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Abstract— This paper introduces a novel method for designing
approximate circuits by fabricating and exploiting false timing
paths, i.e., critical paths that cannot be logically activated. This
allows to strongly relax timing constraints while guaranteeing
minimal and controlled behavioral change. This technique is
applied to an approximate adder architecture, called the Carry
Cut-Back Adder (CCBA), in which high-significance stages can
cut the carry propagation chain at lower-significance positions.
This lightweight approach prevents the logic activation of the
carry chain, improving performance and energy efficiency while
guaranteeing low worst-case errors. A design methodology is
presented along with implementation, error optimization, and
design-space minimization. The CCBA is proven capable of
extremely high accuracy while displaying significant circuit
savings. For a worst case precision of 99.999%, energy savings
up to 36% are demonstrated compared with exact adders.
Finally, an industry-oriented comparison of 32-bit approximate
and truncated adders is carried out for mean and worst-case
relative errors. The CCBA outperforms both state-of-the-art
and truncated adders for high-accuracy and low-power circuits,
confirming the interest of the proposed concept to help build-
ing highly-efficient approximate or precision-scalable hardware
accelerators.

Index Terms— Low-power digital circuits, timing optimization,
false timing paths, approximate circuits, approximate adders,
speculative adders.

I. INTRODUCTION

PERFORMANCE, density and energy efficiency of inte-
grated circuits have been increasing exponentially for

the last four decades following Gordon Moore’s remarkable
prediction. However, power and reliability pose several chal-
lenges to the future of technology scaling. Power has definitely
emerged as a critical concern due to the poor scaling of
Vth, while transistor miniaturization reaching atomic scale
has led to tremendous Process-Voltage-Temperature (PVT)
variations. Unfortunately, achieving low power and robustness

Manuscript received January 7, 2018; revised May 11, 2018; accepted
June 1, 2018. Date of publication June 29, 2018; date of current ver-
sion December 11, 2018. This work was supported in part by the Nano-
Tera IcySoC Project of the Swiss National Science Foundation and in
part by the ARTEFaCT Project of the French Agence Nationale de la
Recherche. This paper was recommended by Guest Editor A. Marongiu.
(Corresponding author: Vincent Camus.)

The authors are with the Integrated Circuits Laboratory, École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland (e-mail:
vincent.camus@epfl.ch; mattia.cacciotti@epfl.ch; jeremy.schlachter@epfl.ch;
christian.enz@epfl.ch).

Source code of the Carry Cut-Back Adder is available online at
https://github.com/vincent-camus/carry-cut-back-adder.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2018.2851749

against variability requires complex and conflicting design
constraints. For example, while power efficiency calls for
voltage down-scaling and minimization of hardware, robust-
ness demands higher voltage, larger transistors and additional
correction or redundancy. As a result, designers are being
pushed to seek new energy-efficient computing techniques to
meet the increasing demand of data processing.

The concept of error tolerance, i.e. accepting error in a
design to save resources, is well known in many abstrac-
tion layers and is already implicit in digital signal process-
ing as the representation of real numbers is approximated
due to the finite number of bits. Built on these ideas,
approximate computing [1] has emerged as a promising
candidate to improve performance and energy efficiency
beyond technology scaling. Designing approximate circuits
explores a new trade-off, not only by accepting unreliabil-
ity, but by intentionally introducing errors to save area and
power and overcome the limitations of traditional circuit
design.

With the exploding amount of data being processed in the
cloud and on mobile devices, a wide range of applications can
trade accuracy without compromising the functionality or the
user experience. In multimedia applications, a small proportion
of errors stays imperceptible to humans. The growing demand
for statistical algorithms such as data mining, search and
recognition represents another opportunity to compute in an
approximate way as the outcome of those applications is
not required to be a single golden result, but an adequate
match. Finally, iterative applications like vision and tracking
are inherently resilient to errors since those can be compen-
sated in the succeeding frames or steps.

Approximate computing has been investigated at different
levels of abstraction, such as voltage-frequency-precision scal-
ing at circuit level [2] or significance-driven computation at
algorithmic level [3]. Another way consists in redesigning the
architecture of digital circuits into an approximate version
with smaller delay, silicon area or power consumption. This
technique is particularly suited for arithmetic operators such
as adders.

This paper introduces a novel concept to optimize arithmetic
circuits by artificially inserting and exploiting false paths,
and co-designing circuit implementation together with circuit
functionality. This technique is demonstrated for the design
of an approximate adder trading off arithmetic precision
in a floating-point manner. In this adder, called the Carry
Cut-Back Adder (CCBA) and briefly introduced in [4],
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the carry-chain activation is prevented in order to relax timing
constraints in the entire design, thus strongly improving circuit
efficiency. With this approach, high-significance carry stages
are monitored to cut the carry propagation chain at lower-
significance positions, guaranteeing low relative errors of
floating-point type.

In this work, the CCBA architecture is enhanced with a new
input-induced cut mechanism, improving error control and
outperforming previous implementation in high-performance
and high-accuracy circuits. It is provided with a detailed design
strategy for efficient CCBA design including circuit implemen-
tation, error optimization and design-space minimization.

An exhaustive and industry-oriented comparison of 32-bit
CCBAs against 10 state-of-the-art approximate adders, includ-
ing truncated exact adders, is performed for two target fre-
quencies. All circuits are described at behavioral level and
synthesized in an industrial design manner for a 65 nm com-
mercial CMOS technology. Mean and maximal relative errors
are used to assess the accuracy. Results show that the CCBA
offers by far the best performance for worst-case relative
errors. For mean relative errors, the CCBA is proven to be
comparable to truncated adders among high-accuracy circuits,
and to outperform truncation in low-speed configurations.

The organization of this paper is as follows: Section II
gives an overview of the concept of circuit optimization
by fabrication of false timing paths. Section III details the
architecture, arithmetic principle and design strategy of the
CCBA. Section IV finally presents the CCBA results and
its comparison against truncated adders and state-of-the-art
approximate adders.

The source code of the CCBA circuit is available online at
https://github.com/vincent-camus/carry-cut-back-adder.

II. APPROXIMATE CIRCUIT DESIGN AND OPTIMIZATION

BY FABRICATION OF FALSE TIMING PATHS

Digital circuits need to be designed to be functional in the
worst-case scenario, i.e. when their critical path is activated.
This is achieved by finding all potential critical paths and
adopting on them conservative—thus expensive—timing mar-
gins. But sometimes, it happens that a critical path can never
be logically activated, it is then called a false path, as it is
unnecessary to apply conservative constraints over it.

False paths are traditionally unexpected byproducts of cir-
cuit design. Finding them and obtaining their information,
known as delay constraints or timing exceptions, makes it
possible to relax timing constraints on signal paths during
the Static Timing Analysis (STA). It can enable the synthesis
tool to achieve the desired design performance (e.g. power,
area, or speed) or timing closure by focusing efforts on
real paths instead of false paths. Thus, many scientific arti-
cles [5], [6] and patents [7]–[9] have described techniques to
identify them in the circuit netlist by analytical or numerical
ways.

A. False-Path Fabrication

The novelty and main interest of this new technique is to
artificially introduce and exploit false paths to optimize the

Fig. 1. Diagram illustrating a fabricated false path. The monitoring block
tracks signals related to a stage of the original black-dotted signal path. When
propagation is possible through this stage, it triggers the cutting multiplexer
to select the gray path, resulting in a shorter effective propagation.

implementation of digital circuits. Preventing full activation
of a delay-critical signal in a circuit by inducing a false path
allows more relaxed timing constraints, resulting in lower
circuit implementation cost, higher yield, or earlier signal
arrival times. In some cases, if a signal path originally fails to
fit the delay constraint, this technique can make it possible
to fit the constraint without the need to redefine design
specifications, or without costly methods such as upsizing
cells and transistors, buffering, parallelizing or increasing
pipelining.

In order to create a false path or transform a signal path
into a false path, we introduce two required logic elements:

• A cutting element multiplexing the signal path in its
center, either to maintain the path itself, or to substitute
it for an alternate path that is faster.

• A monitoring element triggering the cutting element to
select the faster alternate path when it detects a possibility
of full signal-path activation based on the monitoring of
a few related nets.

Fig. 1 illustrates an example of fabricated false path. The
monitoring block tracks a portion of the circuit related to the
original signal path in order to detect potential propagation
across it. If such risk is detected, it generates a signal that
triggers the cutting element into selecting a shorter signal
path. Independently of all the other (non-monitored) parts
of the signal path, a case analysis of the longest possible
logic propagation along the signal path results in shorter path
activation, thus lower path delay.

An important step is to manually exclude the generated
false paths from STA. This is the case for the CCBA circuit
described in the following section, for which signaling tim-
ing exceptions is crucial to get the correct implementation.
Indeed, identifying false paths in a circuit is a non-trivial and
computer-demanding task. Thus, omitting to signal them to
the synthesis tool is likely to lead to a miss. In that case,
the tool would unnecessarily attempt to meet delay constraints
on them, losing all the benefits of the technique. Different
types of timing exceptions are possible, depending on the
synthesis tool, for instance set max delay, set false path or set
disable arc.
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B. Significance-Driven Cuts

It is important to note that inducing or fabricating a false
path requires a careful co-design of circuit timing together with
circuit behavior. Indeed, the non-complete path activation will
prevent its full and (assumed) original behavior to establish,
thus altering the overall circuit behavior. For this reason,
this technique is best suited for the design of approximate
circuits, for example by transforming an exact design into an
approximated version lacking full functionality.

The greatest challenge is undeniably to find the right signal
path and to implement a cut that guarantees minimal and
controlled changes on the functionality, such as reduced pre-
cision or controllable arithmetic errors. An evident application
of this technique is thus on arithmetic operators and computing
datapaths. Indeed, their intrinsic bit and net significance can
help to guide the selection of monitoring and cutting elements.
Furthermore, in arithmetic circuits, the critical path generally
spans from low to high significance signals. Thus, the monitor-
ing can be configured to track one or more high-significance
signals, while the cutting would occur at a lower-significance
position.

III. APPLICATION TO APPROXIMATE CIRCUITS:
THE CARRY CUT-BACK ADDER

A. State-of-the-Art Approximate Adders

Additions are the most common arithmetic units in digital
systems. With the demand for higher speed and power effi-
ciency, many attempts have been made to build them in an
approximate manner.

The most common approach to build approximate adders
is using the concept of carry speculation [10]. As carry
propagation typically does not cover the entire length of the
adder, it is feasible to guess relatively accurately an internal
carry based on a small number of preceding stages. As a
result, the carry propagation chain can be reduced or sliced
into multiple shorter paths executed in parallel, enabling
performance beyond theoretical bounds of exact adders.

Different speculative schemes have been explored in the
literature, among which segmented [11], [12], compen-
sated [13]–[15] and timing-starved adders [16], [17]. As they
contain the full addition stages (simply unconnected to be
executed in parallel), all these adders can easily and inexpen-
sively be made dynamically configurable to allow exact com-
putation or variable-latency correction [11], [14], [16], [17].
This work solely considers their core architecture without such
features.

Other architectural techniques are based on simplifying
LSBs of the addition [18], [19], either by replacing the
low-significance Full Adder (FA) cells by an approximate
counterpart, or by pruning low-significance gates after circuit
synthesis.

1) Speculative Segmented Adders: Early speculative adder
works are based on the Equal Segmentation Adder (ESA) [11].
The ESA simply slices the addition into multiple sub-adder
blocks executed in parallel, without carry propagation amongst
themselves. This segmented carry chain without any circuit

overhead offers a high energy efficiency at the cost of numer-
ous and uncontrolled errors.

To reduce the error rate, the Error-Tolerant Adder type II
(ETAII) [12] complements the sub-adders with equally-sized
carry generator sub-blocks to speculate more accurately the
input carry of each sub-adder.

2) Speculative Compensated Adders: In order to reduce the
error impact and limit the worst case, segmented adders have
been coupled with multiplexer-based error compensation. The
Error-Tolerant Balancing Adder (ETBA) [13], direct descen-
dant of the ETAII, uses an error balancing technique based
on multiplexers to mitigate the relative error on the preceding
sub-adder block in case of incorrect carry speculation.

The Generate-Signals-Exploited Carry Speculation Adder
(GCSA) [14] has a functionally similar carry scheme as
the ETBA. It differs by introducing, in case of incorrect
speculation, the error reduction on the current sub-adder block
rather than on the preceding one.

The Inexact Speculative Adder (ISA) [15] is a generalized
and optimal architecture of speculative adder. It minimizes
the carry-generator overhead, reducing its large critical delay.
It also optimizes error reduction with a dual-direction compen-
sation on both preceding and current sub-adder blocks. The
ISA improves accuracy while strongly outperforming other
speculative adders in terms of speed and energy efficiency.
It is worth noting that the ISA encompasses the state-of-the-art
segmented and compensated adders, those being boundary
cases.

3) Speculative Timing-Starved Adders: The Almost Correct
Adder (ACA) [16] is the best-known timing-starved adder. It is
composed of an array of overlap-ping and translated sub-adder
blocks, so that each sum bit of the ACA is constructed using
exactly the same amount of preceding carry stages (except the
first ones, which require less). The critical-path delay is thus
limited, but the circuit cost is fairly high.

As for the ACA, the Accuracy-Configurable Approximate
Adder (ACAA) [17] is also composed of overlapping sub-
adder blocks. But those sub-adders are translated by half of
their bit-width. Thus, fewer blocks are required and the circuit
complexity is reduced.

4) Adders with Simplified LSBs: The Lower-part-OR
Adder (LOA) [18] divides the addition into two parts. The
upper part computes precise addition of the MSBs, while
some OR gates approximate the lower-part addition instead of
conventional FA cells. An extra AND gate is used to generate
the carry-in of the upper part addition from the preceding
stage. Despite a high error rate, error values remain small,
while the critical path is reduced to the carry chain of the
upper-part adder only.

Gate-Level Pruning (GLP) [19] belongs to the class of CAD
tools to automate the design of approximate circuits [19]–[22].
GLP removes low-significance gates, trading accuracy in
exchange for area and power savings. It has been successfully
applied to adders, for which it retains the gates required for
accurate carry propagation while discarding those used for
generating low-significance outputs.
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Fig. 2. General block diagram of the proposed Carry Cut-Back Adder (CCBA).

B. Proposed Architecture

The general structure of the proposed Carry Cut-Back
Adder (CCBA) is depicted in Fig. 2. As presented in [4],
the CCBA is built on an ordinary fixed-point adder composed
of the chain of sub-adder blocks (ADD), with insertion of
multiplexers that can cut the carry chain to shorten the effective
critical path. The cut multiplexes the real carry with a carry
speculated from a much shorter chain.

The decision to cut the chain is taken in the carry propagate
block (PROP) that monitors a group of carry stages and
generates the cut signal if those are all in propagate states.
The cut always occurs at a lower-significance position than
the PROP in the carry chain, guaranteeing low relative errors.

Note that this cut-back mechanism appears as a feedback
between two carry-chain positions. But the PROP only uses
local propagate signals, which are computed from the input
operands and not from the carry chain. It is therefore not a
recursive loop and cannot influence the circuit stability.

The speculated carry is generated in the optional carry
speculator block (SPEC) with a guess value, identical if there
are multiple cut-backs. Shorter than the exact carry path, this
alternate path speculates the carry from a few preceding stages
and propagates the guess if those stages are all in propagate
mode. The guess is usually a hardwired ‘0’ or ‘1’, but it can
be a dynamic value, such as a preceding-stage input operand
to avoid a bias in the error distribution [13].

If there is no SPEC block (equivalent to a 0-bit SPEC),
the multiplexer can be simplified to a monotonic gate, as in
the AND-cut of Fig. 3a where cut = 0 dictates the AND
output regardless of its second input. Another solution, called
the input-induced cut, is to induce the cut from the input
operands themselves, as in Figs. 3b-c where both stage inputs
are zeroed or given the same value to allow kill or generate
states only. A different HDL description is required for those
latter implementations.

C. Circuit Timing

The main advantage of this approach remains in its timing
characteristic. In a regular adder, the critical path is only
activated if all the stages are in propagate mode. This occurs
with a low probability as the carry propagation is naturally
broken by the distribution of input bits. The adder within
the CCBA physically contains the entire carry chain (through

Fig. 3. Examples of CCBA without SPEC. (a) shows an AND-cut, equivalent
to 0-bit SPEC with guess = 1. (b) and (c) show input-induced cuts. (b) sets
the pth inputs to ‘0’, forcing a kill state. (c) sets both inputs to the same
value, allowing kill or generate states only.

ADD blocks and multiplexers), but this path can never be
activated. By monitoring a few stages of the adder, the PROP
detects such risk and calls the SPEC as shorter path to be
used instead, ensuring that the design meets tighter timing
constraints.

Fig. 4 shows a case study of the longest propagation
chains that can flow through a CCBA built with two OR-cuts
enabled by active-high cut signals (example without SPEC for
simplicity, but same reasoning in the general case). Each cut-
back module splits the carry chain with two possibilities:

• cut = 0: The OR gate output follows the input, propagat-
ing the carry from one ADD block to the other. In this
typical case, no intentional cut happens at the cut position,
but the carry chain is naturally broken within the PROP
among the ADD2 stages. The critical path is therefore
limited, as it cannot entirely cross over the PROP.

• cut = 1: All the stages within the PROP are in propa-
gate mode. The carry necessarily propagates through the



750 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2018

Fig. 4. Diagram of the longest carry chains and resulting effective critical
paths in the example of an implementation of CCBA with two OR-cuts.

PROP and there is a risk of long critical-path activation
if the other non-monitored stages are also in propagate
mode. The active-high cut signal deliberately forces the
OR output at ‘1’ no matter the real carry coming from
the preceding ADD block. The carry propagation is
therefore interrupted at this position and its maximum
length remains limited.

As explanation of Fig. 4, no intentional cuts occur in case 1,
the carry chain being naturally broken within the two PROP
blocks. Two deliberate cuts occur in case 2, artificially break-
ing the carry chain at the OR gate positions. Cases 3 and 4 both
contain one naturally broken chain and one deliberately cut,
shortening carry chains to various lengths.

Despite the fact that the full carry chain physically exists
in the design, no input combination can activate it from the
start to the end. It is therefore a false path, and it can be
excluded from the timing optimization. The effective critical
paths, in red in Fig. 4, sum up the longest propagate chains that
can occur in the circuit among the different cases. Insertion of
more carry cut-back modules, possibly overlapping each other,
would lead to shorter effective critical paths.

D. Arithmetic and Errors

The CCBA addition arithmetic is illustrated in Fig. 5.
Stages within PROP and SPEC blocks are indicated with their
carry state: P, G and K, representing propagate, generate and
kill states, respectively. Cuts and signals are drawn in dotted
lines when cuts are inactive.

An error only occurs with the concurrence of three factors:
• A sequence of propagate signals spans the entire PROP

bit-width, triggering the cut.
• A sequence of propagate signals spans the entire SPEC

bit-width, making the exact carry prediction impossible
with the SPEC stages only.

Fig. 5. Example of CCBA addition arithmetic for two circuit architectures:
(a) two multiplexed cuts with 2-bit PROP and SPEC blocks and guess at ‘0’,
(b) three OR-cuts with 1-bit PROP blocks. Dotted lines depict inactive cuts.

• A wrong guess of the carry that inputs the SPEC
(Fig. 5a) or that directly substitutes for the real
carry (Fig. 5b).

Because of the simultaneous occurrence of the three afore-
mentioned properties, an error occurs in the right-hand path of
Fig. 5a. In the OR-cut implementation of Fig. 5b, the active-
high cut signal is also the guess value due to the use of the OR
gates. The first error condition is met for the two right-hand
paths, directly triggering the cut since there is no SPEC. The
guess value at ‘1’ unintentionally follows the real carry in
the central path and leads to a correct sum. But it happens
to be wrong in the right-hand path and leads to a faulty
sum.

Occurrence of an error implies that one or both operands
have non-zero bits at the PROP position to drive those stages
into propagate mode. As the error occurs at the cut position,
at a lower-significance position, the expected sum is neces-
sarily much larger than the introduced error. In the example
of Fig. 5a, the absolute error is 16 while the expected sum is
43,265 so the relative error is 0.04 %. In the computation of
Fig. 5b, the relative error is only 0.006 %. Such low relative
errors are typical in speculative adders for calculations involv-
ing large value operands. However, it is the worst case that
gives the upper-bound relative error and defines the minimum
precision of an adder.

E. Worst-Case Error and Floating-Point Precision

1) Error Propagation: It is interesting to note from Fig. 5
that the error caused by the cut can propagate on many bits, but
seems to keep the magnitude of the carry cut-back position,
i.e. the first wrong bit. However, a series of erroneous bits
can result in very different arithmetic errors due to compen-
sation mechanisms. Thus, a careful demonstration has to be
provided.

Let Si , Ci and Pi denote the sum, carry-in and propagate
signals of the i th stage addition, respectively. The sum and
carry propagation are defined by:

Si = Pi ⊕ Ci (1)

Pi = 1 �⇒ Ci+1 = Ci . (2)
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Fig. 6. Balanced error pattern.

Fig. 7. Unbalanced error pattern.

Let assume a carry error at the i th bit of the adder, with an
erroneous carry of value Cerr . The sum bit and the carry-out
depend on the value of Pi :

• If Pi = 1, (1) gives Si = Cerr instead of Cerr for the
expected sum bit, while (2) propagates the wrong carry
Cerr to the next stage, where the same formulae apply
again.

• If Pi = 0, (1) gives Si = Cerr instead of Cerr for the
expected sum bit, but the wrong carry is not propagated
by (2), so the next stage addition is correct.

Assuming that the erroneous sum spreads from the mth to
the pth stage, the error pattern appears as shown in Fig. 6. Just
as in Fig. 5, where the error patterns are shown in red, the last
faulty bit counterbalances the first ones, the absolute error has
the significance of the first erroneous bit only:

2p − 2p−1 − 2p−2 − · · · − 2m = 2m . (3)

This result is valid if the carry propagates normally. But
some circuits can have more than one cut-back multiplexer.
If the stages between two cut-backs are in propagate modes,
the normal propagation driven by (2) could be disrupted. Thus,
the previous result needs to be recomputed for this case.

Let assume the same carry error (Ci = Cerr ) in a prop-
agating stage (Pi = 1, else there would be no carry-chain
perturbation). If another cut-back happens to guess the same
faulty carry Cerr , it does not disrupt the normal propagation
and the previous result holds (2). But if the carry cut happens
in the opposite direction Cerr , it overrides (2) and reverses the
carry error: the carry, that was false until now, comes back
to the value of the expected addition. Thus, despite the cut,
the current sum bit, determined by (1) with the exact carry,
is correct, as well as the next stages.

The last erroneous sum bit being the preceding stage at
value Cerr , the error pattern appears this time as in Fig. 7. All
the erroneous bits are in the same direction and the absolute
error is simply their sum:

2p + 2p−1 + 2p−2 + · · · + 2m = 2p+1 − 2m . (4)

The magnitude of this error is much higher than in the
first case, but it can only occur if several carry-cuts happen
in opposite directions. Thus, to avoid such dramatic errors,
the SPEC guess or the straight carry-cut must be chosen in
the same direction for all the cut modules of the CCBA.

2) Worst-Case Relative Error: Having validated the fact that
any error only has the magnitude of the bit position of the cut
that caused it, the low impact of this error on the expected
sum should be demonstrated.

The worst case happens when the error magnitude is the
highest on the lowest expected calculated sum. Occurrence
of an error implies that the three factors mentioned in
section III-D are realized, thus the PROP and SPEC blocks
intercept only propagate signals. All the non-zero operand bits
producing those propagates add up to the expected sum:

• The PROP non-zero bits, which significantly contribute
to maximizing the expected result and thus to minimizing
the worst-case relative error.

• The SPEC non-zero bits, which contribute to a lower
extent in increasing the sum by attenuating a portion of
the magnitude of the error.

• If the SPEC guess or straight carry-cut is ‘0’ (speculating
a low carry), an error replaces a real carry necessarily
at state ‘1’ coming from a generate stage. Added to
the SPEC non-zero bits, this stage further increases its
sum to 2m .

Thus, whenever an error occurs, while it keeps the mag-
nitude of the cut bit significance, i.e. an arithmetic error of
value 2m , the sum is always expected to be greater than:

2m +
∑

k∈PROP

2k and
∑

k∈SPEC

2k +
∑

k∈PROP

2k , (5)

leading to a relative error lower than:

2m

2m +
∑

k∈PROP

2k
and

2m

∑

k∈SPEC

2k +
∑

k∈PROP

2k
, (6)

in the cases where the carry guess is at ‘0’ and ‘1’, respec-
tively. This result holds also if multiple errors occur in
different carry-cut modules, since the ratio of error over sum
is preserved.

As a result, a floating-point precision can be achieved at
design time through a proper sizing and positioning of PROP
and SPEC blocks and selection of the right carry guess. It is
easy to verify that the worst-case relative error is 7.7 % for
the example in Fig. 5a and 12.5 % in Fig. 5b, corresponding
to minimum precisions between 4 and 5 bits.

F. Design and Implementation Strategy

The CCBA allows considerable improvements concurrently
in circuit performance and error control. This section describes
how to exploit its architectural advantages.

1) Circuit Implementation: As the carry cut-back technique
introduces hardware overhead to the adder, mainly for imple-
menting PROP and SPEC blocks, their circuitry must be
minimized. The easiest way is to limit their bit-widths to a
few stages in order to reduce their area and delay, as those
need to be computed at first to determine the activation and
value of the cut. Executed in parallel, the delay overhead is
limited by the slowest between PROP and SPEC.

Usually implemented with a fast and efficient carry-
lookahead architecture, the area overhead of these functional
blocks can fortunately be balanced. Indeed, PROP and SPEC
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can be built with a similar architecture than the adder segments
that they overlay. They could then share most of their circuitry,
for instance with a Carry-Lookahead Adder (CLA), that uses
small sum generators onto a carry-lookahead network.

It is worth mentioning that alike speculative adders,
the CCBA can easily be made dynamically configurable to
embed an exact computation mode or a variable-latency error
correction mechanism. The cut-backs simply have to be dis-
abled, the carry will propagate normally throughout the entire
adder chain (with the original critical-path delay) and directly
lead to the exact addition result.

2) Timing Constraints: To effectively benefit from the cut-
back mechanism, it is necessary to manually exclude the
generated false paths from STA. As mentioned in II-A, this
ensures that the synthesis tool does not unnecessarily spend
resources to meet delay constraints on them.

This can be achieved by providing the tool with a timing
exception script based on the CCBA design information.
An easy way to do so for a single arithmetic module is to set
multiple delay constraints for each effective path instead of a
single constraint for the entire design. They would correspond
to the longest paths shown in red in Fig. 4 (not forgetting the
SPEC if there is). For instance, on the CCBA implementation
of Fig. 5a, delay constraints should be set on the three longest
paths: from input to output bits [0..7], [2..15] and [10..17].
For the CCBA of Fig. 5b, there are this time four longest
paths: [0..4], [1..9], [6..14] and [11..16].

3) Error Trade-Offs: The CCBA offers a large design space
to co-design circuit timing together with functional errors.
This allows maximizing circuit savings while minimizing the
application quality loss. It also enables to dissociate arithmetic
precision from dynamic range, usually fixed by the bit-width.

Firstly, the CCBA design parameters can independently set
different error characteristics:

• The error rate depends on the number of cut-back mod-
ules and of the PROP and SPEC bit-widths.

• The maximum error can be adjusted mainly by sizing the
cut length and the PROP bit-width, and to a lesser extent
by modifying the SPEC bit-width and input guess.

• Adjusting other error metrics, such as Signal-to-Noise
Ratio (SNR), Root Mean Square (RMS) error or any other
statistical metric can be achieved using the similar models
than those built for speculative adders [23], [24].

Secondly, the same design parameters affect circuit timing
and costs in terms of area and power, intuitively:

• More cuts leads to a faster circuit, but at the cost of more
and higher errors, as well as circuit overhead required for
SPEC, PROP and multiplexing.

• Larger SPEC or PROP reduces the errors at the cost of
delay, area and power overheads.

• Increasing the cut length lowers the error impact without
hardware overhead. However, a longer cut induces a
lower timing relaxation, leading to lower circuit savings.

• To optimize the timing budget, it can be interesting to
equalize the delay of all the timing paths, by equally
spacing cut-back modules and by adjusting the bit-widths
of the first and last ADD blocks.

G. Design-Space Minimization

Due to its flexibility, the choice of the right set of parameters
remains cumbersome. Fortunately, the dependency between
errors and circuit characteristics can help limiting the design-
space exploration to a low number of possible candidates.

In order to find the minimum design requirements to fit
a given maximum relative error, a simple methodology can
be derived by reversing equation (6). First, neglecting the
terms associated to the SPEC gives the minimum cut length,
composed of the bit-width of the PROP (lPROP) and of the
ADD1 (lADD1

) blocks, as on Fig. 4:

lcut = lPROP + lADD1
≥ ⌊

1 − log2 (REmax)
⌋

(7)

where REmax is the maximum relative error requirement.
For instance, REmax constraints of 50 %, 25 % and 12.5 %
would impose minimum overall cut lengths of 2, 3 and 4 bits.
The rounding down is due to the fact that the PROP and SPEC
can be used for error compensation as well. But the choice of a
greater cut length would ensure the required accuracy without
constraint on those blocks.

Fixing this integer term while reversing (6) allows express-
ing the minimum required PROP bit-width to further limit the
error and fit the desired REmax:

lPROP ≥
⌈

lcut − log2

(
2 lcut + 1 − 1

REmax

)⌉
(8)

for a carry guess fixed at ‘0’. Note that the SPEC does
not influence the maximum relative error in case of carry
guessed at ‘0’, as suggested by (6). Therefore, no other design
parameter can help limiting the error, this is why the rounding
up is necessary to ensure the required accuracy.

In the case where the carry guess is dynamic or fixed at
level ‘1’, the expression is changed to:

lPROP ≥
⌊

lcut − log2

(
2 lcut − 1

REmax

)⌋
. (9)

Choosing a higher integer would guarantee fitting the error
constraint. However, for that case, the SPEC can finally
complement the cut length and PROP for error compensation.
The minimum required SPEC bit-width is expressed as:

lSPEC ≥
⌈
−log2

(
1+2 lcut − 2 lcut−lPROP − 1

REmax

)⌉
. (10)

For example, let assume a 7.7 % relative error constraint.
Equation (7) directly implies a minimum cut length of lcut = 4.
For the case of a fixed guess at ‘0’, (8) simply gives a
mini-mum PROP bit-width of lPROP = 2 (no requirement for
SPEC). For the case of a dynamic or fixed guess at ‘1’, (9)
and (10) give requirements of lPROP = 2 and lSPEC = 7.
A 7-bit SPEC seems unreasonable for circuit efficiency.
Choosing a larger PROP (e.g. lPROP = 3) directly guaran-
tees to fit the chosen REmax without such unrealistic SPEC
requirement. For both guess values, circuits with larger cut
length (e.g. lcut = 5) fit the error straight away no matter
PROP and SPEC bit-widths.

The number of cut-backs and their absolute positions do not
influence the REmax. Thus, many implementations remain to
be investigated to find the optimal circuit, but the design space
would be reduced to a few dozen candidates.
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IV. RESULTS AND COMPARISON

A. Methodology

1) Scope of the Exploration: In this work, 32-bit unsigned
adders have been investigated in the frame of controlling and
lowering the relative errors, particularly in its worst case,
which delimits the floating-point error and thus the minimum
precision of the operator.

To further narrow the design space, all the architectures of
approximate adders have been kept uniform and regular for
fair comparison, i.e. segmented and compensated adders using
uniformly-sized blocks with identical properties and CCBA
using uniformly-spaced and identical cut-back modules. They
have all been considered with multiple types of carry gener-
ator guess: either fixed at ‘0’ or ‘1’, or dynamic using the
preceding-stage input operand as introduced by [13].

More than 50,000 implementations of approximate adders
with diverse error characteristics have been investigated to
provide an overall picture of their performance.

2) Circuit Implementation and Characterization: All the
approximate adders described in section III-A have been
implemented in VHDL from the highest-level behavioral
description. Therefore, the internal architecture of ADD,
PROP and SPEC blocks is left to the compiler’s optimization,
in order to benefit from the most favorable architecture to fit
the timing constraint. The exact adder used as reference has
been instantiated from the Synopsys DesignWare IP library.

All designs have been synthesized using Synopsys Design
Compiler in the UMC 65 nm process for two target frequen-
cies: 800 MHz (low-power) and 3.3 GHz (high-performance).
Post-synthesis delay, area, leakage and dynamic power have
been extracted by Synopsys Design Compiler. Only implemen-
tations meeting the timing constraints have been considered.

Circuits have been assessed in terms of silicon area, Power-
Delay-Area Product (PDAP), and energy per operation at
the targeted frequency. This latter has been chosen not to
disadvantage slower circuits yet fitting the timing constraint.

3) Error Characterization: The metrics used to characterize
approximate adders in this work are based on the relative
error (RE), which has the advantage of being independent of
the size of the adder. It is defined as:

RE =
∣∣∣∣
Sapprox − Sexact

Sexact

∣∣∣∣ (11)

where Sapprox and Sexact are the approximate and correct sums
of an addition, respectively.

The main metric used to characterize the circuits for this
study is the maximum of the relative error (REmax), which
states the worst case or minimum precision of the circuit. It is
also essential for targeting commercial products. The mean
relative error (REmean) is also taken into consideration as it is
widely spread in the analysis of approximate circuits [25].

The approximate adders have been characterized through the
simulation of two samples of five million unsigned random
inputs. First, a log-uniform distribution, exhibiting a very
large dynamic range, has been used to detect the worst-case
error REmax. Then, a uniform distribution has been utilized to
estimate REmean.

However, five million test vectors is a very small sub-
set of the exhaustive simulation, which contains 1.8 × 1019

combinations of two 32-bit operands. In order to assess the
quality of each estimate, three additional samples of five
million inputs have been used to measure the deviation of
the statistical estimate. Other methods have recently been
proposed to improve the estimation accuracy by dynamically
adjusting the number of simulation vectors [26] or by using a
formal approach to analyze errors [27].

As the error characteristics of adders spread over multiple
orders of magnitude and are plotted on logarithmic scale,
the Relative Standard Deviation (RSD) has been used (rather
than the variance or the standard deviation) for measuring the
dispersion of the results over the four random samples.

B. CCBA Results

Error characteristics and circuit costs are shown for a
selection of CCBAs at 3.3 GHz in Fig. 8 and at 800 MHz
in Fig. 9. Circuit costs are normalized to the exact adder
represented on the left of the figures. Sorted by REmax, those
designs have been selected as they represent optimal and well-
balanced circuits.

CCBAs are tagged by architectures, ‘m’ for multiplexed
and ‘ii’ for input-induced, and denoted by quintuples with
their most important design parameters: (number of cuts,
cut length, PROP, SPEC, guess). Fixed guesses are indicated
by ‘0’ or ‘1’, and dynamic ones by ‘A’ or ‘B’. Input-induced
cuts are expressed the same way although they override two
input signals instead of the intermediate carry.

To first assess the quality of the error characterization, RE
estimations are shown with Relative Standard Deviation (RSD)
error bars in logarithmic scale, magnified by a factor 500.
The largest variation is observed in the middle of Fig. 8, but
only represents a RSD of 0.4 % (i.e. the standard deviation
on the estimation accounts for 0.4 % of the estimated value).
The typical variations observed for REmean are in the order
of 0.1 %, while around 10–3 % for REmax, which confirms that
five million vectors are sufficient for a correct estimation of
REmean and REmax.

Figs. 8 and 9 highlight the large design flexibility and
accuracy range enabled by the proposed architecture. The
CCBA design parameters allow tuning the precision on almost
seven orders of magnitude of REmax while exhibiting PDAP
reductions up to 70 % . This precision tunability is three to
four orders of magnitude higher than previously reported [4].
Those stunning results are enabled by the improvement of
the HDL code and by the new input-induced cuts which
mainly benefit to high-performance and high-accuracy adders
(right of Fig. 8).

As expected from III-F, the cut length (addition of ADD1
and PROP bit-widths, as on Fig. 4) is the main parameter
regulating the relative error. It ranges from 3 to 17 bits
in Fig. 8, corresponding to REmax from 25 % down to
2.0 × 10–3 %, and reaches 27 bits in Fig. 9 for a REmax of
only 1.5 × 10–6 %.

REmean follows the same trend as REmax for implementa-
tions with multiple cuts (left of Figs. 8 and 9), for which



754 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 8, NO. 4, DECEMBER 2018

Fig. 8. Relative errors and normalized circuit costs of various 32-bit
CCBAs (on the horizontal axis) synthesized at 3.3 GHz in a 65 nm technology.

a small change in their structure, repeated over many cuts,
strongly impacts the overall error rate and mean. It scales in
a lower degree among adders having a single cut and with
higher accuracy (right of Figs. 8 and 9).

Target delay has a significant influence on the results.
Low-speed implementations show better normalized sav-
ings than high-performance ones at equivalent precision.
At 2 % REmax, 3.3 GHz CCBAs achieve up to 25 % energy
savings and 40 % PDAP reductions against around 40 % and
60 % for 800 MHz circuits.

Fig. 9 presents a sharp drop in circuit efficiency around
1 % REmax. This corresponds to the precision from which the
800 MHz design becomes delay-constrained. Indeed, higher
precision demands wider PROP, SPEC or greater cut length,
which all lie in the effective critical path of the CCBA. This
does not appear for 3.3 GHz adders, which are always tightly
constrained.

Another irregularity occurs in the right-hand side of Fig. 9,
where savings in high-accuracy adders appear to come exclu-
sively from energy reduction. As for speculative adders, CCBA
circuit savings usually come from the use of slower but
more efficient topologies for the adder sub-blocks, enabled by
the shortening of the critical path (e.g. Ripple-Carry instead
of Han-Carlson, or Han-Carlson rather than Kogge-Stone).
However, for very high accuracy, the large size of the sub-
adders does not allow the compiler to select more area-efficient
architectures, but it is still possible to relax timing and reduce
dynamic power consumption compared to the exact adder.

Note that all the shown implementations have either a 0-bit
SPEC or no SPEC at all, i.e. the penultimate design parameter
being 0 or undefined, respectively. This is indeed appearing as
the best circuit trade-off for lowering REmax, sole criteria by
which those designs have been selected. This is also true for
the PROP bit-width, ranging from 1 to 3 bits only. Out of the
scope of this paper but interesting for future studies, the use
and focus on other metrics, such as error rate or arithmetic
errors, would lead to optimization strategies employing bigger
SPEC and PROP blocks.

Fig. 9. Relative errors and normalized circuit costs of various 32-bit
CCBAs (on the horizontal axis) synthesized at 800 MHz in a 65 nm technology.

C. Comparative Study

This section makes a comprehensive and exhaustive com-
parison of CCBAs and state-of-the-art approximate adders.
All the adders described in III-A are represented: ESA [11],
ETAII [12], ETBA [13], GCSA [14], ISA [15], ACA [16],
ACAA [17], LOA [18] and pruned adders [19]. Exact trun-
cated adders are also given for reference.

Figs. 10 and 11 show dot plots of the accuracy-efficiency
Pareto frontiers achievable by approximate adders at 3.3 GHz
and 800 MHz, respectively. Error characteristics are measured
on horizontal axes, compared by REmean on left subfigures and
by REmax on right ones. Circuit costs are measured on vertical
axes, regarding energy consumption for top subfigures and
normalized PDAP for bottom ones (PDAP is normalized to
the exact 32-bit adder). The best designs are towards the
bottom-left corners of subfigures.

Before going into the detailed results, the quality of the
statistical estimations has been assessed by computing their
variation over four samples of input vectors. The median RSD
observed is in the order of 0.1 % for REmean and 10–4 % for
REmax. Only a handful of designs exhibits a high variation,
over 5 %, mainly among high-accuracy ACA and ACAA
adders. This is due to their large overlapping sub-adders
inducing extremely low error rates [26]. The most critical case
shows 28 % RSD for REmean or 4 % RSD for REmax. In regard
to the wide distribution of adder errors, covering many decades
of the logarithmic scale, such variability does not challenge the
viability of the study.

1) Mean Relative Error: Figs. 10a-b and 11a-b com-
pare approximate adders in regard to the REmean. Those
circuits do not correspond to the ones in Figs. 8 and 9,
they show a different Pareto-optimal set solely considering
REmean.

At high speed (Figs. 10a-b), truncated adder and LOA
show the best circuit efficiency at a given REmean. On the
contrary, ACA, ETBA and GCSA display the highest energy
and PDAP costs. These are also unable to achieve high
accuracy due to their direct dependency between sub-adder bit-
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Fig. 10. Comparison of relative errors and circuit costs of approximate adders synthesized at 3.3 GHz in a 65 nm technology.

Fig. 11. Comparison of relative errors and circuit costs of approximate adders synthesized at 800 MHz in a 65 nm technology.
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width and error compensation, which makes it difficult to find
an implementation optimizing both circuit and functionality.
Outperformed by truncated adder and LOA at low accuracies,
ISA and CCBA tend to catch up for REmean below 10–6 %,
in terms of energy consumption as well as in PDAP.

At lower speed (Figs. 11a-b), the pruned adder displays
moderate savings, with a closer trend to speculative circuits,
particularly with the ISA. The latter shows a slightly better
efficiency for REmean above 10–6 %, while pruning takes over
below 10–6 %, validating the results obtained in [28]. LOA and
truncated adder still outperform state-of-the-art adders, partic-
ularly for low REmean. However, at high accuracy, the CCBA
surpasses both of them in energy efficiency. This confirms
the trend identified in IV-B that high-accuracy CCBA circuits
exhibit better energy savings than area reductions.

2) Maximum Relative Error: Figs. 10c-d and 11c-d compare
approximate adders regarding their ability to limit the worst-
case precision, i.e. REmax. As this study focuses on lowering
the relative errors, only adders able to limit REmax below
100 % have been represented: truncated adder, LOA, ETBA,
GCSA, ISA and CCBA.

For both high-performance and low-power scenarios,
the overall trend is similar. With its OR gates on the lower-
part addition, the LOA cannot compensate errors, though it
preserves the overall magnitude of the computed sum, leading
to a 50 % worst-case error. Disregarding low-significance
operand bits and underestimating the sum result, truncated
adders have exactly a REmax of 100 %.

ETBA and GCSA show moderate savings, but their error
compensation schemes are limited by their dependency
between block size and error compensation, as for mean errors.
The ISA, which has an optimized architecture dissociating
critical path and error control, offers a larger range of REmax
with more decent energy and PDAP reductions. For both
3.3 GHz and 0.8 GHz, the ISA offers the best trade-off for
worst-case errors in the 7-50 % range.

The CCBA outperforms all other adders for REmax below
7 % for energy and PDAP in both low-power and high-speed
cases. It is also the only adder capable of high accuracy, with
REmax below 0.1 %, while still displaying considerable savings
compared to exact adders. This is particularly emphasized for
low-power circuits: at 10–3 % REmax, the CCBA enables PDAP
reductions up to 22 % or energy savings up to 36 %.

V. CONCLUSION

This paper has introduced a novel concept to optimize
approximate circuits by fabricating false timing paths, i.e. crit-
ical paths that can never be logically activated. Co-designing
circuit timing together with functionality, this method proposes
to monitor and cut critical paths to transform them into
false paths. This allows to relax timing constraints, resulting
in lower circuit costs or higher performance. Implementing
the cuts on low-significance nets of arithmetic circuits can
guarantee minimal behavioral changes, such as reduced preci-
sion or controllable arithmetic errors.

This technique has been applied to an approximate adder
circuit, called the Carry Cut-Back Adder (CCBA), in which

high-significance stages can cut the carry propagation chain
at lower-significance positions, guaranteeing a high accuracy.
This lightweight approach prevents the carry-chain activation,
therefore relaxing timing constraints and strongly improving
circuit efficiency. A design methodology has been presented in
order to tune the accuracy, to optimize and correctly implement
the timing constraints, as well as to reduce the design-space
exploration.

An industry-oriented comparison for a 65 nm commercial
CMOS technology has been carried out against 10 state-of-
the-art approximate adders, including truncated exact adders.
The CCBA architecture allows tuning the accuracy over
almost seven orders of magnitude while exhibiting power-
delay-area reductions up to 70 % for low-speed implemen-
tations. It greatly outperforms all other approximate adders
for worst-case errors, and most of them for mean errors.
Finally, it even improves upon exact truncated adders in
terms of energy in the case of high-accuracy low-power
designs. For a worst-case accuracy of 99.999 %, energy
savings up to 36 % or power-delay-area reductions up to
22 % are demonstrated compared to low-power conventional
designs.

This work has proven the considerable advantage of exploit-
ing false timing paths on adder circuits. This novel approach
could benefit larger arithmetic circuits, such as multipli-
ers [29], as well as bigger datapaths, like CORDIC [30] and
FPU [31]. Its extremely lightweight circuit implementation
could help building highly-efficient configurable or precision-
scalable hardware accelerators, with a better predictable and
controllable impact on their functionality.
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