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Abstract— In this paper, we present a survey of recent works
in developing neuromorphic or neuro-inspired hardware systems.
In particular, we focus on those systems which can either learn
from data in an unsupervised or online supervised manner.
We present algorithms and architectures developed specially
to support on-chip learning. Emphasis is placed on hardware
friendly modifications of standard algorithms, such as backprop-
agation, as well as novel algorithms, such as structural plasticity,
developed specially for low-resolution synapses. We cover works
related to both spike-based and more traditional non-spike-based
algorithms. This is followed by developments in novel devices,
such as floating-gate MOS, memristors, and spintronic devices.
CMOS circuit innovations for on-chip learning and CMOS
interface circuits for post-CMOS devices, such as memristors,
are presented. Common architectures, such as crossbar or island
style arrays, are discussed, along with their relative merits
and demerits. Finally, we present some possible applications
of neuromorphic hardware, such as brain–machine interfaces,
robotics, etc., and identify future research trends in the field.

Index Terms— Neuromorphics, machine learning, learning sys-
tems, adaptive systems, low-power electronics, artificial neural
networks, neural network hardware, MOS integrated circuits.

LIST OF ABBREVIATIONS

ADALINE Adaptive Linear Combiner,
AER address event representation,
ANN artificial neural network,
ARBP adaptive random backpropagation,
ASRBP adaptive skipped random backpropagation,
BMI Brain Machine Interface,
CAB computational analog blocks,
CNN convolutional neural network,
DNN deep neural network,
DRAM Dynamic random-access memory,
D-STDP doublet spike time dependent plasticity,
DW domain-wall,
DWM domain wall magnet,
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ELM extreme learning machine,
eNVM embedded nonvolatile memory,
EPSC excitatory postsynaptic current,
eRBP event-driven RBP,
FeFET ferroelectric field-effect-transistor,
FGMOS floating-gate MOS,
FL free layer,
FM/HM ferromagnet/heavy metal,
FPAA field programmable analog array,
FPGA field programmable gate arrays,
HEI hot electron injection,
IoT Internet of Things,
LIF Leaky-integrate-fire,
LMS Least Mean Square,
LSV lateral spin valve,
LTD long-term depression,
LTP long-term potentiation,
MAC multiply and accumulate,
ME magnetoelectric,
MEA microelectrode array,
MTJ Magnetic tunnel junctions,
NCS neuromorphic computing systems,
NVM nonvolatile memory,
PARCA parallel architecture with resistive crosspoint

array,
PCM phase change memory,
PL pinned layer,
RBP random backpropagation,
RRAM resistive random-access memory,
RUSD randomized unregulated step descent,
RVFL Random vector functional link,
SBF single-bit failure,
SDSP Spike Driven Synaptic Plasticity,
SHE spin-hall effect,
SNN spiking neural network,
SOT spin-orbital torque,
SOUL Sign based Online Update Learning,
SP structural plasticity,
SRAM Static random-access memory,
SRBP skipped random backpropagation,
STDP spike time dependent plasticity,
STT-RAM spin transfer torque random-access memory,
T-STDP triplet spike time dependent plasticity

I. INTRODUCTION

THE recent success of “deep neural networks” (DNN)
has renewed interest in machine learning and, in particu-

lar, bio-inspired machine learning algorithms. DNN refers to
neural networks with multiple layers (typically two or more)
where the neurons are interconnected using tunable weights.
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Although these architectures are not new, availability of mas-
sive amount of data, huge computing power and new training
techniques (such as unsupervised initialization, use of rectified
linear units as the neuronal nonlinearity, regularization using
dropout or sparsity, etc. [1], [2]) to prevent the networks from
over-fitting have led to its great success in recent times. DNN
has been applied to a variety of fields such as image classifica-
tion [3], [4], face recognition in images [5], word recognition
in speech [6], [7], natural language processing [1], [8], game
playing [9], and the success stories of DNN continue to
increase every day.

However, the common training method in deep learning,
such as back propagation, tunes the weights of neural networks
based on the gradient of the error function, which requires
a known output value for every input. It would be difficult
to use such supervised learning methods to train and adapt
to real-time sensory input data that are mostly unlabeled.
Furthermore, training and classification phases of deep neural
networks are typically separated, such that training occurs in
the cloud or high-end graphics processing units, while their
weights or synapses are fixed during deployment for classifi-
cation. However, this makes it difficult for the neural network
to continuously adapt to input or environment changes in
real-world applications. By adopting unsupervised and semi-
supervised learning rules found in biological nervous systems,
we anticipate to enable adaptive systems for many real-time
applications with a large amount of unlabeled data, similar to
how humans analyze and associate sensory input data. In this
review, online supervised learning schemes are also considered
to be within the purview of adaptive algorithms. Energy-
efficient hardware implementation of these adaptive learning
systems is particularly challenging due to intensive compu-
tation, memory, and communication that are necessary for
online, real-time learning and classification. “Neuromorphic”
engineering is a possible solution to this energy efficiency
problem as well. Coined by Carver Mead in his seminal
paper [10], the term neuromorphic engineering was used to
imply that using analog or physical computing substrates
similar to biology could yield orders of magnitude energy
reduction for applications processing noisy sensory data. The
term is now often used in a broader sense to imply neuro-
inspired techniques, be it hardware or algorithms. Apart from
analog computing, some commonly observed features in neu-
romorphic hardware systems are typically distributed memory
as opposed to von-Neumann models and spike or pulse based
computing.

Neuromorphic engineering was recently voted as one of
the top ten emerging technologies by the World Economic
Forum [11] and the market for neuromorphic hardware is
expected to grow to ∼ $1.8B by 2023/2025 [12], [13]. With
the massive growth in big-data and internet of things (IoT),
the requirement for such hardware is only going to increase.
However, cross-layer innovations on algorithms, architectures,
circuits, and devices are required to enable adaptive intelli-
gence especially on embedded systems with severe power and
area constraints. In this survey paper, we review all aspects
of adaptive neuromorphic systems across algorithms, devices,
circuits, and architectures. The focus of the paper is also
clearly shown in Figure 1 to put it in context of general
machine learning research. Recent surveys have either focused
solely on deep learning hardware for inference [14], CMOS
adaptive synapses [15] or on some specific aspects of neuro-
morphic systems [16], [17]. Another review [18] has attempted

Fig. 1. Neuromorphic systems are a subset of machine learning systems.
The focus of this paper is a further subset of that–ones with on-chip
learning or adaptation.

to paint a roadmap for future development of neuromorphic
systems focussing more on dynamics and role of dendrites in
neural computation. In contrast, we hope to give a holistic
picture of all the aspects of adaptive neuromorphic hardware
systems including recent technology like spin devices as well
as machine learning algorithms like random backpropagation
etc. in this paper.

In Section II, new learning algorithms that are suitable for
hardware implementations are presented. Section III presents
new devices with properties amenable to implementing neuro-
morphic algorithms followed by Section IV on CMOS circuits
to implement some of these algorithms or interface with the
novel devices presented earlier. High-level architectures for
large-scale neuromorphic hardware are presented in Section V,
followed by conclusions and future directions in the last
section. Given the huge volume of work in this field over
the last few years, we have categorized the reviewed papers
according to two criteria: (1) spike based versus non-spike
based and (2) CMOS implementation versus post-CMOS
devices used. We feel that this categorization helps in orga-
nizing the work well.

II. LEARNING ALGORITHMS

In this section, we review some of the most popular learning
algorithms that have been implemented on neuromorphic hard-
ware. In some cases, modifications to the original algorithm
have been proposed to make it feasible to implement on low-
precision platforms with only locally available information.
Most recent work has focussed on spike based learning
rules while only a few have considered non-spike based
ones [19], [20]. Hence, we discuss the spike based rules in
details while summarizing the non-spike based ones.

Before going into details, let us review some of the desirable
properties of the algorithms.

• Computational complexity i.e number of operations
needed per weight update should be low.

• Locality of the weight update rule is desired. In other
words, the weight update rule should ideally only need
information related to the variables in the computational
element (neuron) connected to it.

• Convergence speed of the algorithms should be as fast
as possible.

A. Least Mean Square (LMS), Perceptron
Two of the oldest learning rules derived for non-spiking net-

works were the LMS and the Perceptron learning rules [22].
They were typically used to train single layer neural net-
works. Both rules follow the so-called “Minimum Disturbance
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Principle” [22] that aims to correct the error at every step by
minimal change in parameters to maximize memory capacity.

1) LMS: The simple neural network under consideration
here is called the Adaptive Linear Combiner (ADALINE) and
is described by the following equations:

s = X
T

W (1)

e = d − s (2)

where X denotes the input vector, W is the weight vector, d is
the desired output and e is the corresponding error. In this
case, the LMS learning rule prescribes a weight update [23]
as given by:

�W = α
eX

|X |2 (3)

where α is typically chosen to be between 0.1 and 1 for a
good tradeoff between stability and convergence speed. It can
be shown that the error reduces at every step at a fixed rate
dependent on α. This rule is known to minimize mean squared
error. The LMS algorithm has often been implemented in
adaptive circuits especially for filters [24], [25].

2) Perceptron: In this case, we consider a non-linear net-
work by adding a threshold function at the output of the
ADALINE. The new output y = sgn(s) where sgn() is
the signum function [22]. The new error is now defined as
e = d−y. Then, the perceptron weight update [26] is given by:

�W = α
e

2
X (4)

Here, α does not affect stability but only affects rate of
convergence. The perceptron rule is guaranteed to converge
to classification error of 0 if the patterns presented to it
are linearly separable. However, for non-linearly separable
patterns, the algorithm does not guarantee low classification
errors. Other variants of this rule including margin [27] have
also been proposed.

B. Backpropagation and Variants

Backpropagation and gradient descent have been the most
popular learning algorithms for training both shallow and
deep neural networks for past decades. It is simple, intuitive
and works well for most of the real world applications.
In standard gradient descent backpropagation, the error signal
is backpropagated from output layer to the deeper layers on
a neuron-by-neuron basis [28]. Mathematically, the output of
layer i of a neural network, hi is given by:

hi = f (Wij h j + bi ) (5)

where Wij are the weights connecting layer j and layer i, bi is
the bias and f (.) is the non-linear activation function. The
weight update �Wij is given by:

�Wij = −η
∂ E

∂Wij
(6)

where η is the learning rate and E is the error at the output
layer.

In spite of the huge success of backpropagation in different
forms of neural networks, several issues have been pointed
out over the years regarding its hardware implementation
and biological plausibility. Typical implementation of back-
propagation necessitate use of high precision weights and

smooth activation functions (tanh, sigmoid etc.) as well as a
significant number of multiply and accumulate (MAC) opera-
tions for both forward and backward pass. From a hardware
perspective, these features make backpropagation costly, both
in terms of memory and power. Moreover, backpropagation
requires global information about the errors well as weights
in backward pass that are exactly symmetric with respect
to the weights in the forward pass. This weight transport
problem [29], along with alternating forward and backward
passes and precise floating point weights make standard back-
propagation an implausible learning technique for brain as well
as neuromorphic architectures [30].

A proposed solution to reduce the computational complexity
and optimize memory resources is the use of pipelined back-
propagation [31] and binary state network [32]. In binary state
network, the output of a neuron can be unipolar (0/1) or bipolar
(−1/1) binary. This modification transforms the MAC opera-
tions in the forward pass to simple additions and subtractions.
In [31], error ternarization was proposed which removes
the requirement of MAC operations even in the backward
pass. Thus, all the network operations become equivalent to
synaptic operations (SynOps) which can facilitate efficient
neuromorphic implementations. In pipelined backpropagation,
the network has access to the previous network states and
therefore, can perform delayed weight updates during the sub-
sequent forward pass without the need for an explicit backward
pass. This architecture reduces the number of memory fetches
and lookups (corresponding to backward pass) significantly.
The reduction of redundant off-chip memory fetches can also
reduce the power overhead appreciably [31].

Another significant constraint regarding hardware imple-
mentation of neural networks is the requirement of high
precision floating point weights and gradients. This problem is
addressed by two approaches: (1) off-chip learning using high
resolution weights and gradients and consequently rounding
off the weights to lower resolution for on-chip implementation
and (2) on-chip learning using low resolution weights. In [33]
randomized rounding has been used to map high resolution
gradients to low resolution discrete values. Moreover, k-means
clustering has been used to map high resolution weights to
low resolution values. One of the significant low resolution
learning methods for on-chip learning is randomized unreg-
ulated step descent (RUSD) introduced in [34]. This method
combines unregulated step descent (USD) with randomized
rounding i.e. the step size for weight update is large (low reso-
lution) but the weight update probability is low. So, the overall
average weight update is small (comparable to high resolution
weight update case).

A simple yet elegant solution has been proposed in [28]
to solve the weight transport and global information problem
of the backpropagation algorithm. In the proposed random
backpropagation (RBP), the errors are backpropagated through
a random weight matrix(B) instead of the transpose of forward
pass weights (W T ). So, the error update formula changes from
�W ∝ −W T ex T to �W ∝ BexT . Therefore, RBP is spatially
and temporally local [30] and absence of feedback weight con-
straints makes it possible for a feedback architecture consisting
of a separate feedback channel which is biologically more
plausible. A possible explanation as to why this architecture
works, is that the network weights adjust themselves to the
random feedback weights and learns afterwards. The RBP has
also shown promise in spiking neural networks (event-driven
RBP or eRBP) [30] and deep networks [39] on datasets such



BASU et al.: LOW-POWER, ADAPTIVE NEUROMORPHIC SYSTEMS: RECENT PROGRESS AND FUTURE DIRECTIONS 9

Fig. 2. Theoretical model of weight change as a function of time difference
of pre- and post-synaptic spikes in STDP [21].

as MNIST, CIFAR-10, etc. Several variants of this algorithm
have also been proposed such as skipped random backprop-
agation (SRBP), adaptive random backpropagation (ARBP),
and adaptive skipped random backpropagation (ASRBP) [39].

C. Spike Timing Dependent Plasticity (STDP)

By far, the most popular learning algorithm to be imple-
mented in recent adaptive neuromorphic systems is spike
time dependent plasticity (STDP) [42], [43]. STDP has been
widely observed in experiments [44], [45] as well as used in
computational models [46], [47]. One popular mathematical
model for STDP can be written as follows:

�w =
{

�w+ = A+e
−�t
τ+ , if �t > 0

�w− = A−e
�t
τ− , if �t ≤ 0

(7)

where �t = tpost − tpre. Essentially, this equation sug-
gests that the synapse is potentiated (depotentiated) if post-
synaptic spike happens after (before) the pre-synaptic one.
A+ and A− govern the maximum weight change while
τ+ and τ− dictate the time interval over which spiking
activity is considered. Figure 2 plots the above equation. Since
this rule only deals with pairs of spikes, it is sometimes
referred to as pairwise or doublet STDP. Though the above
formulation uses absolute change of weight, other formu-
lations [48] use the same temporal dependence on relative
weights (�w

w ).
Several variants of the simple STDP rule have been pro-

posed to better match experimental data. One of these variants
is the triplet rule [49] where the �w depend not only on pre-
post differences but pre-pre and post-post timing differences
as well. It has been shown that augmenting the simple doublet
rule with these added terms allows STDP to generalize to spike
trains and behave similar to BCM learning rules [49]. FGMOS
and memristors, to be introduced in the following section
III, have been used to implement STDP. Further, circuits to
implement STDP in CMOS will be described in Section IV.

D. Spike Driven Synaptic Plasticity (SDSP)

The simple doublet STDP rule does not generalize well to
spike train stimulii in lerning experiments. Also, as mentioned
earlier, it is unable to replicate biological measurements such
as dominance of LTP at higher frequencies independent of
spike timing differences. Hence, a more advanced rule has
been proposed [35], [50] that takes into account post-synaptic
depolarization (V (t)) as well as post-synaptic firing rates
(captured in a Calcium variable C(t)). The synapses in this
rule are bistable with weights of J+ and J− for potentiated and

depotentiated states respectively. However, there is an internal
analog variable X (t) that governs the transition between these
states as shown in the following equations:

X =
{

X + a if V (tpre) > θv and θ l
up < C(tpre) < θh

up

X − b if V (tpre) ≤ θv and θ l
down < C(tpre) < θh

down

(8)

where a and b are jump sizes, θV is voltage threshold (not
related to neuron’s spiking threshold) and θh

up , θ l
up , θh

down and
θ l

down are thresholds on the calcium variable. The synaptic
weight depends on this internal variable X in the following
way:

w =
{

J+ if X > θX

J− if X ≤ θX
(9)

In the absence of spikes, the variable X drifts to one
of two states Xmax or Xmin depending on whether X is
larger or smaller than θX . The corresponding equations are:

d X

dt
=

{
α if Xmax ≥ X > θX

−β if Xmin ≤ X ≤ θX
(10)

One major advantage of this rule is that, since the synaptic
weights are binary, it can be easily implemented in CMOS
hardware [50]–[52] without using NVM devices. Example of
such hardware is presented in Section IV-D. The dynamics of
learning in such networks may be different from ones with
high resolution weights especially in recurrent networks and
needs to be carefully studied in future.

E. Structural Plasticity

While most learning algorithms in neuromorphic systems
are related to the change in synaptic weights, the network
structure of adult brains also undergoes considerable plas-
ticity with new connections being formed and old ones
being eliminated [53]–[55]. In contrast to weight plasticity,
this mechanism is termed as structural plasticity (SP). The
advantage of considering SP in neuromorphic systems is that
presence or absence of connections can be indicated by 1-bit
signals that are easy to store in CMOS latches with low
write energy and cell area [52], [56]. Only recently these
algorithms have been applied to real world classification prob-
lems [36], [38]. To overcome the loss in computational power
due to 1-bit synapses, these works have used more complex
neurons with multiple nonlinear dendrites. While [36], [38]
applied the concept to non-spiking inputs and rate based spike
trains, [57], [58] have applied SP to learn spike time based
inputs. Both supervised [36], [38], [57], [59] and unsupervised
versions [58], [60] of the SP algorithm have been presented.
It has been also used in reservoir computing to improve the
reservoir in an unsupervised fashion [60] and also to act as
the readout layer [59].

The major concept of the SP algorithm may be summarized
as follows:

• Create network with sparse synaptic connections–
locations of each synapse are therefore important.

• Obtain �wi j using your supervised or unsupervised wei-
ght update algorithm of choice. For example, [36], [38]
uses gradient descent, [58] uses STDP while [57] uses
the tempotron [61] as the weight update algorithm. Also,
hardware friendly approximations to the actual �wi j may
be done [38], [59].
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TABLE I

COMPARISON OF LEARNING ALGORITHMS USED IN RECENT NEUROMORPHIC MACHINE LEARNING SYSTEMS

• Instead of updating weight by adding �wi j , consider it
as a fitness value Cij . Synapses with low fitness values
are candidates for replacement.

• Instead of random replacement, create a randomly
selected candidate set for replacement. Evaluate fitness of
these synapses in next iteration and choose the synapse
with highest fitness value in the replacement set to replace
the earlier selected synapse for replacement.

• Repeat above steps till some pre-defined convergence
criteria is met.

One of the major advantages of this learning rule is
the use of 1-bit synapses. Also, since the network has
sparse synaptic connections, number of synapses used is far
less compared to fully connected networks as can be seen
in Table I. Also, changes of connections can be easily imple-
mented in address event representation (AER) based spiking

systems [51], [52], [62], [63] where a separate memory
stores network connection details. While the inference part
of this network has been implemented [64], an area of future
focus should be implementation of online learning. However,
the fitness value is still stored in high resolution (4-5 bits)
in current algorithms [58] and needs to be reduced for more
efficient VLSI implementation of online learning systems.

F. Others

1) Online Update for Random Neural Networks: Recently,
a class of shallow neural networks with random weights in the

first layer have become popular due to their fast training speed,
good generalization abilities and need for less training data.
Termed extreme learning machine (ELM) [65] in the machine
learning community, it has relations to earlier machine learning
methods [66] as well as methods proposed in computational
neuroscience [67], [68]. Compared to the reservoir computing
methods [68], the major difference of ELM is the lack of
feedback or recurrent connections. Due to the majority of
weights in the network being random, it is very amenable to
neuromorphic analog implementations [69]–[72]. Since only
the second layer (output layer) of weights need to be trained,
it requires very few weight updates. A supervised online train-
ing algorithm for this network is proposed in [73]; however,
it requires many multiplications for each output weight update.
Hence, a simplified version of this algorithm called Sign based
Online Update Learning (SOUL) has been developed in [19].
The learning rule is given by the following equation:

�wi j = αsgn(ei )sgn(h j ) (11)

where wi j is the weight connecting j-th hidden neuron to
i-th output, sgn() denotes the signum function, ei is the error
in the i-th output, h j denotes output of the j-th hidden neuron
and α is a learning rate. This update can be computed using a
simple XOR gate and can be used to increment weights stored
in counters. It can be shown [19] that this rule is related to a
version of the LMS rule.
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2) Clustering–k-Means: Clustering algorithms such as
k-means are a class of popular unsupervised algorithms that
are simple enough for low-power VLSI implementation [20].
In this method, the assumption is that the input data belongs
to several classes with inter-class distance larger than intra-
class distance. The objective of the learning algorithm is to
learn the correct cluster centers (μ) and cluster spread (σ ).
Reference [20] present an FGMOS based implementation of
this algorithm and achieves very high computational efficiency
(> 1Tops/W).

3) Sparse Coding–SAILnet: With the seminal work of
Olshausen and Field [74] that showed emergence of receptive
fields similar to biology when sparse representation constraints
are applied, a number of works have been devoted to exploring
neural architectures for finding optimal sparse codes [75] and
dictionaries [76]. The advantage of having sparse activations
from a hardware viewpoint is that few neurons will spike
in the network leading to less communication and hence
less energy consumption. The algorithm proposed in [76]
is particularly attractive for hardware implementation due to
local weight update rules. It has been implemented in [77] to
obtain low energy consumption in exchange for a small loss
in classification accuracy.

G. Discussion

We present a comparison of the various algorithms on
machine learning tasks in Table I. The column denoted as
precision describes the precision of weights required by the
algorithm. Also, some algorithms such as SDSP and structural
plasticity use a low precision weight while requiring a higher
precision internal variable–this is denoted by ‘internal’ in the
same column. On the other hand, algorithms like RUSD and
pipelined backpropagation use a higher precision weight while
the internal variable is low precision.

Another important aspect is computational complexity of
the weight update. Since there is no direct correspondence
between non-spike methods such as backpropagation and
spike based rules such as STDP, we instead compare the
computational complexity per weight update (non-spike) or per
spike (spike) in Table I.Though a direct comparison between
a spike and a non-spike algorithm is difficult, it is feasible to
compare the computational complexity of algorithms within
spike or non-spike category.

Now, if a neural network has M layers and the number
of neurons in each layer is ni (i = 1, 2..M), for one
backward pass the primary computations for weight update
are multiplications. The number of such multiplications is
given by:

C =
i=M−1∑

i=1

ni × ni+1 (12)

Though there will be more operations required to add
biases, compute gradients etc., it will not change scaling.
So, the computational complexity for backpropagation will
be O(C). Computational complexity of RBP and eRBP is
same as regular backpropagation. For the pipelined backprop-
agation approaches, the computation time and hardware com-
plexity is reduced by parallelizing the layer-wise computations
and reducing the memory fetches. For RUSD, larger weight
updates are applied with low probability. So, even though
the theoretical complexity is same as backpropagation, actual
number of computations is scaled down by a factor of p,
the learning probability.

Fig. 3. Circuit schematic (a) and layout (b) (taken from [78]) of a floating-
gate MOS (FGMOS). A FGMOS has all signals coupled to its gate through
capacitors. The charge stored on the gate can be modified by quantum
mechanical processes of electron tunneling and hot electron injection.

The SOUL algorithm uses weight updates only in the
penultimate layer. So, if the number of output nodes is K and
number of hidden nodes is L, the number of multiplications
required is K × L. Moreover, each multiplication here is
equivalent to a bitwise XOR operation which further reduces
the hardware cost of implementing it.

Among spike based algorithms, STDP employs a local
learning rule. So, if a post-synaptic spike happens in a neuron
and there are N pre-synaptic neurons connected to it, the N
synaptic weight updates are to be computed. For SDSP, though
the number of weights updated per post-synaptic spike is
same as STDP, additional hardware complexity is required to
calculate the internal analog variable X (t) as described in [50].

The weight update rule is local for STDP, SDSP and eRBP
while other algorithms use global weight update rules. For the
SOUL algorithm, the convergence speed is fast as the weight
update is applied to a single layer while for backpropagation
variants the convergence is relatively slower. For the unsuper-
vised and semi-supervised methods, it is difficult to compare
the speed of convergence as it is highly dependent on the
specific problem and the dataset characteristics.

III. NOVEL DEVICES

In this section, we review some of the novel devices that
have been proposed over the years to perform the functions
of neurons, synapses or adaptive elements, in general. Without
losing generality, the relationship between the activity patterns
of the input neurons x and the output neurons y in a NN can
be expressed as:

yn = Wn×m xm (13)

Most of the novel devices have been used to implement the
synaptic function that is denoted by W in the equation 13.
Some desirable properties of adaptive synapses are:

• Non-volatile weight storage is required so that the effect
of learning is not lost with passage of time.

• Compact size is desired since the number of synapses is
at least an order of magnitude larger than the number of
neurons.

• Low energy operation for both creation of EPSC as well
as for adaptation is required. In terms of non-volatile
memory units used as synapses, these correspond to
‘read’ and ‘write’ energies.

A. Floating-Gate MOS

Historically, one of the earliest non-volatile storage elements
proposed as a learning synapse was the floating-gate MOS
(FGMOS) [79], [80]. As shown in Figure 3(a), a FGMOS has
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TABLE II

COMPARISON OF FABRICATED FLOATING-GATE (FG) BASED ADAPTIVE ELEMENT DESIGN FOR NEUROMORPHIC SYSTEMS

a regular PMOS but with no direct resistive connection to the
gate. All signals are coupled capacitively to the gate of the
transistor making it a floating node surrounded on all sides
by high quality insulating oxide. The voltage on the floating
node, V f g depends on the stored charge on this node along
with values of other coupling voltages. This stored charge
can be modified by the quantum mechanical processes of hot
electron injection (HEI) and Fowler-Nordheim tunneling [81].
Learning or adaptive systems using FGMOS modify this stored
charge according to some pre-defined algorithm.

Due to its compatibility with CMOS, FGMOS devices
have been integrated into various adaptive neuromorphic cir-
cuits in the past such as competitive learning [82]–[84],
offset calibration in amplifiers, comparators and voltage
references [85]–[89], adaptive filters [24], [25], [90], removing
fixed pattern noise in imagers [91], [92], field programmable
analog arrays [93]–[95], synapses with spike time dependent
plasticity (STDP) [21], [96]–[98] and others [99]. Due to the
ability of using a single transistor as a learning synapse in
neuromorphic systems and ability to integrate tightly with
CMOS circuits [18], FGMOS is a good potential candi-
date for building large scale adaptive neuromorphic systems.
A comparison of different uses of the FG device is presented
in Table II. A comparison between FG and non-FG synapses
is presented in [15].

For the recently popular case of STDP learning, we can
analyze the energy per write by first noting that weight, w can
be expressed as:

w = e
�V f g

UT (14)

where �V f g is the slow time scale change in the FG
voltage [96], [98] and UT denotes thermal voltage. Thus, for
a maximum change in weight of 10%, �V f g ≈ 2.5 mV at
room temperature. Now, we can write the energy/write due
to tunneling (Etun) and injection (Einj ) in terms of �V f g as
follows:

Etun = Ctot�V f g(Vtun − V f g) (15)

Einj = Ctot�V f g

α
(Vds,in j ) (16)

where Ctot denotes total capacitance on the gate, Vtun denotes
the applied tunneling voltage, α denotes the injection effi-
ciency of generation of hot-electrons [100] and Vds,in j is
the high drain-source voltage applied for injection. It should
be noted that α is a function of Vds,in j . While it may be
argued that part of this energy is needed anyway for normal

Fig. 4. Operating mechanism of a metal-oxide memristor. [109].

read operation (i.e. generation of EPSC), these equations still
give us a method to estimate the energy/spike needed in
FG synapses. As an example, by lowering Ctot to 50fF and
keeping Vtun − V f g = 10V, we can estimate the Etun for 10%
weight change to be only 1.25 fJ. Einj is typically much larger
(1.25−12.5pJ) due to small values of α (≈ 10−3−10−4) [100].

B. Memristors

Emerging nonvolatile memory (NVM) denotes a series of
new types of memory technologies that does not rely on
electrical charge to store the data (e.g., as SRAM and DRAM).
Some representative embedded NVM (eNVM) technolo-
gies are phase change memory (PCM) [102], spin-transfer-
torque random-access-memory (STT-RAM) [103], resistive
random-access-memory (RRAM) [104], ferroelectric field-
effect-transistor (FeFET) memory [105] etc. Many of these
eNVM technologies can be utilized to implement neuromor-
phic computing systems (NCS) where the programmable resis-
tance of the eNVM cells represents the synaptic weights of the
DNNs, especially RRAM (a.k.a. memristor). The first explicit
theoretical depiction of memristor was given by Chua [106]
in 1971 though earlier references to a similar element may
be found in Widrow’s work [107]. The resistance state (often
referred to as memristance) of a memristor can be tuned by
applying an electrical excitation. In 2008, HP Labs reported
that memristive effect was realized by moving the doping
front along a T i O2 thin-film device [108], as conceptually
illustrated in Figure 4. Here w, λ, and (D-w-λ) are the
lengths of conductive region, transition region, and insulating
region, respectively. ns is the electron density and the subscript
s = (c, t, i) denotes the parameter of these three regions.

Similarity between the programmable resistance state of
memristors and the variable synaptic strengths of biological
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Fig. 5. Memristor-based NCS [110].

synapses dramatically simplifies the design of NCS. Figure 5
shows a memristor-crossbar-based NCS. With reference to
equation 13, x is mimicked by the input voltage vector (or
spikes) applied on the word-line (WL) of the memristor
crossbar. Every memristor is programmed to the resistance
state representing the weight of its corresponding synapse.
The current on each bit-line (BL) of the memristor crossbar is
collected and converted to the output voltage vector y by post-
processing circuitry such as comparators or integrators. The
Wn×m is often realized by two memristor crossbars, which
respectively represents the positive and negative elements of
the Wn×m .

C. Spintronic Devices

Recent advancement in spintronic research has shown
path towards ultra-low voltage, low current and energy-
efficient computing beyond traditional CMOS. These devices
exploit the new materials, device designs as well as
novel switching phenomena such as spin-torque-transfer
(STT), domain-wall (DW) movement, spin-hall effect
(SHE), spin-orbital torque (SOT), and magnetoelectric (ME)
switching [111]–[113]. These innovations not only augment
energy-delay scaling roadmap in CMOS systems with disrup-
tive solutions in energy-efficient power management, dense
on-die non-volatile memories, non-volatile logic, etc., but also
expand the computing paradigm with non-von Neumann archi-
tectures (e.g. neuromorphic hardware). In particular, explo-
rations in spin-based neurons and spin-based synapses to
mimic biological functionality in human brains have shown
potential to achieve cognitive functionality comparable with
CMOS digital hardware. They may also offer much less
energy consumption close to biological operations owning
to the “compact functionality” in one single device [111].
These neuron-synapse systems have been benchmarked with
CMOS hardware in simulation, showing significant advantages
in terms of power and energy-efficiency in the range of a few
to hundreds of times improvement with desired recognition
accuracy [114]–[116], [116]–[122]. In the following section,
we discuss the recent progress in spin-based neurons and
spin-based synapses, respectively. Note that spintronics has
also been utilized to build nanoscale coupled oscillators for a
different type of neuromorphic architecture [123], which will
not be covered in the scope of this discussion.

1) Spin Neurons: Magnetic tunnel junctions (MTJ), well-
known for on-die non-volatile memory applications, have also
been investigated as the ”spin neuron” candidate. A two-
terminal MTJ is typically composed of two ferromagnetic
layers separated by an oxide tunnel barrier. One layer has

fixed spin polarization, namely pinned layer (PL), and the
other free layer (FL) can alter its polarization depending on the
spin current through the MTJ via spin-transfer-torque (STT)
effect. Depending on its parallel (P) or antiparallel state (AP)
with respect to the PL, the resistance of the MTJ can be low
resistance for P or high resistance for AP. Since the MTJ
switching is governed by a critical current, the analogy to
the thresholding effect in biological neuron (that accepts the
weighted input from synapse) has been explored to build the
biological neuron model.

Sharad et al. [114] proposed using a lateral spin
valve (LSV), where an MTJ is connected to multiple domain
wall magnet (DWM) based synapses (will be discussed
later) and receives spin-weighted input current from a non-
magnetic, metal channel. The metal channel sums the spin-
polarized charge current and contacts the free layer of the
MTJ. This current switches MTJ through nonlocal STT
switching if it is above the critical value. The change
of the MTJ resistance is then detected by a differential
MTJ latch to generate a “spike” to the gate of a PMOS
transistor that connects to the receiving synapse. Recently,
Narasimman et al. [124] developed circuit solution to imple-
ment spike-timing-dependent-plasticity (STDP) based on this
DWM-synapse and MTJ-neuron system by sampling pre- and
post-synaptic time, showing on-line learning capability with
significant energy-efficiency improvement.

Sharad et al. [115], [119] also proposed another approach
using a three-terminal DWM with SHE assist and MTJ, where
a free domain in DWM strip forms an MTJ with a tunnel
barrier and a fixed magnet on top. Two fixed domains in
opposite polarization states are separated by the free domain.
During inference, the weighted and summed charge current
from synapse crossbar connects to one terminal of the DWM
(one of the fixed domain), which can move the DW depend-
ing on the current direction and thereby changes the MTJ
resistance. This is sensed by a reference MTJ and connected
to a CMOS inverter to generate a “spike”. The SHE layer
underneath the DWM strip improves the DW velocity.

Besides LSV and DWM, Abhronil et al. [116] further
proposed a SOT-based neuron using ferromagnet/heavy metal
(FM/HM) device, where the free layer of the MTJ contacts
the HM. The thresholding is achieved with 2-step control,
where a clock current through HM to first orient MTJ FL to
unstable point, then the write current through MTJ performs
deterministic switching. The SOT effect by the clock current
helps to minimize the required current and further improve the
energy-efficiency.

With recent theoretical studies on probabilistic spiking
nature of pyramidal neurons, Sengupta et al. [117], [118]
employed the stochastic switching of MTJ as a function of
current to mimic such neuron behavior. The write current
(sum of the weighted input) through the HM to switch the
MTJ follows a similar sigmoid probability density function,
which (1) takes into account spintronic device variation nature
and (2) allows mapping of graded analog transfer function
in artificial neural network (ANN) to spiking neural net-
work (SNN).

Given the binary switching nature of MTJ, the above
approaches still fail to model the analog behavior of mem-
brane potential. While leaky-integrate-fire (LIF) model has
shown its capability to closely model neuron dynamics and
been adopted in CMOS neuromorphic hardware, Jaiswal et al.
proposed the LIF implementation using magnetoelectric
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(ME)-oxide-ferromagnet heterostructure to model stochastic-
LIF neuron [122]. Two transistors are added for synaptic input
and leaky/reset, respectively, and the ME switching alters
ferromagnet state. An MTJ formed by ferromagnet-MgO-
pinned layer is used for reading and generating the spike with
a reference MTJ and inverter. Given ME switching is charge-
dependent and stochastic, the leaky-integrate-fire operation can
be realized.

Another approach to achieve the analog neuron is to use
multi-level MTJ [120]. Zhang et al. used a vertical stacked
MTJ for both neuron and synapse to enable multi-step trans-
fer function. Additional three NMOS transistors are used to
perform reset, read and accepting synapse input, and one
CMOS amplifier is used and MTJ is connected as feedback
resistor (no need for reference MTJ). The higher the multi-
level MTJ resistance, the higher the output voltage. Vatajelu
and Anghel [121] further employed the similar configuration
with MTJ but connecting the output spike voltage to synapse
input for STDP modulation on synapse.

In all the described spin-neuron implementation, a “reset” is
always required after firing in order to restore the nanomagnet
to its reference state.

2) Spin Synapses: Besides the memristor-crossbar-based
synapse, spintronic devices can also be used to implement
synaptic operation. In [120], Zhang et al. used the vertical
stacked multi-level MTJ for synapse which can achieve 4 dif-
ferent levels. Since increasing the number of level imposes
changes on device fabrication, Vatajelu and Anghel [121]
further proposed 2nd level crossbar connection for a single
synapse (e.g. 3 × 3 connection with 9 MJT for a 10-level
synapse), and showed the reduction in recognition error rate
with improvement of synapse levels. DWM, owning to its
displacement and spin-polarization current dependency, has
also been used for synapse implementation. In all-spin based
neuron-synapse system, Sharad et al. [114] used DWM to
connect to spin neuron through metal channel, where the
DW location is programmed off-line. The location of DW
during inference modulates the spin-polarization current for
spin neuron switching. However, DWM synapses may be
limited by fanout number, spin diffusion length, number of
levels (require long DWM strip), which are in research phase.
Narasimman et al. [124] further implement STDP for DWM
synapse to enable on-line learning. In [116], Abhronil et al.
proposed a four-terminal ferromagnet-heavy metal heterostruc-
ture to implement STDP, which combines the MTJ with the
DWM as free layer which contacts an HM. The learning is
done through SOT by using the charge current through HM
and applied magnetic field to modulate the DW displacement,
while the reading is through MTJ and non-magnetic contact on
the HM (decoupled current path for learning and reading). The
transistors are connected to pre-spike and post-spike signals
which modulate the DW based on the neuron firing activity.
Comparing to memristor synapse approach, DWM synapse
shows lower current operation due to the SHE enhanced
spin injection efficiency which helps to reduce the power
consumption per synaptic operation.

A summary of both spin neurons and synapses reported so
far is presented in Table III. Comparing with CMOS-based
approaches, spintronic devices offer opportunities to real-
ize compact neuron and synapse models with a potential
energy-efficiency improvement (e.g. lower supply voltage
(<1V) and lower current compared to memristor and floating
gate [124]–[126]). The low current requirements have a direct
effect on noise and hence special stochastic algorithms might

be needed to train these networks [127]. Nevertheless, most of
these devices still require CMOS circuits for signal propaga-
tion, control, sensing or functionality. Since most of the works
are still in early research phase and simulation stage, main
challenges remain in large-scale device demonstration includ-
ing variation and reliability, novel material integration, spin
injection efficiency improvement, etc and all improvements in
simulation should be considered as potential gains only.

D. Discussion

Among the floating-gate circuits reported in Table II,
the earliest ones were non-spiking ones where [24] used
the same LMS algorithm as [101] but reduced technology
node. Recent work [20] has used k-means as well as reduced
technology node further to 0.13μm CMOS. Among the STDP
implementations, [96] was the first implementation of STDP
on a FG device while [97] actually implemented an array
with neurons and AER. Reference [21] implemented a more
advanced version of the STDP rule including triplet spike
interactions.

An important consideration for all adaptive elements to
be used in neural network algorithms is intrinsic mismatch
in programming desired weight values. Very few work have
tried to explicitly correct the mismatch in a structured way,
with [128] being one exception. In some specific cases,
mismatch may be used in the computation [70] but these
methods may require 2 − 3X more neurons. Moreover, they
have not yet been shown for a general multi-layered network.
FG based adaptive elements have been used for nearly three
decades and have a much better control on statistical varia-
tions than their memristive counterparts. The usage of HEI
as programming mechanism is also motivated by this fact
since mismatch is much less than tunneling junctions [129].
Memristors typically show 2 − 3 bits of accuracy in large
arrays [130] and only recently, there have been reports of
≈ 6 bits of accuracy [131]. In Table I, we show the precision
requirement reported for some of the algorithms. An in-depth
analysis of device mismatch in the context of these algorithms
is an important direction for future work.

One attractive property for memristors over FGMOS devices
is their potentially lower write energy. However, it is interest-
ing to note that memristors suffer from poor selectivity issues
in large arrays as a tradeoff. Typically, diodes are used to
prevent sneak paths which lead to larger cell sizes. While the
almost perfect selection of FGMOS using HEI makes system
design simpler, we also see this as an opportunity to make
better algorithms that are less affected by crosstalk and sneak
paths in exchange for lower write energy.

Spin devices are a much more recent development with
fewer published work and hence we have also reported neurons
implemented in spintronic technology. For discussions on
CMOS neurons, readers are referred to [132] and references
therein.

IV. CIRCUIT LEVEL INNOVATIONS

In this section, we review some of the unique circuit tech-
niques devised to make compact, low-power adaptive circuits.
Also, interfacing circuits required for enabling adaptation in
large arrays of synaptic elements are discussed.

A. Transposable SRAM Synapse

A digital N × N SRAM crossbar structure can effec-
tively represent a system of N neurons and N2 possible
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TABLE III

SUMMARY OF SPIN NEURON AND SYNAPSE DEVICES (SIMULATION)

synaptic connections between them. Each row of the crossbar
represents a neuron’s axon and each column represents a
neuron’s dendrite. To efficiently implement time-dependent
learning rules, both row and column accesses are important,
since pre-synaptic row and post-synaptic column updates are
required. Conventional memory arrays are accessed only in

rows, and column-based access would require inefficient serial
row operations. Instead, this shortcoming is addressed in [56]
by a transposable SRAM cell (Fig. 6) to store digital synapse
weights, which enables single-cycle write and read access
in both row and column directions to significantly enhance
on-chip learning performance. The transposable SRAM cell
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Fig. 6. A transposable SRAM cell design enables efficient row-by-row
and column-by-column update for LTD and LTP update in synapse SRAM
arrays [56].

Fig. 7. (a) Circuit diagram of a MOSFET capacitor STDP synapse from [136]
that uses a capacitor C1 to compute present update and another capacitor C2
to store accumulated updates. A central controller reads this value at regular
intervals and updates the stored digital weight. (b) Measured weight update
function is similar to the biological model in [48].

uses 8 transistors, adding two access transistors connected to
word and bit lines in transposed orientations to a standard
6T design. For M-bit (2M levels) synaptic weight storage,
M transposable SRAM cells can be combined together to
represent one synapse, operating with a common word line.

B. MOSFET Capacitor Synapse

One of the common methods to store analog synaptic weight
is as charge on a capacitor [133]–[135]. However, this has the
problem of leakage due to CMOS switches. One approach
to circumvent this problem is proposed in [136], where the
charge on the capacitor is sampled at regular intervals to
determine whether to decrement or increment a digitally stored
weight value. The digital weight is converted to an analog
input stimulus using a Digital-to-Analog converter (DAC).
Similar approaches had been used earlier for non-spiking
neural networks [137]–[139]; [136] extends this to spiking
systems.

Figure 7 shows the synapse circuit used in this case [136].
Only the causal part of the circuit is shown since the anti-
causal one is exactly similar. A pre-synaptic (or post-synaptic)
spike toggles the state of the latch comprising transistors
M1–M4 and puts the causal (or anti-causal) part in mea-
surement state. Capacitor C1 is used to calculate the current
weight update as a function of most recent pre-post time

Fig. 8. (a) Circuit diagram of a low leakage switch used in a switched
capacitor STDP synapse in 28 nm CMOS [52]. (b) Measured results show
bio-realistic time constants of 600 ms achievable by this method.

difference (�t) while capacitor C2 stores an accumulation of
past updates. The voltage on C2 is readout using the source
follower transistor M16 and if it is larger than a threshold,
the digital weight stored in SRAM is updated. Every pre-
synaptic spike resets the voltage on C1 to V1 and from then on,
the voltage leaks through the resistor string comprising sub-
threshold transistors M8–M10. A post-synaptic spike occur-
ring after this cuts off this voltage leak by switching the latch
state and thereby turning off M6. The remaining voltage on
C1 is indicative of F(�t) in the STDP equation. M13 is now
used to add an amount of charge on C2 that is proportional to
the remaining voltage on C1. The synaptic resolution used in
this work is 4 bits and it is shown to be sufficient for synchrony
detection in an accompanying work [140]. Figure 7(b) shows
the measured STDP curve matches the target function quite
well.

C. Switched Capacitor Synapse

Switched capacitor circuits [141] have been used in the
past to implement synaptic function [142], [143] as well
as large-scale neuromorphic chips with different neuronal
dynamics [132]. Recently, switched capacitors have also been
used to implement a discrete time version of the SDSP algo-
rithm [52] with stop learning feature. One advantage of this
method is the use of above threshold circuits thus eliminating
the mismatch related issues [144] commonly faced in sub-
threshold designs. Similar to the architecture in [136], a central
controller is used to cycle through and update weights based
on local temporal correlation calculators. Since the chip was
designed in an advanced technology (28 nm), leakage currents
in traditional MOSFET switches were a major design issue to
obtain long bio-realistic time constants spanning hundreds of
milliseconds. Hence, the authors propose a new low leakage
switch without operational amplifiers as shown in Figure 8(a).
The switch is connected between nodes marked VA and VB
while S is the control signal. SL L is a complementary control
signal that connects the middle node VM to a voltage VL L
when the switch is not conducting. Choosing VL L equal to
the common mode voltage reduces the drain source voltage
drop thus minimizing sub-threshold leakage. Also, the leakage
becomes independent of voltage at the other terminal of the
switch. Measured data from the test chip shown in Figure 8(b)
proves that the leakage is sufficiently reduced to get a time
constant as long as 600 ms.

D. Bi-Stable Synapse

Motivated by the difficulty in storing multiple levels of
synaptic weights over long time scales, there has been work
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Fig. 9. (a) Circuit diagram of a SDSP synapse [51]. (b) Measured results show input spikes (bottom waveform), dynamics of the synaptic internal variable
X in equation (9) (second waveform from bottom) and post-synaptic spikes (second waveform from top).

in developing algorithms and circuits for bi-stable plastic
synapses [62], [63], [145], [146]. Example of such an algo-
rithm is SDSP described in section II-D. The basic concept in
these approaches is to have an internal analog state variable
in the synapse (similar to X in equation (8)) that is stored as
a charge on a capacitor. The value of this variable is modified
according to ongoing spiking activity in the network. However,
the weight of the synapse visible to the network is only one
of two values (see equation (9)). This is obtained by operating
a positive feedback circuit to latch to one of two states based
on the value of this internal analog variable. Thus, even if
the charge on the capacitor leaks out over long time periods,
the synaptic weight remains fixed based on the last sustained
activity profile of the network. This approach has been used
to implement SDSP [146], SDSP with stop learning [51], [62]
and STDP [63], [145].

Figure 9(a) shows an example of a circuit in [51] imple-
menting the above dynamics. The circuits in the block marked
SET are used to initialize the synapse to one of two states.
The JUMP block implements equation (9) where the volt-
age on the capacitor, VW , represents the variable X in the
equation. Finally, the block BIST implements the positive
feedback operation in equation (10). Among the waveforms
in Figure 9(b), the second one from the bottom show dynamics
of the variable X and how it has up and down jumps based
on input spikes. Also, the final value is retained at a high
state even after pre-synaptic spikes cease due to the latching
effect of the positive feedback circuit marked BIST. The top
waveform shows the calcium variable C in equation (9) based
on post-synaptic activity integrated over a long time. It governs
when to increase X (red shaded area), decrease X (blue shaded
area) or to leave it unchanged.
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Fig. 10. Digital CMOS neuron with reconfigurability for STDP based
learning implementation [56].

E. Interface Circuits

1) Digital SRAM Interface Circuits: Prior works have
implemented digital CMOS circuits on the periphery of SRAM
arrays that hold synapse weights. On-chip synaptic learning
was demonstrated with binary synapses in [63], but the STDP
circuitry was needed for each synapse element, which caused
large circuit overhead. This was improved in [56], where
synapse learning circuitry was shared across axons (rows) and
dendrites (columns) at the SRAM crossbar periphery. The neu-
ron block diagram that integrates the STDP learning circuitry
is shown in Fig. 10. 8-bit time-keeping counters C+ and C−
enable independent control of pre-synaptic and post-synaptic
updates, respectively, by tracking the time elapsed since the
last spiking event of each neuron.

2) RRAM Interface Circuits: Interface circuits for memris-
tor crossbar arrays were presented in a parallel architecture
with resistive crosspoint array (PARCA) [147], [148], as sum-
marized in Figure 11. The crosspoint array (D) connects a
vector (z) on the row side interface and another vector (r )
on the column side interface. Key operations that can be fully
parallelized are: Dz and D update. To compute Dz in PARCA,
the read process of the memristor array is utilized. For every z,
a small read voltage Vz is applied simultaneously for every
non-zero binary bit of z. Vz is multiplied with the conductance
G at each crosspoint, and the weighted sum results in the
output current at each r node. Compared to conventional
memories that require row-by-row read operation, such multi-
row access reads the entire crossbar array in parallel, thereby
accelerating Dz. Furthermore, weight updates for the memris-
tor crossbar array are performed through a write operation,
by local programming voltage generation at local z and r
nodes. Such approach can implement the spike-based learning
algorithms or variants of stochastic gradient descent, where
the weight value change is mapped to the conductance value
change of memristor devices [147], [148].

3) Spin-Based Interface Circuits: Spin-based interface cir-
cuits have also been proposed to assist the operation of
spin neurons and synapses. For example, to evaluate the
MTJ based neuron state (firing or not), a reference MTJ
in antiparallel state was connected in series with the MTJ
neuron and input to an inverter. When the MTJ neuron is
in antiparallel state, the inverter output is low; while MTJ
neuron is switched to parallel state, the inverter output is
high [115], [116], [116]–[122]. For all-spin based neuron-
synapse system, a differential latch with MTJ was used to latch
the output and drive the next spin synapse [115]. Depending
on the spintronic device operation, CMOS circuits are usually
required to provide clocking and control of the signal propa-
gation in the neural nets.

V. NEUROMORPHIC ARCHITECTURES

In this section, we present details of commonly used archi-
tectures in large scale neuromorphic systems and discuss their
relative advantages and disadvantages.

A. Crossbar Synaptic Array

The most common architecture in neuromorphic systems
is the crossbar where an array of N × M synaptic elements
connect N input neurons with M output neurons. As shown
in Figure 12, the N inputs are presented along the rows while
the M outputs are obtained along the columns. Thus, each
crosspoint must have a synaptic element, which, in this case
is shown to be a memristor. Do note that crossbars were used
widely [79] even before memristors and examples of CMOS
crossbar [97] will be discussed later.

Extensive studies in leveraging memristor to build new
form of computing mechanism in crossbars have been con-
ducted. For example, the theoretical concept and verification
of using memristor crossbar structure to perform matrix-
vector computation was firstly proposed in 2012 [102], [110].
The spiking based circuit implementation for neural net-
works in Figure 12 [149] and a system-level demonstra-
tion [102] with T i O2 memristor devices were realized. At the
architectural level, the memristor crossbars are extended to
build general reconfigurable neuromorphic computing acceler-
ators [150] or the components for some specific applications,
such as approximated computation [151] and convolutional
neural network [152], [153]. In these designs, both weight
storage and matrix-based operations are completed within the
crossbars. A design automation framework was also devel-
oped for large scale neuromorphic systems. Through pruning,
permutation, and partitioning, a large network can be mapped
to many crossbars for computation in an efficient way [154].
The optimization methodologies on power, area and accuracy
of the relevant systems were also widely explored [155].

In implementing on-chip neuromorphic computing system,
training methods have been proposed to program the mem-
ristor devices in a crossbar by following existing training
algorithms in neural network models. For example, Li et al.
introduced a mixed-signal self-training acceleration frame-
work [156]. As illustrated in Figure 13, for a training task
of an N-layer neural network with (N − 1) weight matrices,
the training acceleration framework requires (N − 1) normal
crossbars and (N − 2) copy crossbar arrays. An array of
subtractors is used to work out the deviation (δp) between
the actual and ideal output and the error of node k in the
next neighbor layer (δk) will be calculated through the copy
crossbar arrays.

To understand the impact of device imperfections and circuit
design constraints on the training robustness, Liu et al. [157]
conducted a quantitative analysis of two popular training
methods and proposed Vortex – a variation-aware training
scheme. Vortex can actively compensate the impact of device
variations and optimize the mapping scheme from compu-
tations to crossbars, therefore, leading to enhanced training
robustness. Figure 14 is a 44 × 44 pattern in a 64 × 64 1T1R
array programmed and measured by HP Labs [158]. It can
be seen that the single-bit failure (SBF) defects distribute
randomly across the array and blur the programmed pattern.
According to the low yield of current memristor array devel-
opment, Liu et al. proposed a defect rescuing methodology
which improves the hardware efficiency by leveraging the
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Fig. 11. (a) Parallel architecture of resistive crosspoint array (PARCA) [147]. (b) Write circuits for duty cycle window generation. (c) Write circuits that
generate a number of pulses that are equally spaced over time. (d) Read circuits that convert the output current (weighted sum) into digital values.

Fig. 12. An overview of the spiking neuromorphic design with a resistive
crossbar array [149].

Fig. 13. Mixed-signal training acceleration framework [156].

application-specific features [158]: it first classifies the weights
in a neural network into significant and insignificant categories
based on their impacts on the network performance; then a
retraining algorithm was developed to compensate the SBF
caused computation error by re-tuning the trainable weights.

Theoretically, a memristor can be programmed to any
arbitrary resistance state. In reality, however, the programming

Fig. 14. (a) The conductance distribution and (b) the measured stuck on/off
defects of a 64 × 64 memristor cross-point array [158].

process is limited by the resolution that CMOS circuitry can
offer. In memristor-based crossbar based neuromorphic archi-
tecture, for instance, limited programming resolution requires
a quantization process that maps each analog weight to one of
the values that are represented by the discrete resistance states
of the memristors: an analog weight within the range between
ai and ai+1 (i = 0, . . . , m − 1) in the neural network are rep-
resented by only one value aLi ∈ [ai , ai+1] after quantization.
Here m is the number of distinctive levels that the resistance
of memristors can be programmed to. To minimize the impact
of quantization loss, Wang et al. [159] proposed to discretize
weights in different layers to different values and then directly
learn a neural network with discrete weights. More generally,
Song et al. [160] introduce cosine and sawtooth regularization
to binary and three-level representations to the memristor-
based neuromorphic systems.

Scalability is another challenge in neuromorphic system
development. It is inevitable to interconnect multiple crossbars
to implement modern big neural networks. The increasing
scale of neural networks could quickly exhaust the resources
of synapse crossbars and deteriorate the wire congestion. The
framework Group Scissor [161] attempts to save hardware
area and improve system scalability through two steps: rank
clipping integrates low-rank approximation into the training
to reduce total crossbar area and group connection deletion
structurally prunes connections to reduce routing congestion
between crossbars.
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Fig. 15. Island style routing architecture employed in FPAA where neu-
rons or computing elements are in “islands” within a sea of routing switches.

Crossbar architectures are also very popular in CMOS
implementations. For example, Brink et al. [97] implemented
a cross-bar of 100 × 300 synapses of which 100 × 100 were
fixed weight, 100 × 100 were recurrent excitatory learning
synapses and the remaining 100×100 were learning synapses
connected to input. Another example is the 256×256 crossbar
array of SDSP synapses reported in [51].

B. Island Style

The major issue with a crossbar style hardware architecture
is that the number of synaptic connections increases as O(N2)
for N neural elements. While this is the most flexible architec-
ture, it has a huge requirement of hardware resources. Typical
biological networks have a different architecture where local
interconnections are dense but long distance connections are
sparse [162]. In keeping with that philosophy, some neuro-
morphic systems [93], [94], [163] have used an island style
architecture that is commonly observed in field programmable
gate arrays (FPGA). As shown in Figure 15, the computational
elements are organized in “islands” called computational ana-
log blocks (CAB) while there is a big “sea” of switches for
routing. Termed as field programmable analog array (FPAA) in
keeping with their digital counterparts, one major difference of
FGMOS based FPAA, however, is that the FGMOS switches
can be used for computation and need not be only ON/OFF
switches. As an example, they have been used as synaptic
weights [164].

While most earlier FPAAs needed to be programmed sep-
arately for new applications or weight updates [93], [164],
a newly introduced one [163] has runtime adaptation capa-
bility. Competitive neural circuits and LMS adaptation rules
have been demonstrated on this platform by continuous time
FG adaptation [101], [165]. Special care was taken in this
design to allow routing of high voltage signals required for
tunneling and hot-electron injection.

C. Crossbar With Time-Multiplexed Update (TMU)

This is a special architecture [52], [140] devised to take
advantage of the low-power, low-area parallel processing
capabilities of analog systems and the multi-bit long-term

Fig. 16. A mixed signal scheme for analog multi-bit synapses where an
analog crossbar computes correlations in parallel and stores charge on a
capacitor. A controller sequentially reads these values and updates multi-bit
weights in digital memory (from [140]).

storage available easily in digital memory. Here, the temporal
correlations required for STDP are calculated in parallel in
a synaptic crossbar and the result is stored in a capacitor.
As shown in Figure 16, a digital controller sequentially reads
these values and updates the corresponding weight in a digital
SRAM according to the desired temporal update rule F(�t).
While applying inputs to the system, these digital weights are
again read and applied to the analog neurons through digital-
analog converters (DAC). While this method does enable
multi-bit weight, it is not scalable to large crossbar due to the
large readout delays in such systems which will cause large
leakage induced errors in the capacitor voltage. An island style
architecture would be needed to scale this approach to bigger
systems.

D. Discussion

A comparison of different recently reported neuromorphic
systems are presented in Table IV. Amongst the ones imple-
menting SDSP, [62] is the earliest while [51] has ported
the design to a more advanced node of 0.18μm CMOS
and increased the number of synapses by an order of mag-
nitude. [52] also use SDSP but the focus of their design
is to achieve biological time scales in leakage dominated
process nodes like 28nm. 1 − bi t STDP implementations
were first done on a large scale in [63]. Next, 4 − bi t
implementations were shown in [136] using a time multiplexed
approach. Finally, even higher resolution of ≈ 10 bits were
demonstrated in [97] using FGMOS devices. While these used
mixed signal approaches, an alternative fully digital design
methodology was adopted in [56] for ease of porting across
technology nodes. A similar digital design approach is used
in [77] where a different algorithms based on sparse activations
is used to reduce communication energy further.

VI. APPLICATIONS

In this section, we discuss some of the emerging applica-
tions that will benefit from adaptive neuromorphic hardware.

A. Brain Machine Interface (BMI)

Brain-machine interfaces is an emerging area of research
where an electronic implantable or wearable device is used
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TABLE IV

COMPARISON OF RECENTLY FABRICATED ADAPTIVE NEUROMORPHIC SYSTEMS

to provide a direct means of communication to the outside
world for a patient who has lost other means of commu-
nication due to an accident or illness such as stroke [167].
While wearable devices do not have a risk of infection,
they provide very coarse information about the brain state.
On the other hand, implantable devices provide more fine
grained information down to single unit activity which is
needed for decoding dexterous motor skills [168]. Most of the
published work so far has attempted to integrate the neural
recording amplifier [169], ADC and wireless transmitter in
the implant while keeping the motor intention decoding [170]
on an external PC. At most, some work integrate a spike
detector [171] or a spike sorter [172] in the implanted
chip.

However, with the increase in number of channels on
the microelectrode array (MEA), we are approaching a big-
data transmission problem in neural implants [173]. Adaptive
neuromorphic spike based decoders are a natural and elegant
solution to this problem. It can directly mimic the part of
the brain that would decode spikes to produce a command
for movement in a healthy individual and has potential to
become a natural interface. Adaptation is necessary here since
the neural signals are non-stationary and change with time
due to shift in position of the implant or due to formation
of scar tissue [174], [175]. There are only a few published
work on neural decoder circuits [175]–[177], but we believe
there is great potential for neuromorphic systems to impact this
application and break the inherent tradeoff between number
of channels in MEA versus wireless transmission capacity.
Reference [175], [177] present a neuromorphic implementa-
tion of a randomized neural network that can be trained with
very few samples to tackle the retraining problem due to non-
stationarity. Reference [176] presents an alternative solution
where the neuromorphic system adapts learns in real-time from
the biological spike train.

B. Robotics

We are supposed to be at the cusp of the fourth industrial
revolution with robotics expected to play a big role. While it is
expected that artificial intelligence powered by deep learning
may enable future robots to be able to be much more efficient
than its predecessors, this is one area where clearly taking
inspiration from biology will help since humans can do many
tasks very intuitively which are very difficult for robots. It is
possible that this is related to the fundamentally different ways
in which signals are represented in human brains. To mimic
biology more closely, neuromorphic visual [178], [179], audi-
tory [180] and tactile [181] sensors have been developed
which operate in an asynchronous, spike based manner similar
to human retina, cochlea and mechanoreceptors, respectively.
This asynchronous sampling results in most informative part
of the signal being readout first leading to quick reaction
times [182]–[184]. Also, some problems that are difficult to
solve with traditional sampling methods often have elegant
solutions in this asynchronous spike domain [185]. We expect
that work on adaptive spike based neuromorphic hardware to
interface with these sensors is an important future direction
for robotics, especially those with tight constraints on size,
weight and power, such as drones. One example is shown
in [186] where a neuromorphic processor [51] is used for
obstacle avoidance and target acquisition for a land robot.

C. Internet of Things (IoT)

The internet of things aims to connect billions of devices
with the cloud–sensors collect data and transmit to the cloud
for processing. But this method is likely not scalable due
to the huge burden that wireless transmission puts on the
battery life [187], [188], especially for data intensive sensors
like camera or microphone. Moreover, the data deluge on
the cloud leads to an information overload and might be
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impossible for the cloud to process and give results in time
critical applications. This has led to the concept of “Edge
Computing” [189]–moving information processing and refine-
ment to the sensor node instead of the cloud. It has a
huge market potential and is projected to grow to $6.7B by
2022 [190]. For edge computing to succeed, there is a need
for adaptive machine learning systems that can be low-power
to sustain long battery lifes while refining raw data to low-
bandwidth information. Reference [20] presents an adaptive
neuromorphic system that reduces dimensionality of data by
extracting features. These features can now be transmitted
at lower energy cost or maybe further used by a classifier
on the sensor node to make a final decision. As another
example, consider the problem of predictive maintenance [191]
where the adaptive system needs to track the health condition
of the machine and raise an early warning in case of a
problem. This requires a different model to be learnt for every
machine and necessarily requires an adaptive neuromrophic
approach. We foresee edge computing devices to be a big
market for neuromorphic engineering.

VII. CONCLUSION

In this paper, we presented a survey of work done in
the area of adaptive neuromorphic systems with a focus on
on-chip learning. We saw that while FGMOS devices have
the advantage of compatibility with CMOS, RRAM devices
have the potential to scale to even smaller sizes. Spin mode
devices such as domain wall memory have the potential for
most energy efficient designs but no measured results have
been reported from spin mode neuromorphic systems.

In terms of learning algorithms, various simplified versions
of backpropagation are being developed for efficient hardware
implementation. In particular, the feedback alignment method
which requires only random weights for feeding back gradients
seems particularly attractive due to its local nature. Also,
shallow two layer networks based on random hidden nodes
(ELM, RVFL, LSM, etc.) are attractive for adaptive systems
due to their quick training. We also expect future work to focus
on novel plasticity algorithms beyond weight based methods
such as structural plasticity.

Popular adaptive synapse circuits in CMOS implement the
SDSP rule since it only needs bistable weights in longer term.
The most popular architecture for large scale systems is the
crossbar topology due to its high packing density. However, for
scaling to larger systems, island style architectures with dense
local and sparse global connections are preferred. Finally,
we expect these adaptive systems to find uses in several
emerging applications such as brain machine interfaces and
size, weight, power constrained robotics platforms such as
micro aerial vehicles.
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