic 0). Thus, with OSCAR, one column
in a tile can be dedicated to serve as a load without requiring
repeated initialization, and the value of the load resistor can
be selected to minimize energy (by setting it to Rof f ) or to
minimize the voltage applied to the cells (by setting it to Ron).
In our analysis, we use load resistors that are fixed to logic 0
to minimize energy.

In OSCAR, the output cell is initialized to logic 0 (instead
of logic 1 for MAGIC), and the voltage Vnor + � is applied
to the cell, while the load cell is grounded. Theoretically, the
output cell can be asserted using Vnor , which is what we assert
on the input cells (i.e., without the additional small voltage �),
but this introduces the risk of destroying the input cells’ data.
In our analysis below, we first present OSCAR’s logic NOR
primitive with the output cell asserted using Vnor , then we
explain how adding � helps preserve the data in the input
cells.

If at least one of the inputs is logic 1, there is a minimal
voltage drop on the input and output cells because Ron �
Rof f , leaving the output unchanged. As shown in Figure 7, the
only case where the output changes is when both of the inputs
are logic 0 (Rof f ). In this case, the voltage drop on the input
and output cells is Vnor/4, assuming that the input and output
cells are all asserted with Vnor . If Vnor/4 > Vset , the output
changes to logic 1 (i.e., NOR(0,0) = 1). Thus, in OSCAR, the
resistance constraint is Ron � Rof f and the voltage constraint
is Vnor > 4Vset , while there is no voltage constraint between
Vset and Vreset unlike previous works. Note that because the
same voltage Vnor is applied to the input and output cells, the
voltage drop Vnor/4 exists not only at the output but also at
the inputs for the NOR(0,0) case. Thus, the data in the input
cells can potentially be overwritten during NOR.

To make OSCAR’s NOR non-destructive (i.e., input data is
not overwritten after the operation), we increase the voltage
asserted on the output cell by �. Asserting Vnor + � allows
the output cell to reach Vset before the input cells, such that
only the output switches from logic 0 to logic 1. As the output
switch happens, the output cell enters a negative differential
resistance (NDR) region, where the voltage across the cell
decreases but the current flowing through the cell increases
(dV/d I < 0) due to the rapid decrease of the cell’s resistance
(see Figure 3b). With a sufficiently large �, the maximum
voltage for the input cells never reaches Vset , preventing the
input cells from switching and losing their data. When one
of the NOR inputs is logic 1, the maximum voltage drop is
less than �, so no state change occurs as long as � is less
than Vnor .



398 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 8. SPICE results for OSCAR’s non-destructive NOR. Red dashed line
shows assertion voltage pulse start time.

We have simulated the electrical events that occur during
the OSCAR NOR primitive using SPICE. We apply assertion
voltage pulses that are 12 ns in length. Vset and Vreset are both
set to 2 V, and � is set to 1.5 V. From empirical analysis,
setting � to approximately 50–75% of Vset ensures correct
NOR functionality for OSCAR. A smaller value of � may
still permit the input cells to switch, while a larger value of
� can overwrite the output cell. Figure 8 shows the current
and voltage amplitudes over time during the NOR primitive,
as observed for each of the input cells (A and B) and for
the output cell. The assertion voltage pulses are applied at
t = 3 ns. The graphs for NOR(0,1) are similar to those for
NOR(1,0), with only Input A switched with Input B, so we
omit NOR(0,1) graphs for brevity.

We first examine the current and voltage changes during
NOR(0,0), as shown in Figure 8. Because the output cell is
asserted with Vnor + � while the input cells are asserted with
Vnor , the output cell’s voltage grows faster than the input cells’
voltages. Thus, the output cell enters the NDR region at around
t = 5 ns. At the same time, the input cells’ voltages start to fall,
becoming negative at around t = 5.6 ns. In the NDR region
(dV/d I < 0), the output cell’s value switches from logic 0 to
logic 1 as the device voltage drops rapidly. Meanwhile, the
decreasing voltage across the output cell, and by extension the
decreasing voltages across the input cells, prevent the inputs
from switching (dV < 0).

We now examine the current and voltage changes during
NOR(1,0) and NOR(1,1), as shown in Figure 8. To understand
the changes, we can apply the voltage superposition principle
and divide the voltages asserted on the input and output cells
into two parts: (1) Vnor , Vnor , Vnor to Input A, Input B, and
Output, respectively; and (2) 0, 0, � to Input A, Input B, and
Output, respectively. For the first part, because at least one of
the input cells is set to logic 1, there is virtually no voltage
drop across the input and output cells. For the second part,
an additional voltage � is applied to the output cell. Thus,
the voltage drop across the output cell is �, as we observe

Fig. 9. (a) Voltage assertions for OSCAR’s OR primitive on 1S1R crossbar;
(b) possible cell transitions for OR, with arrows indicating cell resistance
switches.

in the figure. From this analysis, we show that as long as �
is sufficiently lower than Vset , the output cell does not switch
when at least one of the input cells is set to logic 1.

B. Destructive OR

To expand OSCAR’s capabilities, we introduce a destructive
OR logic primitive. This primitive, which does not require the
output to be pre-initialized, offers improved efficiency when
the input operands do not need to be preserved.

Figure 9a shows the two ReRAM cells involved in the
destructive OR operation. Unlike OSCAR’s NOR primitive,
OR requires only two input cells (one of which will be over-
written), and the two inputs are asserted using two different
voltages (i.e., Vor and ground). The input cell asserted using
Vor is overwritten with the output value at the end of the
operation (i.e., Input A in Figure 9a).

Vor must be selected carefully in order for OSCAR to
perform destructive OR. We identify three constraints on Vor

for different input cases, which need to be satisfied for the
OR operation to work. In the cases of OR(0,0) = 0 and
OR(1,1) = 1, we do not want the cells to switch because
Input A already has the correct result. This can be achieved if
Vor/2 < Vset (❶). The voltage drops across the two cells
are equal in this case, since the cells’ resistances are the
same. However, to prevent Input B from switching, we need
Vreset > Vor/2 (❷). In the case of OR(0,1) = 1, where
Input A is set to logic 0, most of the voltage drops across
Input A, allowing the cell to switch. For this case, we need
Vor > Vset (❸). In the case of OR(1,0) = 1, where Input A is
set to logic 1, most of the voltage drops over Input B. However,
because of Input B’s polarity, the cell does not switch. As
a result, no constraints on Vor are required for this case.
By combining the three constraints (❶,❷,❸), we obtain the
constraints Vset < Vor < min(2Vset , 2Vreset ), which can be
simplified to Vset < Vor < 2Vreset .

Figure 10 shows the current and voltage changes observed
when we use SPICE to simulate the OR primitive. The
assertion voltage pulses are applied at t = 3 ns. We choose Vor

to be 3 V, which satisfies the constraints for OSCAR OR. For
OR(0,0) and OR(1,1), we observe equal voltages drop over
both cells, although for OR(0,0) we observe that a minimal
current runs through the cells due to their high total resistance.
For OR(1,0), we observe that the voltage drop across Input B
is greater than 2 V, but the cell does not switch due to its
polarity. For OR(0,1), we observe Input A going through the
NDR region when it switches.



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 399

Fig. 10. SPICE results for OSCAR’s destructive OR. Input A also serves as
Output. Red dashed line shows assertion voltage pulse start time.

Fig. 11. Threshold voltage constraints of a typical real device (blue hash) vs.
constraints required by MAGIC (green), OSCAR NOR (yellow), and OSCAR
OR (red).

C. Relaxed Constraints and Process Variation

MAGIC [6], FELIX [7], and OSCAR all impose certain
switching constraints on the device in order to construct useful
logic primitives. We observe that these constraints typically
involve two types of variables: (1) technology-related variables
(i.e., Vset , Vreset ); and (2) logic-related variables (Vlogic; e.g.,
Vnor , Vor ). To demonstrate OSCAR’s ability to relax the
switching constraints, we introduce two quantities that corre-
late these variables: Vlogic/Vreset and Vlogic/Vset . All of the
switching constraints for MAGIC, FELIX, and OSCAR can be
expressed using these two quantities. As an example, MAGIC
and FELIX require that 2Vreset < Vnor < Vset , which can be
expressed as Vlogic/Vreset > 2 and Vlogic/Vset < 1. Figure 11
plots the constraints for MAGIC/FELIX, OSCAR NOR, and
OSCAR OR as colored regions. The figure also shows the
constraint region of typical (real) resistive devices (shown as
a hashed blue region), which usually have Vset < 2Vreset [44],
[47]–[53]. We see that OSCAR NOR and OSCAR OR overlap

Fig. 12. Yield of OSCAR NOR vs. MAGIC NOR, with different 1σ
variations.

with the typical device region, while MAGIC/FELIX do not.
We conclude that OSCAR relaxes the switching constraints
and makes it easier for typical real devices to perform logic
primitives.

To further illustrate that OSCAR is significantly more
compatible with real resistive devices than MAGIC/FELIX,
we perform a threshold voltage variation experiment. Based
on our SPICE model, we introduce normal distributions on
the switching thresholds of ReRAM cells and perform a
Monte Carlo analysis [54] on MAGIC NOR and OSCAR
NOR. Figure 12 shows the yield of OSCAR and MAGIC
versus four levels of variation from the mean threshold voltage
μ (2 V) inside one standard deviation σ . We define yield
based on if the output cell stores the correct value after the
NOR operation. We run 1000 samples, where each sample
contains the minimum circuit needed to perform NOR (e.g.,
for MAGIC: Input A, Input B, Output in crossbar topology,
with the inputs randomly initialized). For OSCAR NOR, the
ReRAM cells can only be set when the primitive executes, and
thus only Vset variation impacts the final yield. In MAGIC, the
cells can be set or reset due to the need for output initialization,
so the yield for MAGIC is subject to variation for both Vset and
Vreset , which we impose to have the same normal distribution
in our experiments. We observe that OSCAR NOR achieves
better yield at all four tested variation levels compared to
MAGIC NOR, with the most significant yield improvement
of 19% at 0.3μ variation.

We observe two types of failure that occur in OSCAR
NOR: (1) output set failure (less than 10% for all four
variation levels); and (2) input/output overwriting (more than
90% for all four variation levels). Set failure happens for the
NOR(0,0) = 1 case, where the output cell has a high set
threshold due to variation, and fails to switch. We find that this
type of failure is rare if � is set to 75% Vset (1.5 V), which
provides the output with enough additional assertion voltage to
switch. Input overwriting happens more frequently, specifically
when the set threshold is higher for the output and lower for
the inputs compared to Vset . This effectively counteracts the
additional voltage � that we apply to the output, as the inputs
can switch at a lower voltage threshold. Output overwriting
happens for NOR(0,1), NOR(1,0) and NOR(1,1), during which
the output should not change from its initialized value but
does. In these cases, the voltage drop on the output cell is
around �, which can make output cells with a very low set
threshold accidentally switch.



400 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Fig. 13. (a) Voltage assertions for 1S1R OSCAR OR; (b) voltage assertions
for 1T1R OSCAR OR.

D. Role of Access Topology

While much of the literature on resistive-memory-based
PUM focuses on using the 1S1R topology, this topology is
not a requirement, and we design RACER to work with either
1S1R or 1T1R. There are several aspects of the performance,
area consumption, and energy usage that can be considered
when determining the merits of each access topology.

As a driving example, we study how OSCAR works in
both access topologies. We speculate that MAGIC and FELIX
can also be extended to 1T1R without major changes in the
switching threshold constraints. Figure 13 shows the assertion
voltages required to perform OSCAR OR in 1S1R and 1T1R
arrays.

A key consideration in using the 1T1R topology is whether
the voltage between the access transistor’s gate (asserted
with Vsel) and the row line (asserted with V f loat ) exceeds
the threshold voltage of the transistor. In principle, this can
be accomplished with a high enough value of Vset , though the
value required could in some cases exceed the maximum volt-
age available from the CMOS drivers. At a high level, the basic
functionalities of MAGIC, FELIX, and OSCAR are all com-
patible with 1T1R topologies, though a more detailed analysis
using a particular select transistor technology is necessary.

From an area perspective, there are two considerations.
First, while BEOL integration allows for the control and
peripheral circuitry to fit under a 1S1R crossbar array, this
circuitry must be placed around the perimeter of a 1T1R array.
For the 1T1R array, the CMOS within the array area is fully
dedicated to select transistors. Second, the 1T1R cell size is
dictated by the area of the access transistor, which is at least
6F2 (where F is technology feature size), while the 1S1R
cell size can be as small as 4F2 For 1S1R, this is because
a resistive device can fit underneath the cross section of the
minimum-width column and row lines, which are typically 2F
wide. The 1T1R cell also requires more wires (see Figure 13),
which may further increase the cell size. Thus, implementing
RACER (and likely other PUM architectures) with 1T1R has
a higher area cost than with 1S1R. Section VII-B provides a
quantitative discussion of the area costs using 1T1R and using
1S1R.

From an energy perspective, the 1T1R topology requires an
additional set of metal wires to control the access transistors,
which increases the total energy consumption due to extra
wiring load. This penalty is likely to be rather modest, because
the resistive cell write energy is typically much larger than
charging the gate capacitance and the connecting wires. The
energy consumption of the resistive selector in 1S1R and the

access transistor in 1T1R depends on the specific device imple-
mentation. However, we speculate that the resistive selector
and access transistor can consume a similar amount of energy
by controlling their fabrication parameters (e.g., transistor
width, selector material).

While the above analysis suggests that the 1T1R topology
is likely to suffer in comparison to 1S1R, especially in terms
of area, there may be some important opportunities in the
topology as well. For example, if one allows for different
select voltages, there is the possibility of controlling how much
voltage drops across the selector, which could make the logic
primitive switching more robust against variation. A clear use
case for this scenario is under examination.

V. INTERFACE CIRCUITS FOR RACER

We design RACER not only to deliver high performance
and energy savings while using small memory tiles, but
also to provide an interface to underlying devices that
includes: (1) decode & drive units, and (2) I/O circuitry.
These components help integrate RACER with different resis-
tive memory technologies without changing the bulk of the
technology-agnostic control logic. Further, as all instructions
in the RACER ISA can be decomposed into micro-ops, these
micro-ops can be modified depending on the underlying tech-
nology without changing the ISA. In this section, we describe
in detail the micro-op and interface circuits that allow RACER
to adapt to MAGIC, FELIX, and OSCAR.

A. Decode and Drive Unit Circuitry

When a micro-op reaches the head of the micro-op queue,
it is dispatched to a decode & drive unit that consumes the
micro-op. Figure 14 shows the fields held within the micro-
op, and how these fields drive the different components that
make up the decode & drive unit. As shown in Figure 14a,
a micro-op consists of (1) a log2(p)-bit Opcode field to encode
p different primitives, (2) a 2-bit buffer selection field (Buff.
Sel.) that determines if one of the adjacent buffers should be
connected to the tile (i.e., if the micro-op is for an inter-tile
copy, with the two bits indicating whether to copy to the left,
copy to the right, or not copy), and (3) three 6-bit fields (i.e.,
inputs Col. A and Col. B, and output Col. C) to indicate the
input and output columns for a primitive (Figure 14a).

In general, for all resistive memory technologies that we
evaluate, one of three voltages is asserted to each column of a
tile in every cycle. Figures 14b and 14c show two lightweight
circuits used to select which of a set of voltages is asserted
on each column in a tile. Each of the 6-bit fields from the
micro-op are used to drive a column decoder, which sets
exactly one of its outputs as shown in Figure 14b. If the
column decoder output colC[i ] is high, then column i in the
tile is the output, and our column driver circuit (Figure 14c)
asserts Vout for that column. If either col A[i ] or col B[i ] is
high, then column i is an input and Vin is asserted. Otherwise,
column i is not needed for the current micro-op instruction,
and V f loat is asserted. Depending on which primitive is being
dispatched in the current cycle, the values of Vin , Vout , and
V f loat can change (e.g., performing the NAND primitive from



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 401

Fig. 14. (a) RACER’s micro-op fields; (b) column decoders; (c) column
driver (driver passgates are shown as NMOS transistors for simplicity);
(d) opcode decoder.

FELIX [7] requires Vin to equal 0.67× the voltage used when
performing NOR). Thus, for devices that support multiple
logic primitives, an opcode decoder is required to select the
correct primitive (Figure 14d) and drive Vin , Vout , and V f loat

from the appropriate voltage rails. For single-primitive logic
families such as MAGIC [6], it is not necessary to have an
opcode field, and thus no opcode decoding is required. For
logic families with destructive primitives, the column decoders
and drivers can be further simplified because only two column
addresses are required for a given micro-op.

B. Read/Write Circuitry

We build lightweight circuitry to read data out of and write
data into tiles, designing this circuitry carefully to avoid dimin-
ishing the memory density. Figure 15a shows our circuitry for
reading data from a ReRAM cell. We use a voltage divider
(consisting of the cell to be read and a reference ReRAM cell)
and a skewed inverter to determine if the cell holds logic 0 or
logic 1, by detecting the voltage Vsense. The reference ReRAM
cell is fixed to a low resistance state (logic 1), so when a read
voltage Vread is applied to the cell to be read, Vsense will
be one of two values (as shown in Figure 15b): ❶ Vsense ≈
0.5 Vread , if the read cell has low resistance (representing
logic 1), as there is an equal voltage drop over the read cell
and the reference cell; or ❷ Vsense ≈ 0 V, if the cell has
high resistance (representing logic 0), as most of the voltage
drops over the read cell. Because the reference cells can be
made using the same resistive material as the memory arrays,
this sensing scheme can work with many resistive memory
technologies.

1) Handling Threshold Voltage Compatibility: One issue
with the voltage divider based scheme is its response to differ-
ent threshold voltage values of specific CMOS technologies. If
the threshold voltage value causes Vsense in Figure 15b to fall
outside of the inverter’s tolerable input range, we can adjust
the reference cell’s resistance to any value between logic 1 and
logic 0 through geometry or initialization.

To make our sensing scheme more compatible with CMOS
technologies that have a tight threshold voltage (Vt ) window,
we can add a current-mirroring operational transconductance
amplifier between the voltage divider and the inverter. Without
loss of generality, Figure 15c shows the circuit of this amplifier
as designed for Vread > Vsense > 0.5 Vread . (The NMOS and
PMOS transistors can be swapped in cases where a different

Fig. 15. (a) Read circuitry for one cell; (b) voltage transfer characteristics
graph of the skewed inverter used in the read circuitry; (c) generalized read
circuitry for tight Vt window; (d) read/write circuitry for a buffer.

sensing scheme with 0.5Vread > Vsense > 0 is required.) The
current source S generates a fixed tail current Itail = a +
b,4 where a and b are the current contributions from the left
and right current mirrors, respectively. Because a is controlled
by Vsense, and because Vre f is fixed, b is also controlled by
Vsense (i.e., b = Itail − a). b is then mirrored and amplified
to G × b, where G is the current gain (which depends on the
M2/M1 transistor ratio). Depending on Vsense’s voltage level,
G × b changes, thereby changing Vout . With this operational
transconductance amplifier, any value of Vsense can be used
(i.e., the reference cell can be fixed to logic 1), as Vre f can
be adjusted to ensure correct logical operation.

2) Using Buffers for I/O: If we were to connect the read
circuit to a tile, the voltage divider would not work efficiently,
as it would detect the full current of the cell being read as
well as partial currents from other cells on the wire. To avoid
this scenario, we perform reads only on buffers. Each cell in
a buffer is connected to its own read circuit, allowing us to
potentially read out the entire contents of a buffer in one cycle.

For the write circuitry, we also cannot write directly to
a column in a tile without adding extra peripheral circuitry.
Without this additional circuitry, a write with the current
decoder design would populate new data into every column
of a tile. This additional peripheral circuitry would require
significant area, diminishing the memory density. Instead,
similar to the read circuits, we attach our write circuits only
to buffer cells. The write circuit contains a write driver, which
asserts a voltage that changes the buffer’s resistance. An entire
column of data can be written into the buffer in two cycles:
the first cycle presets the entire buffer to all zeros, and the
second cycle writes logic 1 to only the enabled cells.

Figure 15d shows the buffer-level read/write circuit layout.
As we stamp out multiple clusters next to each other in a
grid within a chip, we design an I/O controller that provides
non-uniform memory access (NUMA) to the other clusters in

4The current source can be turned off when the R/W circuitry is not in use,
to reduce the operating power.



402 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

the chip. The buffer-level read/write circuits are connected to
a cluster-level multiplexer, which connects all of the buffers
from one pipeline to the I/O controller. At the chip level, each
I/O controller connects four neighboring clusters together,
enabling local communication across the clusters (and across
different pipelines in the same cluster). A controller can burst
up to eight cache lines of data (i.e., 512 B) to the CPU on this
bus. Our circuit simulations show that moving 512 B of data
from an I/O controller to the CPU interface takes 16 ns, and
can support a peak bandwidth of 32 GB/s.

VI. METHODOLOGY

A. Modeling and Simulation

We model RACER at the device, circuit, and architecture
levels. We develop a highly-detailed Verilog-A model of
an ReRAM cell partially based on the aggressively-scaled
device parameters in Table 1 of our MICRO 2021 paper [34],
while still enforcing the current carrying limit of the wire as
discussed in Section III (1 ns switching latency for the resistive
element, 1 : 500 ratio of on–off resistances, 0.0128 pJ per
switch transition). We synthesize RACER’s CMOS-domain
components using Synopsis Design Compiler with FreePDK
15 nm [55] to estimate the area, power, and critical path
latency of each component, along with delay and power
models for the wires connecting these components together
(inserting signal repeaters for long wires when necessary).
To evaluate microbenchmarks, we use RACER-Sim [56], our
detailed open-source simulator for RACER that incorporates
the data collected from our Verilog-A model and synthesized
circuits. RACER-Sim faithfully models (1) execution at a cell
granularity, and (2) all data movement and communication
across the data sharing network.

B. Microbenchmarks

We evaluate RACER using 13 data-intensive microbench-
marks, which span multiple application domains: (1) image
processing (brightness, rgb2gray), (2) linear algebra (mmul,
mvmul, pagerank), (3) signal processing (dftSparse, dftDense),
(4) classification (manhattan, hamming, lenet5), and (5) string
matching (grep, exactMatch, fuzzyMatch). Due to RACER’s
custom ISA, we hand-compile microbenchmarks to optimize
the data mapping for maximum locality.

VII. EVALUATION

We evaluate four different configurations for RACER, each
with 4096 clusters: (1) MAGIC NOR, a RACER chip that
uses MAGIC [6] on 1S1R ReRAM; (2) MAGIC NAND, a
RACER chip with the same constraints as MAGIC NOR, but
using the NAND logic primitive; (3) FELIX, a RACER chip
that uses FELIX [7] on 1S1R ReRAM;5 and (4) OSCAR,
a RACER chip that uses our OSCAR logic family.6 We scale

5We restrict the FELIX configuration to only 2-input primitives (i.e., 2-input
NAND, NOR, OR), although support for three or more inputs is possible at
the cost of extending the micro-op bit fields and incorporating additional
decoders.

6The OSCAR configuration can be realized using either the 1S1R or 1T1R
topology. The two topologies yield the same speedup and energy savings, but
with different area costs. Section VII-B discusses the impact of topologies on
area in more details.

Fig. 16. RACER’s speedup (top) and energy savings (bottom) compared to
state-of-the-art computing platforms.

all configurations to use the same resistive devices with the
same on/off resistances and the same switching latency, while
allowing the assertion voltages (i.e., Vin , Vout , V f loat ) to
change depending on the requirements of each logic primitive.

A. RACER vs. State-of-the-Art Computing Platforms

Figure 16 summarizes the iso-area performance and energy
consumption of the MAGIC NOR configuration of RACER
compared to three state-of-the-art platforms, which we discuss
in detail in our prior work [34]: (1) Baseline, a 16-core CPU
modeled after the Intel Xeon Platinum 8253 [57], which uses a
conventional off-chip DRAM for main memory; (2) eMRAM,
a variant of Baseline that replaces the off-chip DRAM with
a high-bandwidth (333.3 GB/s for reads) connection to on-
chip embedded magnetic RAM (MRAM) [58], [59]; and
(3) RTX 2070, an NVIDIA GPU with 2304 shader cores [60].
On average, RACER provides 107×, 71×, and 12× the per-
formance of Baseline, eMRAM, and RTX 2070, respectively,
with energy savings of 189×, 94×, and 17×.

B. Area and Circuit Synthesis Analysis

Table I shows a breakdown of the area, static power, and
dynamic power consumed by each component of the RACER
circuitry. For each cluster, one pipeline control circuit and
64 decode & drive units (one per bit position) are required.
The selector passgates are necessary to activate only one
pipeline per cluster. Because there are 64 pipelines, each
with 64 tiles, and each tile has 64 columns, each requiring
2 passgates, a total of 64 × 64 × 64 × 2 passgates are
required. A similar analysis can be applied to calculate the
number of driver passgates (i.e., those that are driving Vin ,
Vout , V f loat ). Because the read/write circuitry of a cluster is
amortized across all 64 pipelines in the cluster, only 64×64 of
them are required per tile (i.e., 64 instances per column of
buffers). For 1S1R-based configurations, we use back-end-of-
line (BEOL) integration, where the ReRAM cell materials
can be deposited on metal layers 3–5, with the remaining
layers available for building traditional CMOS transistors.
Each ReRAM cell occupies a 4F2 area in a crossbar topology,
and we design a cluster such that the ReRAM array, all cluster



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 403

TABLE I

COSTS OF RACER CLUSTER COMPONENTS AND GLOBAL
CORNER-TO-CORNER (C2C) WIRING WITH REPEATERS

control, and peripheral circuitry fit within approximately the
same footprint to improve area efficiency. Throughout the
circuit design process and construction of the RACER chips,
we conservatively enforce a maximum power budget of 80 W.
From our circuit synthesis, we find that RACER’s circuit
critical path is 2.6 ns, including wire delay, with each cluster
dissipating 0.8 mW of static power. To include a modest
guardband, we conservatively clock RACER at 333 MHz (i.e.,
a 3 ns cycle time). We make two observations from the table.

First, the cluster area for FELIX and for OSCAR is larger
than that of MAGIC NOR. This is because both FELIX
and OSCAR support multiple logic primitives, which requires
wider micro-op queues and opcode decoders. As a result, the
cluster area increases by 14% for FELIX and by 11% for
OSCAR, compared to MAGIC NOR. We note that despite the
increased area, 4096 clusters can still fit within a 4 cm2 chip
for both FELIX and OSCAR (assuming a 1S1R topology).

Second, for 1T1R topologies, the access transistor is the
limiting factor for memory density. Each transistor occupies a
6F2 area, and the required control, peripheral, and I/O circuits
cannot be overlapped with the memory arrays to save area. For
1T1R, we move RACER’s circuit components to the pitch of
the memory arrays, increasing the area of each cluster. Despite
the area, the RACER chip can still be clocked at 333 MHz
using the 1T1R topology. We further generalize the switching
energy of 1T1R access transistors to be the same as the
switching energy of the 1S1R selectors. Specific 1T1R/1S1R
technologies may size their access devices to obtain a desired
switching energy, in which case the power consumption of
1T1R vs. 1S1R may differ. Table I highlights the area cost of
1T1R vs. 1S1R. In total, the 1T1R topology increases the chip
area of OSCAR by 31% compared to the 1S1R topology. In an
iso-area comparison, OSCAR with 1T1R will achieve smaller
speedups and energy savings compared to OSCAR with 1S1R,
as the maximum number of pipelines/cores it can have active
at any given time decreases by 24%.

C. Performance Analysis
Figure 17 shows the performance of RACER for the four

logic families that we evaluate. The speedups are normalized
to MAGIC NOR. We make five observations from the figure.

Fig. 17. Performance of different logic families, normalized to MAGIC
NOR.

Fig. 18. Breakdown of (a) basic operations and (b) storage usage for our
microbenchmarks.

First, MAGIC NAND achieves an average speedup of 31%
compared to MAGIC NOR. Because we already restrict the
switching energy and latency of MAGIC NAND and MAGIC
NOR to be the same, this suggests that logic families that
support the NAND (and/or AND) primitive have an advantage
over those that do not when integrated with RACER. To
understand this better, we break down each microbenchmark
into basic operations (i.e., NOT, NOR, NAND, OR, COPY,
AND, MUX, XOR), as shown in Figure 18a. Each operation
can be implemented by each logic family using one or more
primitives. The figure shows that many microbenchmarks (e.g.,
brightness, rgb2gray, mmul) perform a significant number
of AND operations because they frequently use multiply or
multiply–accumulate instructions. These instructions employ
several AND operations to form the partial products. Because
an AND operation can be executed in two cycles by MAGIC
NAND (compared to five cycles for MAGIC NOR), we con-
clude that microbenchmarks with frequent multiplications
perform better if AND/NAND primitives are available. For
microbenchmarks that do not include a significant number of
AND operations (e.g., hamming), the performance of MAGIC
NOR and MAGIC NAND is comparable.

Second, FELIX outperforms MAGIC NOR and MAGIC
NAND, by an average of 70% and 23%, respectively, because
it supports multiple primitives, which significantly reduces the
number of micro-ops needed for execution. In particular, the
XOR operation is commonly used by many microbenchmarks
due to its frequent use in the addition instruction, which
requires two XORs per addition. FELIX can execute XOR
in two cycles, as compared to five cycles for MAGIC NOR.



404 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

Third, FELIX reduces the number of primitive-induced
intermediates (i.e., intermediate data generated because a
basic operation requires more than one primitive) compared
to MAGIC NOR. These intermediates are required because
not every basic operation is a primitive (e.g., MAGIC NOR
requires one intermediate value when performing an OR oper-
ation using primitive NORs). Figure 18b shows the amount of
storage required to store primitive-induced intermediates for
MAGIC (NOR) in light green, and for FELIX in red. Different
logic families do not affect other types of storage (i.e., input,
output, and algorithm-induced intermediates, which are inter-
mediates created by a microbenchmark’s algorithm). Across
all microbenchmarks, FELIX reduces the number of primitive-
induced intermediates by an average of 26% compared to
MAGIC NOR, thanks to its multi-primitive support.

Fourth, OSCAR achieves a speedup of 33% compared to
MAGIC NOR. OSCAR’s inclusion of an OR primitive helps
to reduce the latencies of multiple basic operations (e.g.,
NAND, XOR, MUX) over MAGIC NOR, which needs an
additional cycle to realize these basic operations. We note that
the performance of OSCAR remains the same regardless of
topology in these results, as we evaluate both configurations
with 4096 clusters (even though OSCAR with 1T1R consumes
more area than OSCAR with 1S1R).

Fifth, although the OR primitive is destructive for OSCAR
and does not require an output initialization step (unlike the
other logic families), these savings do not contribute notably
to OSCAR’s speedup over MAGIC NOR. In RACER, the
output initialization step (e.g., presetting the output column
to logic 1 in MAGIC NOR) and logic assertion step (e.g.,
asserting a voltage on the output column of Vout = Vnor in
MAGIC NOR) are done in a single cycle. Because primitives
across most resistive memory technologies require output
initialization prior to logic assertion, RACER can couple these
two steps and execute them one after another in one cycle.
In this case, destructive OR remains idle during the output
initialization step. To exploit the fact that destructive primitives
do not require output initialization, we can potentially split
the two steps, execute them in two cycles, and double the
clock frequency. However, doing so doubles the number of
micro-ops stored in the micro-op queues, as all non-destructive
primitives would now require two micro-ops (one for output
initialization, and another for logic assertion) to complete.

We conclude that RACER can integrate with many logic
families that support different types of primitives. Further,
we conclude that OSCAR can be efficiently integrated with
RACER, providing notable performance and energy improve-
ments over MAGIC NOR while enabling compatibility with
typical ReRAM devices.

D. Energy and Power Analysis
Figure 19 shows the energy savings of RACER with dif-

ferent logic families. The energy savings are normalized to
RACER with MAGIC NOR. We make two observations from
the figure.

First, the energy savings of MAGIC NAND and FELIX
track with their speedups, with an average savings of 32%
and 43%, respectively, compared to MAGIC NOR. This is

Fig. 19. Energy savings for logic families, normalized to MAGIC NOR.

Fig. 20. Area (left) and static power (center) overheads for supporting
multiple primitives in 1S1R, normalized to single-primitive 1S1R; maximum
number of 1S1R clusters that can fit in a 4 cm2 chip (right).

because both configurations reduce the number of primitives
required to perform basic operations thanks to their support
of the NAND primitive (and AND, in the case of FELIX).
Having fewer primitives executed per basic operation not only
reduces latency but also energy, as each additional primitive
executed adds additional energy due to resistive switching.

Second, OSCAR provides significant energy savings com-
pared to MAGIC NOR, with an average savings of 37%.
Although the configurations lack supports for NAND/AND
primitives, OSCAR’s primitives use less energy than all of
the other technologies that we evaluate. Because OSCAR’s
OR primitive is destructive, it does not consume energy during
the output initialization step, and OSCAR’s NOR primitives
save 1.83× and 3.35× the energy compared to MAGIC’s
NOR primitive, due to the higher combined total resistance
of the cells involved in OSCAR NOR execution. This allows
OSCAR’s basic operations to save significant energy compared
to the same operations in MAGIC NOR.

While the inclusion of multiple primitives in a logic family
can reduce energy usage, it can also increase the static power
consumption. Figure 20 shows three properties of a RACER
chip that are affected by the number of primitives: area, static
power, and the total number of clusters that can fit in a
4 cm2 chip. We observe that OSCAR and FELIX consume
more power in order to support two and three primitives,
respectively, than single-primitive MAGIC NOR and MAGIC
NAND. With three primitives, the micro-op’s Opcode field
needs two bits, requiring larger micro-op queues and opcode
decoders to identify the right primitive. This increases the total
static power consumption by 15% for FELIX compared to the
MAGIC configurations.

We conclude that RACER’s control circuitry and decode &
drive units have low overheads when supporting technologies
with multiple primitives. Further, we conclude that OSCAR
achieves almost the same energy savings as the theoretically



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 405

Fig. 21. Speedup vs. CASCADE using low-latency, high-energy MAC
instructions.

best technology (FELIX), while being significantly more fea-
sible to implement due to its relaxed switching constraints.

E. Comparison to CASCADE

To demonstrate RACER’s support for ML applications
that require high performance (e.g., real-time neural network
inferencing), we compare MAGIC NOR, MAGIC NAND,
FELIX, and OSCAR to an area-equivalent state-of-the-art
CASCADE [10] accelerator, which uses ReRAM to perform
multi-bit analog dot products for neural networks. CASCADE
does not support most of RACER’s instructions, and has
a fixed neural-network-centric dataflow, so we can compare
performance only using the mmul, mvmul, dftSparse, dftDense,
and lenet5 microbenchmarks (the only five of our benchmarks
that CASCADE can execute). Because these applications
heavily rely on the multiply–accumulate (MAC) instruction,
and because we are comparing against an accelerator whose
primary objective is high performance, we design a new MAC
instruction for RACER that reduces the instruction latency by
4.34× at an increased energy cost of 1.7×, compared to the
MAC instruction we use in the microbenchmarks presented in
Section VII-A and in our MICRO 2021 paper [34]. Thanks
to RACER’s micro-op interface, its ISA abstraction, and its
ability to perform any combinational logic inside memory
arrays, creating a new instruction is only a matter of providing
the control logic with the correct set of logic primitives.
No circuit modification is needed to support the new high-
performance MAC instruction.

Figure 21 shows the speedup of RACER with different
logic families compared to CASCADE for the microbench-
marks that CASCADE can execute. Compared to CASCADE,
RACER achieves an average speedup of 2.22×, 3.04×, 4.15×,
3.16×, and 3.16× using the MAGIC NOR, MAGIC NAND,
FELIX, and OSCAR logic families, respectively. We observe
that while mmul, mvmul, and dftDense are memory-bound on
CASCADE due to their large working set sizes, and incur
significant data swapping operations with external memory,
dftSparse and lenet5 do not require data swapping and fully
benefit from the fast analog dot product.

Overall, we find that our new high-performance MAC
instruction allows RACER to outperform CASCADE for
many, but not all, microbenchmarks. We conclude that RACER
trades off some opportunities to accelerate neural networks
in order to provide much broader acceleration opportunities,
which can be beneficial for mobile and edge applications that
build additional non-ML functionality on top of ML model
outputs.

VIII. RELATED WORK

To our knowledge, this work is the first to (1) demonstrate
that a single PUM architecture can support many different
logic families, and (2) propose a logic family that is highly
compatible with typical ReRAM devices.

A. Processing-Using-MRAM
Existing PUM architectures that make use of MRAM

devices have been primarily based on 1T1R topologies
[23]–[25], [61], though architectures with 1S1R topologies
are also feasible. In Section VII, we integrate RACER with
both 1T1R and 1S1R topologies, showing that the architec-
ture could adapt to MRAM from a topology perspective.
From a device perspective, MRAM devices are typically
controlled using currents while ReRAM devices are controlled
by voltages. The difference in control domain may require
modifications to the decode & drive units before RACER can
support MRAM, but the control logic can remain unchanged.
For example, a recent work examines how 1T1R MRAM can
support the MAGIC logic family [62]. The work manages the
low resistance contrast of MRAM devices by adjusting access
transistor gate voltages.

B. Analog Processing-Using-ReRAM
Crossbars enable the ability to perform multiple dot prod-

ucts in parallel using ReRAM, by mapping (1) the input matrix
values to multi-bit ReRAM cells, and (2) the input vector
to analog voltages applied on every column. PUM architec-
tures that use this primitive (e.g., [10]–[13]) typically target
neural network inference. However, they sacrifice memory
density because they require: (1) area-intensive digital/analog
converters to perform analog dot products, and (2) dedicated
CMOS logic near ReRAM tiles to reduce the partial results
generated in the tile. Moreover, multi-bit analog operations are
difficult to perform reliably in ReRAM, because of device non-
linearity that requires significant precision to discern between
adjacent bit representations. In contrast, RACER uses an all-
digital approach that avoids the need for costly supplemental
logic components and significantly increases reliability, while
offering a much larger set of PUM operations that can handle a
wide range of data-intensive applications. We briefly compare
RACER to CASCADE [10] in Section VII-E.

C. Digital Processing-Using-ReRAM
Several PUM architectures demonstrate the ability to per-

form logic using ReRAM crossbars (e.g., [6], [7], [20], [26],
[27], [29]–[33]). However, these architectures are often limited
in the throughput they can achieve without the assistance
of discrete logic elements, due to practical limits on array
sizes when performing whole-column operations. RACER’s
bit-pipelining execution model and controller circuitry pro-
vide a way to enable high-throughput, low-energy bit-serial
computation using small memory arrays.

IX. CONCLUSION

RACER is a promising architecture for processing using
resistive memory. We demonstrate that while the original



406 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

RACER work was based on a NOR-capable ReRAM device,
several alternative logic families can significantly improve the
performance of RACER. We develop a new ReRAM-based
logical family called OSCAR, which overcomes the difficult-
to-achieve constraints on ReRAM switching voltages that prior
ReRAM-based logic families suffer from. Overall, we demon-
strate how alternative logic families and access topologies
can be integrated into RACER with only limited circuit-
level modifications, and how several of these approaches can
improve the performance and energy consumption of RACER.
We conclude that RACER can be an effective component in
mobile and edge platforms, which need to integrate efficient
machine learning (ML) computation with the ability to per-
form a range of non-ML operations.

REFERENCES

[1] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in Proc. IISWC,
Sep. 2013, pp. 56–65.

[2] W. J. Dally, “Challenges for future computing systems,” Keynote Talk
at HiPEAC, 2015.

[3] A. Boroumand et al., “Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks,” in Proc. ASPLOS, 2018, pp. 316–331.

[4] V. Seshadri and O. Mutlu, “Simple operations in memory to reduce data
movement,” in Advances in Computers, vol. 106. Cambridge, MA, USA:
Elsevier, 2017.

[5] S. Ghose, A. Boroumand, J. S. Kim, J. Gomez-Luna, and O. Mutlu,
“Processing-in-memory: A workload-driven perspective,” IBM J. Res.
Develop., vol. 63, no. 6, p. 3, Nov. 2019.

[6] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[7] S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and energy-efficient
logic in memory,” in Proc. ICCAD, Nov. 2018, pp. 1–7.

[8] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity DRAM technology,” in Proc. MICRO,
Oct. 2017, pp. 273–287.

[9] S. Jekola, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE J. Solid-State Circuits, vol. 51,
no. 4, pp. 1009–1021, Apr. 2016.

[10] T. Chou, W. Tang, J. Botimer, and Z. Zhang, “CASCADE: Connecting
RRAMs to extend analog dataflow in an end-to-end in-memory process-
ing paradigm,” in Proc. MICRO, 2019, pp. 114–125.

[11] A. Ankit et al., “PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in Proc. ASPLOS,
2019, pp. 715–731.

[12] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016, pp. 14–26.

[13] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 541–552.

[14] N. Hajinazar et al., “SIMDRAM: A framework for bit-serial SIMD
processing using DRAM,” in Proc. 26th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., Apr. 2021, pp. 329–345.

[15] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-
memory compute using off-the-shelf DRAMs,” in Proc. MICRO, 2019,
pp. 100–113.

[16] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-based reconfigurable in-situ accelerator,” in Proc. MICRO,
Oct. 2017, pp. 288–301.

[17] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2017, pp. 481–492.

[18] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 383–396.

[19] D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel
acceleration,” in Proc. 46th Int. Symp. Comput. Archit., Jun. 2019,
pp. 397–410.

[20] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,” in
ISCA, Jun. 2018, pp. 802–815.

[21] Y. Zha and J. Li, “Liquid silicon: A data-centric reconfigurable architec-
ture enabled by RRAM technology,” in Proc. FPGA, 2018, pp. 51–60.

[22] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proc. DAC, 2016, pp. 1–6.

[23] S. Angizi, Z. He, and D. Fan, “PIMA-logic: A novel processing-
in-memory architecture for highly flexible and energy-efficient logic
computation,” in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf.
(DAC), Jun. 2018, pp. 1–6.

[24] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: An energy-
efficient comparator-based processing-in-memory neural network accel-
erator,” in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC),
Jun. 2018, pp. 1–6.

[25] S. Angizi, J. Sun, W. Zhang, and D. Fan, “AlignS: A processing-
in-memory accelerator for dna short read alignment leveraging SOT-
MRAM,” in DAC, Jun. 2019, pp. 1–6.

[26] Y. Levy et al., “Logic operations in memory using a memristive Akers
array,” Microelectron. J., vol. 45, no. 11, pp. 1429–1437, Nov. 2014.

[27] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“Memristor-based IMPLY logic design procedure,” in Proc. IEEE 29th
Int. Conf. Comput. Design (ICCD), Oct. 2011, pp. 142–147.

[28] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[29] P. Gaillardon et al., “The programmable logic-in-memory (PLiM) com-
puter,” in Proc. DATE, Mar. 2016, pp. 427–432.

[30] S. Hamdioui et al., “Memristor based computation-in-memory archi-
tecture for data-intensive applications,” in Proc. DATE, Mar. 2015,
pp. 1718–1725.

[31] L. Xie, H. A. D. Nguyen, M. Taouil, and K. Bertels Said Hamdioui, “Fast
Boolean logic mapped on memristor crossbar,” in Proc. 33rd IEEE Int.
Conf. Comput. Design (ICCD), Oct. 2015, pp. 335–342.

[32] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 722–731.

[33] J. Yu, H. A. D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui, “Memris-
tive devices for computation-in-memory,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 1646–1651.

[34] M. S. Q. Truong et al., “RACER: Bit-pipelined processing using
resistive memory,” in Proc. MICRO-54: 54th Annu. IEEE/ACM Int.
Symp. Microarchitecture, Oct. 2021, pp. 100–116.

[35] J. A. Mandelman et al., “Challenges and future directions for the scaling
of dynamic random-access memory (DRAM),” IBM J. Res. Develop.,
vol. 46, no. 2.3, pp. 187–212, Mar. 2002.

[36] U. Kang et al., “Co-architecting controllers and DRAM to enhance
DRAM process scaling,” in Proc. Memory Forum, 2014.

[37] O. Mutlu, “Memory scaling: A systems architecture perspective,” in
Proc. 5th IEEE Int. Memory Workshop, May 2013, pp. 21–25.

[38] S. Yu and Y. P. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Mag., vol. 8, no. 2, pp. 43–56,
Spring 2016.

[39] A. Makarov, V. Sverdlov, and S. Selberherr, “Emerging memory tech-
nologies: Trends, challenges, and modeling methods,” Microelectron.
Rel., vol. 52, no. 4, pp. 628–634, Apr. 2012.

[40] A. Chen, “A review of emerging non-volatile memory (NVM) tech-
nologies and applications,” Solid-State Electron., vol. 125, pp. 25–38,
Nov. 2016.

[41] H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. Reading, MA, USA: Addison-Wesley, 2010.

[42] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, “Experimental character-
ization of physical unclonable function based on 1 kb resistive random
access memory arrays,” IEEE Electron Device Lett., vol. 36, no. 12,
pp. 1380–1383, Dec. 2015.

[43] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951–1970, Jun. 2012.

[44] S. R. Lee et al., “Multi-level switching of triple-layered TaOx RRAM
with excellent reliability for storage class memory,” in Proc. Symp. VLSI
Technol. (VLSIT), Jun. 2012, pp. 71–72.

[45] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, pp. 873–876, Apr. 2010.

[46] K. E. Batcher, “Bit-serial parallel processing systems,” IEEE Trans.
Comput., vol. C-31, no. 5, pp. 377–384, May 1982.



TRUONG et al.: ADAPTING RACER ARCHITECTURE TO INTEGRATE IMPROVED IN-ReRAM LOGIC PRIMITIVES 407

[47] S. Yu et al., “Binary neural network with 16 mb RRAM macro chip
for classification and online training,” in IEDM Tech. Dig., Dec. 2016,
p. 16.

[48] J. Woo et al., “Improved synaptic behavior under identical pulses using
AlOx /HfO2 bilayer RRAM array for neuromorphic systems,” IEEE
Electron Device Lett., vol. 37, no. 8, pp. 994–997, Aug. 2016.

[49] A. Fantini et al., “Intrinsic switching variability in HfO2 RRAM,” IEEE
Electron Device Lett., to be published.

[50] D. K. Maiti et al., “Composition-dependent nanoelectronics of amido-
phenazines: Non-volatile RRAM and WORM memory devices,” Nature,
vol. 7, p. 13308, Oct. 2017.

[51] C. Hsu et al., “Self-rectifying bipolar TaOx /TiO2 RRAM with superior
endurance over 1012 cycles for 3D high-density storage-class memory,”
in Proc. Symp. VLSI Technol., Jun. 2013, pp. T166–T167.

[52] Y. Y. Chen et al., “Understanding of the endurance failure in scaled
HfO2-based 1T1R RRAM through vacancy mobility degradation,” in
IEDM Tech. Dig., Dec. 2012, p. 20.

[53] C. Ye et al., “Enhanced resistive switching performance for bilayer
HfO2/TiO2 resistive random access memory,” Semicond. Sci. Technol.,
vol. 31, no. 10, Sep. 2016, Art. no. 105005.

[54] M. A. El-Kady, “Probabilistic short-circuit analysis by Monte Carlo
simulations,” IEEE Power Eng. Rev., vol. PER-3, no. 5, pp. 46–47,
May 1983.

[55] K. Bhanushali and W. R. Davis, “FreePDK15: An open-source predictive
process design kit for 15 nm FinFET technology,” in Proc. ISPD, 2015,
pp. 165–170.

[56] ARCANA Research Group. (2021). RACER Artifacts—Zenodo
Repository. [Online]. Available: https://github.com/ARCANA-Research/
RACER-Artifacts/, doi: 10.5281/zenodo.5495803.

[57] Intel Corp. Intel Xeon Platinum 8253. Accessed: Apr. 17, 2021. [Online].
Available: https://ark.intel.com/content/www/us/en/ark/products/
192465/intel-xeon-platinum-8253-processor-22m-cache-2-20-ghz.html

[58] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3D stacking magnetic RAM (MRAM)
as a universal memory replacement,” in Proc. 45th Annu. Conf. Design
Autom. (DAC), Jun. 2008, pp. 554–559.

[59] J. Wang, X. Dong, and Y. Xie, “Enabling high-performance LPDDRx-
compatible MRAM,” in Proc. Int. Symp. Low Power Electron. Design,
Aug. 2014, pp. 339–344.

[60] NVIDIA Corp. Geforce RTX 2070. Accessed: Jun. 20, 2021. [Online].
Available: https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-
2070/

[61] B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang, “Merging the interface:
Power, area and accuracy co-optimization for RRAM crossbar-based
mixed-signal computing system,” in Proc. DAC, 2015, pp. 1–6.

[62] J. Louis, B. Hoffer, and S. Kvatinsky, “Performing memristor-aided logic
(MAGIC) using STT-MRAM,” in Proc. 26th IEEE Int. Conf. Electron.,
Circuits Syst. (ICECS), Nov. 2019, pp. 787–790.

Minh S. Q. Truong received the dual B.S. degree in
electrical engineering and in computer engineering
from the University of California at Davis in 2019.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University. His current Ph.D.
research seeks to create new classes of computer sys-
tems based on the processing-in-memory paradigm
to reduce the power consumption of data-intensive
applications by orders of magnitudes, and to enable
efficient edge and cloud computing. His general

research interest lies at the intersection of computer systems, microarchitec-
ture, circuits, and how to design a holistic computer systems.

Liting Shen received the B.S. degree in applied
physics from The Hong Kong Polytechnic Univer-
sity in 2017. He is currently pursuing the Ph.D.
degree with the Department of Electrical and Com-
puter Engineering, Carnegie Mellon University. His
research interests lie in making resistive random
access memory (ReRAM) cells to compute. His
work focuses on theoretical analysis and experimen-
tal demonstration of ReRAM-based logic operations
like OR, NOT, and NOR.

Alexander Glass received the B.S. degree in electri-
cal and computer engineering from Carnegie Mellon
University in 2022, where he is currently pursuing
the M.S. degree with the Department of Electrical
and Computer Engineering. His current research
interests include processing-in-memory architectures
and CPU design.

Alison Hoffmann (Student Member, IEEE) received
the B.S. degree in electrical and computer engineer-
ing from Carnegie Mellon University in 2021, where
she is currently pursuing the M.S. degree with the
Department of Electrical and Computer Engineering.
She is broadly interested in computer architecture,
processing-using-memory, and data center computer
architectures.

L. Richard Carley received the S.B., M.S., and
Ph.D. degrees from the Massachusetts Institute
of Technology in 1976, 1978, and 1984, respec-
tively. He joined the Department of Electrical and
Computer Engineering, Carnegie Mellon University
(CMU), Pittsburgh, PA, USA, in 1984, and in March
2001, he became the STMicroelectronics Professor
of Engineering at CMU. He has granted 27 patents
and authored or coauthored over 250 technical
papers and over 20 books and/or book chapters. His
research interests include analog and RF integrated

circuit design in deeply scaled CMOS technologies, and novel micro-electro-
mechanical and nano-electro-mechanical device design and fabrication. For
the past several years, he has studied the design of efficient RF power
amplifiers in advanced BiCMOS technologies. He has won numerous awards,
including Best Technical Paper Awards at both the 1987 and the 2002 Design
Automation Conference (DAC), a “Most Influential Paper” Award from DAC
and the “Best Panel Session” Award at ISSCC in 1993. In 1997, he co-
founded the analog electronic design automation startup, Neolinear, which
was acquired by Cadence in 2004.

James A. Bain (Senior Member, IEEE) received
the B.S. degree in materials science and engi-
neering from the University of Pennsylvania in
1988 and the M.S. and Ph.D. degrees in materials
science and engineering from Stanford University
1991 and 1993. He is currently a Professor with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University. He also holds a cour-
tesy appointment with the Department of Materials
Science and Engineering and is the Associate Direc-
tor of the Data Storage Systems Center (DSSC).

He has coauthored more than 300 articles in the field of magnetic, optical,
electrical, thermal, and mechanical devices and materials for information tech-
nology. He currently has active research programs in heat assisted magnetic
recording, and resistive switches for memory and reconfigurable electronics.
He is a Senior Member of IEEE (Societies: Magnetics, Electron Devices, and
Photonics).

Saugata Ghose (Member, IEEE) received the dual
B.S. degree in computer science and in computer
engineering from Binghamton University, State Uni-
versity of New York, in 2007, and the M.S. and
Ph.D. degrees in electrical and computer engi-
neering from Cornell University in 2014. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, University of Illinois
Urbana-Champaign, where he also holds an affiliate
appointment with the Department of Electrical and
Computer Engineering. His current research interests

include data-oriented computer architectures and systems, new interfaces
between systems software and hardware, energy-efficient memory and storage,
and architectures for emerging platforms and domains. He received the
Best Paper Award from DFRWS-EU in 2017 and was a 2019 Wimmer
Faculty Fellow at Carnegie Mellon University. He is a member of the
IEEE (Computer Society). For more information, please visit his website at
https://ghose.cs.illinois.edu/.

http://dx.doi.org/10.5281/zenodo.5495803


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


