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Abstract— This paper provides a survey of the latest devel-
opments in visual signal coding and processing with generative
models. Specifically, our focus is on presenting the advancement
of generative models and their influence on research in the
domain of visual signal coding and processing. This survey study
begins with a brief introduction of well-established generative
models, including the Variational Autoencoder (VAE) models,
Generative Adversarial Network (GAN) models, Autoregressive
(AR) models, Normalizing Flows and Diffusion models. The
subsequent section of the paper explores the advancements in
visual signal coding based on generative models, as well as the
ongoing international standardization activities. In the realm of
visual signal processing, our focus lies on the application and
development of various generative models in the research of
visual signal restoration. We also present the latest developments
in generative visual signal synthesis and editing, along with visual
signal quality assessment using generative models and quality
assessment for generative models. The practical implementation
of these studies is closely linked to the investigation of fast
optimization. This paper additionally presents the latest advance-
ments in fast optimization on visual signal coding and processing
with generative models. We hope to advance this field by pro-
viding researchers and practitioners a comprehensive literature
review on the topic of visual signal coding and processing with
generative models.

Index Terms— Generative models, visual signal coding, visual
signal processing, optimization.

I. INTRODUCTION

IN RECENT years, generative models have emerged as
one of the most significant and rapidly developing areas

of research in artificial intelligence. Generative models have
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demonstrated remarkable success in synthesizing high-quality
data (text, image, video, 3D content, etc.) and hold promise
for utilizing unlabeled data, transfer learning, data augmenta-
tion, drug/protein generation, and other applications. Different
generative models have been developed to capture complex
data distributions and generate new examples. For example, the
Autoregressive (AR) models, like GPT-4, sequentially predict
and generate data. The Variational Autoencoders (VAE) learn
the parameters of a probability distribution representing the
input data. The Generative Adversarial Networks (GAN) train
two competing neural networks in an adversarial manner to
generate realistic synthetic data. The flow models learn invert-
ible mappings between data and latent space. The Diffusion
models iteratively add noise to data and then train a neural
network to reverse the process.

Simultaneously, generative models have been demonstrated
to be a crucial tool for learning-based visual signal cod-
ing and processing. For example, the VAE model has been
widely employed as a foundational framework in end-to-
end learning-based image coding schemes. The AR model
has been extensively studied to improve entropy coding per-
formance, and the GAN model and Diffusion model have
been utilized frequently to enhance the subjective quality of
coding schemes. Additionally, generative models have also
been explored in various visual signal processing tasks, includ-
ing restoration, enhancement, editing, quality assessment, and
interpolation.

In light of the rapid growth of visual signal coding and
processing with generative models, its contributions to inter-
national standards and practical application optimization are
increasingly valued. The Joint Video Experts Team (JVET) of
International Telecommunication Union - Telecommunication
Sector Video Coding Experts Group (ITU-T VCEG) and
International Organization for Standardization/International
Electrotechnical Commission Moving Picture Experts Group
(ISO/IEC MPEG) has started working together on an explo-
ration study to evaluate potential neural network-based video
coding (NNVC) technology beyond the capabilities of the
conventional hybrid video coding framework as early as 2018.
In addition, MPEG also launched many standardization
projects, which have started adopting artificial intelligence
(AI)-based technologies, such as AI-based 3D graphics cod-
ing, AI model compression, and video coding for machines
(VCM). Meanwhile, the Joint Photographic Experts Group
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(JPEG) AI, the creation of a learning-based image coding
standard and a joint standardization project between ISO/IEC
JPEG and ITU-T, is being developed. It is observed that
these standards built on AI-based methods are able to serve
various purposes, including significant compression efficiency
improvement, efficient multimedia representation, compres-
sion and deployment of neural network models, metadata
extraction for AI-based processes, and multimedia content
processing. Although learning-based visual signal coding has
obtained a remarkable coding gain, the complexity is still too
high to achieve real-time processing. Regarding the algorithm,
the AR model is usually used to fully utilize the correlation
of neighboring samples. In addition, the huge scale of the
neural network increases the burden of computational and
memory cost. Regarding hardware and implementation, most
frameworks are accelerated by general-purpose accelerators
such as Nvidia GPU and AMD/Xilinx DPU. However, the
hardware utilization of GPU/DPU is relatively low since
the computation-to-communication (CTC) ratio of neural net-
works may not fit the hardware resources such as the number
of PE cores and bandwidth. Recently, transformer-like archi-
tectures have gradually become popular due to their superior
performance. To accommodate the rapid development of neu-
ral network architectures, developing a generic and efficient
hardware accelerator is also a challenge.

Therefore, we seek to further advance this important
research area by providing researchers and practitioners with
a broad reference to the literature on visual signal coding
and processing with generative models. The remainder of this
paper provides a brief overview of the visual signal coding
and processing with generative models from the perspectives
of the background of generative models, the development
of visual signal coding with generative models and related
standardization activities, and the recent progress of visual
signal processing with generative models. We start with an
overview of generative models in Section II and then introduce
visual signal coding with generative models in Section III, with
an introduction of standardization activities on visual signal
coding with generative models in Section IV. In Section V,
we review some ongoing research activities related to visual
signal processing with generative models, including restora-
tion, enhancement, editing, and interpolation. The quality
assessment methods based on generative models and those
for generative models are further discussed in Section VI.
Finally, a review of fast implementation and optimization of
visual signal coding and processing with generative models
is presented in Section VII, followed by a conclusion in
Section VIII.

II. GENERATIVE MODELS

This section provides a brief introduction to generative
models, including GANs, VAEs, Autoregressive Models, Nor-
malizing Flows, and Diffusion models.

A. Generative Adversarial Networks (GAN)

GANs [1] are important components of deep generative
models. They are developed to generate data through an
adversarial training strategy involving both generators and

discriminators. In this context, the objective of the generator
is to generate data samples that are as realistic as possible
to deceive the discriminator. The discriminator is tasked with
differentiating these generated data samples from the actual
ones in the training data, and both networks are updated
iteratively. The objective is to find an equilibrium point where
the discriminator cannot reliably discern fake data samples
from real data samples. Utilizing the discriminator’s ability to
understand perception, GANs achieve outstanding results in
qualitative generation and are widely used in a wide range
of tasks, including conditional generation [2], representation
learning [3], image-to-image translation [4], image super-
resolution [5], image enhancement [6], style transfer [7] and
semantic editing [8]. GANs are also capable of generalizing
to generate data in modalities other than images, such as
video [9], text [10], audio [11] and 3D data [12]. However,
adversarial training can be difficult due to issues such as
instability and mode collapse [13], which lead to low-quality
generation outputs with limited variability. Some research [14]
has attempted to mitigate this issue by employing more
rational loss functions.

B. Variational Autoencoders (VAE)

VAEs [15] are a type of generative model that employ
Bayesian inference to approximate the distribution of data.
VAEs comprise two components: an encoder that transforms
input data into a distribution of latent variables, and a decoder
that reconstructs input data from the latent variables. The
training objective of VAEs is to optimize a lower bound on
the data log-likelihood, which is composed of two terms:
a Kullback–Leibler (KL) divergence term that quantifies the
dissimilarity between the distribution of latent variables and
the prior distribution, and a reconstruction term that mea-
sures the fidelity of the generated data. VAEs have been
improved by addressing several challenges, such as increasing
the expressiveness of the latent variable distribution [16],
reducing the gap between the lower bound and the true log-
likelihood, avoiding posterior collapse [17], and scaling up
to high-resolution data [18]. Some of the notable works that
have contributed to these improvements are IAF-VAE [19],
NVAE [18], and VDVAE [20], which have enhanced the
performance and quality of VAEs, making them more powerful
for generative modeling. Meanwhile, VAEs are increasingly
used as part of other generative models, such as normalizing
flows and diffusion models. These combinations have the
added benefit of enhancing the performance of the generated
data samples.

C. Autoregressive Models

Autoregressive models [21] view generation as a sequen-
tial process, predicting future outcomes based on previously
observed data. They excel in precision, optimizing the likeli-
hood of the estimated data by learning dependencies within
the sequence. This is typically achieved through a masking
strategy, such as PixelRNN [22] and Gated PixelCNN [23],
where certain known values are used to predict unknown
neighboring values. Autoregressive models exhibit exceptional
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performance in modeling distribution density and capturing
intricate patterns in data. However, their sequential nature
results in a slow data generation process [24]. Furthermore,
by relying on historical data to make predictions about
the future, they run the risk of overfitting the training set
and potentially generating duplicates of the observations.
Recent studies [25], [26] have demonstrated that integrating
autoregressive models with diffusion models [27] substantially
improves their generation speed, thereby enhancing the perfor-
mance of autoregressive models.

D. Normalizing Flows

Normalizing flows [28], [29] are a class of generative
models designed to transform complex data distributions into
simpler, more tractable forms such as Gaussian distributions.
This is achieved through a series of invertible transformation
layers, and by stacking such layers, normalizing flows are
able to map an intricate distribution into a simpler one [30].
The prerequisite for the invertibility of a transformation layer
is crucial, as it fulfills two functions: it should permit the
transformation of complex data into a more manageable dis-
tribution for analysis purposes, and it must also facilitate the
creation of new data instances from this simplified distribution.
To optimize the model, a tractable marginal likelihood is
computed, which requires each transformation layer to be
capable of calculating its Jacobian determinant efficiently.
Some notable works include RealNVP [31], GLOW [32],
and Residual Flow [33]. Normalizing flows are noted for
their capacity to learn features and quick generation process.
However, the stringent requirement for transformation modules
to be invertible often makes it hard to choose more flexible net-
work structures, resulting in inferior quantitative performance
in density modeling. Despite this, their ability to perform exact
likelihood calculations makes them a valuable tool for various
tasks, including sample generation, latent variable projection,
and density value estimation [34], [35], [36].

E. Diffusion Models

Diffusion models have achieved noteworthy accomplish-
ments within the field of generative models. It first attracted
extensive interest and widespread recognition with the publi-
cation of the paper titled ‘Denoising Diffusion Probabilistic
Models’ [27] in 2020. Similar ideas also came to the
attention of the public when Score-based Generative Mod-
els [37] were proposed, bridging both the diffusion model and
score-based generative model into a unified framework. There
are endeavors focusing on theoretical or engineering optimiza-
tion such as accelerating sampling speed, like DDIM [38] and
DPM-Solver [39], or cutting down training cost, like Stable
Diffusion [40]. These works enhance the practical performance
of diffusion models, making them more tractable for either
training or inference. Concurrent with its rapid development,
the diffusion model has emerged as a prominent generative
model known for its strong theoretical foundation and excep-
tional performance. It has been widely applied in various
downstream applications like image inpainting [41], image-
to-image translation [42], image composition [43], image

customization [44] and prompt editing [44]. ControlNet [45]
was proposed to additionally integrate various applications
within a single framework. Beyond images, diffusion mod-
els also succeed in generating contents of other modalities,
including videos [46] and 3D objects [47].

III. VISUAL SIGNAL CODING WITH GENERATIVE MODELS

This section provides a concise review of the application of
generative models to visual signal coding, focusing primarily
on image and video coding.

A. Image Coding With Generative Models

In fact, the phrase “image coding with generative models”
can have multiple meanings. On the one hand, probabilistic
generative models provide the theoretical foundations for
end-to-end learned image coding, sometimes referred to as
learning-based image coding, neural network-based image
coding, or neural image coding in the literature. Specifically,
probabilistic generative models, such as variational autoen-
coders (VAEs) [15] and diffusion models [48] contribute to
successful frameworks for neural image coding [49], [50].
Also, probabilistic generative models, such as autoregressive
models [23] and normalizing flows [28], inspire several impor-
tant improvements in coding performance [51], [52]. On the
other hand, some well-established generative models, such as
Generative Adversarial Networks (GANs) [1] and diffusion
models, can be combined with these end-to-end learned image
coding models, which have been demonstrated to provide
better perceptual quality. In this section, we overview tech-
niques in both areas, and review an important theory in the
field of generative image coding: the rate-distortion-perception
tradeoff.

1) Probabilistic Generative Models for Image Coding:
Prevalent methods for neural image compression follow a
variational autoencoder framework. Specifically, the input
image x is usually mapped into its latent representations y,
which are then quantized into ŷ. Since the gradient of the
scalar quantization function is zero almost everywhere [53],
most methods for neural image compression employ additive
uniform noise to approximate quantization during training.
Early works [49], [54] connect the rate-distortion objective
and variational inference in this noise-relaxed case,

Ex∼px DKL(q( ỹ|x)|p( ỹ|x))

= Ex∼px log p(x)

+ Ex∼px E ỹ∼q ỹ|x [log q( ỹ|x) − log p(x| ỹ) − log p( ỹ)].

(1)

Since the image x is given in the task of compression, the first
right-hand-side term in the above equation is a constant during
optimization. The second right-hand-side term evaluates to
zero as we employ additive standard uniform noise as a
stand-in for quantization during training:

q( ỹ|x) = q( ỹ| y) = U( ỹ| y − 0.5, y + 0.5) = 1. (2)

The rest two terms in Eq. (1) denote the distortion and
rate, respectively. Therefore, the rate-distortion optimization
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objective in lossy compression can be successfully interpreted
from the view of the variational inference. Such a joint
rate-distortion optimization objective is critical to achieve
promising compression performance. Despite a short his-
tory, the rate-distortion performance of this variational image
compression framework has been demonstrated to surpass
traditional image compression standards, in terms of both the
objective metrics such as RGB PSNR [55] or MS-SSIM [56],
and perceptual quality [57]. In addition to noise-relaxed quan-
tization, some alternatives, e.g. vector quantization [58], [59],
and soft-to-hard annealing [60], have been proposed to replace
additive uniform noise during training. However, the main-
stream approaches for neural image compression still adopt
additive uniform noise during training, since it is stable during
training and theoretically sound as variational autoencoders.
Soft-then-hard two stage quantization [53] scheme was further
proposed to learn an expressive latent space softly, then closes
the train-test mismatch with hard quantization.

Recently, as a new member of probabilistic generative
models, diffusion models have attracted increasing attention
due to their strong capability to model data distributions [61].
Theis et al. [50] proposed a promising framework that applies
Denoising Diffusion Probabilistic Models (DDPMs) [27] to
neural image coding, where the image information is decom-
posed into posterior distributions in multiple diffusion steps
and compressed with relative entropy coding [62], [63].
This new framework exhibits encouraging compression per-
formance in terms of both objective metrics and perceptual
quality. Diffusion models operate by iteratively transforming
an input image into a noise distribution, allowing for effective
compression while preserving essential features. However,
due to the inherent huge complexity of DDPMs and relative
entropy coding, this diffusion-based lossy compression frame-
work still has ample room for further improvement.

Autoregressive models for image generation were first
proposed as PixelCNN [23]. Although generation and com-
pression are fundamentally two different tasks, the concept
of autoregression inspires the design of the context model,
which significantly enhances the compression performance of
of neural image compression models. By decoding the latent
variables sequentially in raster-scan order, the context model
can improve the entropy modeling of latent variables, and
therefore boost the compression performance. Subsequently,
the spatial autoregressive context model was proposed to be
replaced by the channel autoregressive context model [64],
which leverages the correlation among latent channels and is
more efficient for decoding.

Another typical type of probabilistic generative models is
normalizing flows. Although the applications of normalizing
flows in neural image compression are not as many as the
previous three categories of probabilistic generative models,
normalizing flows still play an important role for image com-
pression. For example, normalizing flows can help the neural
image compression model to achieve better idempotence [65],
which means that a codec can support successive image com-
pression [66]. The ANFIC [67] and its subsequent studies [68],
[69], [70] offered a comprehensive analysis of applying
Normalizing Flows to lossy image and video compression.

The iWave work [71] proposed a wavelet-like transform
based on normalizing flows for lossy image compression with
improved performance. In addition, advanced normalizing
flows can also have wide applications for lossless compression,
such as integer normalizing flows [72], [73]. While we focus
on lossy compression in general, the entropy coding module
in the lossy compression framework is basically a lossless
compression module.

In summary, the aforementioned four categories of prob-
abilistic generative models contribute to both the theoretical
foundations and the technical improvements for neural image
compression, fostering significant progress in this domain.

2) Generative Image Coding for Perceptual Quality: It
is known that objective metrics such as PSNR have dis-
crepancies with human perception [74]. Therefore, more and
more researchers start to pay attention to the research of
image coding for perceptual quality. In addition to the success
of neural image compression methods based on variational
autoencoders (VAE) and other probabilistic generative models,
recent advances in image compression have seen promising
results through the combination of generative models and com-
pression models, especially by combining compression models
with GANs and diffusion models [27]. These approaches
provide different strategies to achieve better rate-distortion
performance and address concerns about perceptual quality
without significantly increasing complexity.

GANs consist of a generator and a discriminator net-
work. These networks are trained adversarially. In the
context of image compression, GANs have been employed
to generate realistic and high-quality images, while simul-
taneously optimizing compression efficiency. The generator
learns to produce compressed representations of images, and
the discriminator evaluates the authenticity of the gener-
ated images, creating a dynamic interplay that enhances
both the visual fidelity and the compression effectiveness.
Agustsson et al. [75] propose a GAN-based image com-
pression architecture operating at extremely low bitrates,
which can synthesize hard-to-store details and reduce artifacts.
In addition, semantic maps can be useful for efficiently synthe-
sizing less significant areas, if they are accessible. HiFiC [57]
investigates novel structures such as conditional GANs and
normalization layers to preserve fidelity while generating
visually pleasing results. Multi-Realism [76] designs a model
with distortion-realism trade-off, allowing users to control the
level of detail in reconstructed images.

Most recently, combining diffusion models and compression
models has gained increasing attention. Unlike building a new
lossy image compression framework with diffusion models as
mentioned in Section III-A1, such a combination can achieve
a good balance between complexity and perceptual quality.
Yang et al. [77] propose a novel image compression framework
which applies a VAE-style encoder to map images to latent
variables and a diffusion model as the decoder conditioned on
quantized latents. DIRAC [78] leverages a diffusion model to
enhance perceptual quality by producing residuals conditioned
on an initially reconstructed image, which is decoded by an
image codec with minimal distortion. Furthermore, HFD [79]
explores an advanced noise schedule and sampling procedure
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and designs a patch-wise approach for high-resolution image
reconstruction. All these works effectively showcase the poten-
tial of integrating generative models with compression models
to enhance the visual quality of decoded images.

Due to the different methods used for perceptual opti-
mization, the learned codecs exhibit different distortion types
than traditional codecs. The distortions of traditional codecs
generally include blocking artifacts, blurring, aliasing, etc.,
while learned codecs may produce smoothing, generated noise,
pseudo-texture and other types of distortions, which may vary
depending on the optimization method and structure.

The substantial differences in perceptual quality among
different codecs therefore require more demanding criteria
for the study of accurate and explainable visual quality
assessment metrics, which is also key to codec optimization.
To this end, the MPEG Visual Quality Assessment ad-hoc
group (AG 5) has been working to maintain a dataset of
Compressed Video for study of Quality Metrics (CVQM).
During the 144th MPEG meeting, MPEG AG 5 issued a
call [80] for learning-based video codecs for the study of
quality assessment. This is because MPEG anticipates that the
reconstructed videos compressed with learning-based codecs
will have different types of distortions compared to those
produced by the traditional block-based motion-compensated
video coding. MPEG will consider inviting responses that meet
the call’s requirements to submit compressed bitstreams for
further study and potential inclusion into the CVQM dataset.

3) The Rate-Distortion-Perception Trade-off: The theoret-
ical foundations of lossy compression in mathematics are
rooted in Shannon’s seminal work on the rate-distortion the-
ory [81], where the distortion term is usually measured by
objective metrics such as PSNR. However, in recent years,
it has become increasingly accepted that ‘low distortion’ is not
a synonym for ‘high perceptual quality’. In fact, optimizing
one often comes at the expense of the other [82]. Following the
mathematical notion of perceptual quality in [74], the perfect
perceptual quality is achieved when

pX = pX̂ , (3)

where the input image is X , the decoded image is X̂ , and
pX is the distribution of the input images. On the basis of
this, the work of [82] provides a systematic study of the
rate-distortion-perception trade-off. An important conclusion
is later discovered by the authors in [83] and [84] who assert
that “We proved that, for fixed bit rate, the cost of imposing a
perfect perception constraint is exactly a doubling of the lowest
achievable MSE.” In other words, the PSNR of the decoded
image with perfect perceptual quality is 3dB lower than the
PSNR of the decoded image with the smallest distortion at the
same bitrate. This discipline provides an insightful guide for
neural image compression models targeting perceptual quality.

In addition, Freirich et al. [85] establish the achievable
distortion perception region and provide a geometric inter-
pretation of the optimal interpolator in Wasserstein space.
Chen et al. [86] study the subtle differences between the weak-
and strong-sense definitions of perceptual quality and analyze
the role of randomness in encoding and decoding. While most
of these works start their analyses with a toy example, the

work of [87] successfully applies pre-trained unconditional
generative models to real-world images and is able to achieve
better perceptual quality as established in Eq. (3) by proposing
to pursue the idempotence in neural image compression.

In short, the rate-distortion-perception trade-off is attracting
increasing attention in both theories and applications to practi-
cal problems. We believe that research on such a trade-off will
continuously contribute to better approaches for generative
image coding.

B. Video Coding With Generative Models

While the field of neural image compression has been fully
developed, the field of neural video coding is also experiencing
tremendous development. In this section, we discuss the neural
video coding frameworks from two categories, as depicted
in Fig. 1: the autoencoder-based coding models and hybrid
coding models. Moreover, we analyze the development of
generative video coding for perceptual quality improvement.

1) Autoencoder-Based Coding Models for Video Compres-
sion: A few works regard neural video compression as an
extension of the autoencoder-based image compression frame-
work, where the coding pipeline is generally divided into
two parts: transform coding and conditional entropy coding.
Specifically, a 3D or 2D autoencoder is used to transform
the video sequence into quantized features to encode, and
then a conditional entropy coder that combines spatiotemporal
information is used for entropy coding [88], [89], [90]. Given
the independence of distortion introduced in the time domain,
this framework effectively avoids issues like error propagation.
However, the algorithm’s overall complexity tends to be high.
Redundancy removal primarily occurs in the entropy coding
module, which does not fully capitalize on the benefits of
transform coding.

2) Hybrid Coding Models for Video Compression: The
current mainstream neural video compression framework still
uses a hybrid coding framework that combines inter-frame
motion estimation, which is similar to the traditional video
coding framework. Generally, the coded motion information
and the previous decoded frame are used to generate the
reference frame, while the residual information between the
current frame and the reference frame is encoded at a later
stage.

An early-stage study [91] conducted in early 2018 intro-
duced a block-based hybrid generative module called Pixel-
MotionCNN to model spatiotemporal coherence; the module
utilizes effectively predictive coding together with additional
components of iterative analysis/synthesis to reach comparable
compression results with an H.264 codec. Lu et al. [93],
[98] proposed to replace every module in a traditional video
compression framework with neural networks. In particular,
the estimated optical flow is treated as motion information
and encoded together with the residual frame by two different
autoencoders. At the same time, Rippel et al. [92] also
proposed a highly complete model based on similar ideas,
which not only replaced the traditional coding module, but
also expanded it into a more general model that compresses
the generalized state. Since then, numerous studies have
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Fig. 1. Neural video compression models.

been dedicated to exploring methods for acquiring effective
representation and precise modeling of motion information.
Some works attempt to perform hierarchical processing in
high-dimensional representation space to achieve a better rate-
distortion balance [97], [100], while other works explore better
motion estimation and compensation [95], [96], [101], motion
compression [94] or time correlation mining [99] to improve
the accuracy of representation. In addition, some works start
from the reference relationship between frames and use frame
interpolation models, recurrent neural networks, etc. to explore
the value of bidirectional reference relationships [102], [103],
[104], [105], [106], [107], [108].

Furthermore, by utilizing a hybrid coding framework in
conjunction with motion estimation, a different set of studies
have aimed to eliminate the need for residual frames. Instead,
these studies focus on utilizing the information obtained from
motion compensation results to enhance the encoding and
decoding process of the frame being encoded. The former can
be considered as explicit residual coding, while the latter can
be considered as implicit conditional coding. Theoretically,
as was demonstrated and discussed in [113], the latter has
a higher rate-distortion upper bound. In order to introduce
the skip mode structure, Ladune et al. [109] firstly built and
tried out the concept of conditional coding in the area of



CHEN et al.: SURVEY ON VISUAL SIGNAL CODING AND PROCESSING WITH GENERATIVE MODELS 155

learned video compression, and developed their architecture
with an optical flow network in [110]. While [111] intro-
duced a more general design of conditional coding from an
engineering perspective, [112] further summarized the core
idea and designed an efficient coding model based on it.
The follow-up work focuses on more efficient information
transmission [114] and functional improvements such as sup-
porting variable rates [115]. Several following works are put
forward through architecture and module improvements [68],
[116], [117], [118]. The later work [119] re-added the residual
structure in conditional coding to solve the possible bottleneck
problem. As the representative work of implicit conditional
coding, the work [118] has been able to surpass the low-delay
configuration of the H.266/VVC standard reference software
VTM in terms of both the objective metrics of RGB PSNR
and MS-SSIM.

3) Generative Video Coding for Perceptual Quality:
Although most neural video compression works still strive to
improve objective performance with metrics such as PSNR
and MS-SSIM, a few works have drawn inspiration from
image compression techniques to enhance the visual quality
of compressed videos. Yang et al. [120] investigated percep-
tual optimized video compression with recurrent conditional
GAN. Mentzer et al. [121] directly explored conditional GAN
training and verified the effectiveness of this method through
user studies, while another work analyzes perception loss
functions for learned video compression [122]. The work [123]
presents a diffusion probabilistic modeling approach for video
generation, drawing inspiration from recent advances in neural
video compression, which has the potential to offer valuable
insights for enhancing the perceptual performance of video
coding.

IV. STANDARDIZATION ACTIVITIES RELATED TO VISUAL
SIGNAL CODING WITH GENERATIVE MODELS

This section briefly overviews the standardization activities
related to visual signal coding with generative models. Specifi-
cally, the progress of image and video coding using generative
models is described in the following subsections.

A. JPEG AI Standardization Activities

Traditional image coding schemes, such as JPEG [127],
JPEG2000 [128] and intra coding in H.264/AVC [129],
H.265/HEVC [130], AV1 [131] and H.266/VVC [132], are
developed in a classical paradigm, including block parti-
tion [133], intra prediction [134], transformation [135], and
entropy coding [136]. Recently, learned image compression
methods [51], [54], [137] have achieved significant progress
and superior improvements in rate-distortion performance,
attracting lots of attention from both industry and academia.
One attractive feature lies in that learned image coding
schemes are able to adapt to different applications with mod-
erate additional effort. They can achieve good compression
results for machine vision and image processing tasks by
changing the optimization targets [138].

JPEG AI, a learning-based image coding standard, was
under development [138] at the time of writing and was

expected to be finalized in 2024. JPEG AI is the first AI-based
image coding standard developed jointly by the ISO/IEC
and ITU-T. The scope of JPEG AI is the creation of a
learned image coding standard aimed at offering a royalty-free
baseline that achieves significantly better compression perfor-
mance than existing image coding standards and meanwhile
provides enhanced performance for image processing and
computer vision tasks. JPEG AI is designed to cater to versatile
real-world image applications, such as surveillance, cloud and
edge storage, autonomous driving, and visual data transmission
and distribution. The Working Draft (WD) and the Committee
Draft (CD) of the JPEG AI core coding system were released
in 2023. The international standard is expected to be published
in 2024.

Analogously to many existing learning-based image coding
schemes, JPEG AI adopts a VAE-based framework [51],
[54]. The input image is compactly converted into its latent
representation by an analysis transform network at the encoder
side. The synthesis transform network recovers the input image
from the latent representation at the decoder side. Moreover,
the latent representation is entropy coded as a bitstream. The
framework of JPEG AI is illustrated in Fig. 2, where only the
modules in red color are standardized. The overall framework
is optimized in an end-to-end way by minimizing the rate-
distortion cost, where the distortion term can be calculated
with the Mean Squared Error (MSE) or Multi-Scale Structural
SIMilarity (MS-SSIM) [139] for optimized objective quality
during training. Generative models such as GAN have been tri-
aled for optimizing perceptual quality during the development
of JPEG AI [125]. In particular, the GAN-based perceptual
loss [140] is introduced as one of the distortion terms for
training the networks, generating perceptual-oriented models
that provide better visual quality in low-rate coding scenarios.

JPEG AI Common Test and Training Conditions
(CTTC) [141] present guidelines on the training and
performance evaluation of the JPEG AI Verification Model
(VM). The training dataset includes 5000 images, and the
validation dataset contains 350 images. The test dataset has
50 images. Various quality metrics, including MS-SSIM,
Video Multimethod Assessment Fusion (VMAF) metric [142],
Visual Information Fidelity (VIF) [143], are employed to
evaluate the coding distortion of the reconstructed image,
emphasizing the perceptual quality of human vision. The
target bit-rates are {0.06, 0.12, 0.25, 0.50} bits-per-pixel
(bpp). The coding complexity is measured in the number
of multiply-accumulate operations per pixel (kMAC/pxl).
Compared with the VVC intra coding [144], JPEG AI VM-4.3
achieves a 28.5% BD-Rate saving at the high operation point.
At the base operation point, the averaged coding gain is
16.4% [145].

1) VAE-Based Transformation: The analysis and synthesis
transform networks of JPEG AI are built with residual blocks,
attention blocks [146], and activation layers for nonlinear con-
version. These networks are operated with the YUV 420 color
format by default, such that a color space conversion layer
is provided at the beginning of the analysis transform at the
encoder side. Moreover, the luma and chroma components
employ separated analysis and synthesis transform networks
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Fig. 2. VAE-based JPEG-AI framework. x and x̂ denote the original input image and the reconstructed images, respectively. The red modules are standardized
in JPEG-AI. The blue-green modules are the encoder side operations [124].

to reduce peak memory usage. The network is deeper and
heavier for the primary component (luma) to better compress
and reconstruct the texture details. As such, given the input
image, the analysis transform cooperating with latent domain
prediction tools maps the image into its latent representations,
which include the residual, prediction and entropy information.
The synthesis transform generates the visual signals based
on the latent representations parsed from the bitstream. The
hyper-prior networks, including the hyper encoder network,
hyper decoder network and hyper-scale decoder network, are
also built on top of the VAE, where the distribution parameters
are embedded as the hyper-prior term for high-efficiency
entropy coding.

During the standardization of JPEG AI, two operation
points, namely, the base operation point and the high oper-
ation point, are developed to cater to different application
scenarios. The layer design such as the convolution ker-
nel size and the upscaling strategy of these two operation
points are different. The decoding complexities of the base
operation point and the high operation point are around
20 kMAC/pxl and 200 kMAC/pxl, respectively [145]. In par-
ticular, the base operation point is with minimal networks
for encoding and decoding, providing a lightweight decoder
suitable for the deployment on mobile devices. The cod-
ing tools such as the residual and variance scale (RVS),
latent scale before synthesis, and enhancement filters are all
disabled in the configuration of the base operation point.
At the high operation point, attention models, including
the Transformer-based Attention Module (TAM) and the
Convolutions-based Attention Block (CAB), are enabled in the
synthesis transform network to enhance the generative capa-
bility of the decoder [124]. The high operation point enables
all the coding tools for enhanced compression performance.

2) AR-Based Context Modeling and Entropy Coding: A
decoupled architecture [125], [126] is designed for entropy
coding to decouple the decoding dependencies between
entropy decoding and latent sample reconstruction, as illus-
trated in Fig. 3. Unlike the previous design, where
the arithmetic decoder is interleaved with the generation of
the entropy parameters, the entropy decoding process in the
decoupled architecture is independent from the latent sample
reconstruction, leading to significant reductions in decoding
time. This design philosophy has been adopted by traditional
video coding standards. To be more specific, a hyper decoder

Fig. 3. Illustration of the sequential architecture and the decoupled architec-
ture; left: sequential architecture; right: decoupled architecture [125], [126].

and a hyper-scale decoder are involved in the decoupled
architecture. The prediction of latent samples is reconstructed
from the hyper decoder, and the Gaussian variance is recovered
from the hyper-scale decoder. After the quantized residual
samples are obtained from the bitstream, the reconstruction
process is invoked. In this way, the latent reconstruction and
the entropy decoding are separated; consequently, the entropy
decoding will not be suspended by the latent reconstruction.

Autoregressive models exhibit prominent context modeling
capability, which has been widely employed in the learned
image compression. Following the raster-scan sequential pro-
cessing order, the reconstruction of the current sample relies
on the previous neighboring reconstructed samples. As such,
the main issue of the autoregressive model lies in the strict
sequential processing during context modeling, which hin-
ders its deployment in real-world applications. To facilitate
parallelization and improve GPU utilization efficiency, the
wavefront parallel strategy is supported in JPEG AI con-
text modeling [125], [126], with which the latent can be
constructed in the row-wise concurrent processing order,
as shown in Fig. 4. The context network involves neighboring
reconstructed samples as input and yields multiple outputs
simultaneously, leading to much reduced decoding time.

Even though the wavefront decoding strategy can enhance
the parallelization of the context modeling and latent pre-
diction, there is still room for further improvements to the
prediction speed. A Multi-stage Context Modeling (MCM)
method [147] is adopted in JPEG AI, which enhances
parallelization to save decoding time and maintain coding
performance. More specifically, the MCM is built on top of
the decoupled architecture, which is used as the replacement
of the context model when predicting the mean of the latent
representation, so as to further reduce the decoding complexity
of the entropy coding module. Instead of sequentially mod-
eling the contexts, the tensor of the latent representation is
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Fig. 4. Illustration of the serial processing based on the raster-scan order
and wavefront processing [125], [126].

divided into 8 groups through down-shuffle, and sub-groups
are concatenated in the channel dimension. The context mod-
eling process can be regarded as the implicit prediction of
the element in the latent representation with the reconstructed
group elements. MCM achieves 97% speedup during the latent
sample prediction in the entropy decoder, with only a 2.1%
BD-Rate loss.

B. Exploration of Neural Network-Based Video Coding

Dating back to June 2020, the Joint Video Exploration Team
(JVET) of ITU-T VCEG and ISO/IEC MPEG established
an “ad hoc group” (AhG) on NNVC at the 130th MPEG
meeting and 19th JVET meeting [148]. Since then, two
categories of NNVC have been extensively studied within
this AhG. In the first category, the neural network-based
(NN-based) modules are embedded in the traditional video
coding framework to improve coding performance. In partic-
ular, the NN-based modules are used to replace the classical
coding modules such as intra prediction [149], [150], [151],
[152], inter prediction [153], [154], in-loop filter [155], [156],
[157], [158], [159], post filter [160] and resampler [161],
[162]. The overall framework is optimized with rate-distortion
criteria following the traditional coding philosophy. In the
second category, the coding paradigm is achieved with the
full neural network. More specifically, predictive coding is
explored, which employs optical flows to realize the inter pre-
diction. Then, residual signals are derived and entropy coded
with an autoencoder. Conditional coding is also investigated in
the full neural network based video coding, wherein the pre-
diction is achieved by deriving the latent representation with
the autoencoder [163], [164]. It is noted that the proposed end-
to-end learned coding method in [163] is only applied to inter
frames. For coding intra frames (i.e., I frame), the traditional
video coding standards, such as H.266/VVC intra coding or
BPG compression, are applied. Meanwhile, a common test
model, also knowned as Neural Network-based Video Coding
(NNVC), was initially produced with two NN-based in-loop
filtering tools in July 2022 and maintained for the exploration
experiments on NN-based technologies. NNVC evolves with
the investigation activities of each meeting cycle. As of
Jan. 2024, NNVC-7.1 comprises two main NN-based modules
including the NN-based intra prediction and NN-based in-loop
filtering, with the goal of enhancing the coding performance of
the traditional tools within the current H.266/VVC standard.
To be more specific, with the NN-based intra prediction, fully
connected neural networks are utilized to establish a nonlinear
mapping between neighboring reference samples and samples
in the current block [150], [165]. Moreover, the NN-based

TABLE I
CODING PERFORMANCE (BD-RATE) OF NNVC-7.1 OVER

H.266/VVC REFERENCE SOFTWARE VTM-11.0 [170]

module additionally produces auxiliary outputs that assist in
constructing the Most Probable Mode (MPM) list and selecting
transform kernels for subsequent processes. Regarding the
NN-based in-loop filtering, a convolutional neural network-
based in-loop filter is utilized to enhance the reconstruction
quality and recovering capability [157], [166], [167], [168],
[169]. The NN-based filter undergoes iterative training to
tackle the problem of excessive filtering, as outlined in [169].
Enhancing performance involves additional considerations
such as leveraging coded information, selecting parameters,
adapting inference granularity, scaling residuals, incorporating
temporal filtering, integrating deblocking filtering, aligning
with Rate-Distortion Optimization (RDO). In addition, the
deep filter supports two trade-off points in terms of compres-
sion complexity and efficiency, namely the low operation point
(LOP) at 17kMAC/pixel and high operation point (HOP) at
477 kMAC/pixel. The coding performance of the NN-based
filter and intra prediction in NNVC-7.1 as compared to the
H.266/VVC reference software VTM-11.0 is summarized in
Table I [170]. From this comparison, it is evident that signifi-
cant BD-rate gains of up to -13.59% and -12.55% are observed
for the Y component under Random Access (RA) and All
Intra (AI) configurations, respectively. This underscores the
considerable potential of neural network-based coding tools
in advancing video compression performance.

C. Exploration of Generative Face Video Coding

Different from early model-based coding (MBC) tech-
niques [171], [172], [173], [174], generative face video
coding (GFVC) schemes [175], [176], [177], [178], [179],
[180], [181], [182] exploit the excellent generative ability
of deep generative models [1], [183] to improve the face
reconstruction quality and realize ultra-low bitrate face video
communications. Specifically, the encoder employs the tradi-
tional image/video codec to compress the key-reference frames
of a face video, and encodes the subsequent inter frames
into compact transmitted symbols (e.g., landmarks/keypoints,
compact feature and facial semantics). Besides, the decoder
feds these decoded key-reference frames and compact facial
representations into the deep generative model to learn the
temporal evolution and reconstruct these face frames. The
typical framework of GFVC is depicted in Fig. 5.

Inspired by such promising rate-distortion performance,
some GFVC proposals have been submitted to JVET, where
they explored whether GFVC’s compact symbols could
be inserted into an H.266/VVC bitstream as Supplemental
Enhancement Information (SEI) messages. More specifi-
cally, the generative face video (GFV) SEI message [184],
[185] allows VVC-coded pictures to be utilized as the base
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Fig. 5. Framework of Generative Face Video Coding.

(key-reference) pictures and incurs only very little overhead in
the compressed bitstream to signal compact facial information
with different representation types, including compact tempo-
ral features, 2D keypoints, 3D keypoints, facial semantics and
others. In addition, several proposals [186], [187], [188] aim
to enable a more common GFV SEI syntax and specify the
decoder interface with the generative neural network.

Furthermore, Ye et al. [189] made the related technical
requirements regarding the exploration and potential standard-
ization of ultra-low bitrate 2D generative face video coding
methods. As such, JVET experts decided to establish a new ad
hoc group to conduct GFVC investigations on software imple-
mentation, experiment coordination, interoperability studies,
and other related aspects. In particular, a unified software pack-
age [190] with various GFVC methods has been proposed to
allow coding to be performed using the VVC Main 10 profile
in Jan. 2024. Besides, the common test conditions and software
reference configurations [191] have also been specified for
GFVC experiments. In addition, the interoperability study
in feature translation [192] and lightweight model [193] on
different GFVC systems are further investigated to allow more
flexible GFVC applications within acceptable performance
losses.

In short, the current GFVC standardization activities are
mainly concentrated on the design of the SEI message with
rich facial representations such that it warrants the service
of ultra-low rate communications, user-specified anima-
tion/filtering and metaverse-related functionalities. Certainly,
there exist issues and challenges for GFVC’s standardization
and deployment, e.g. unstable generation quality, high decoder
complexity, inadequate model interpretability and inappropri-
ate evaluation measures.

V. VISUAL SIGNAL PROCESSING
WITH GENERATIVE MODELS

Apart from visual signal coding, another major application
venue of generative models is visual signal processing. Various
generative models have been applied and adapted to differ-
ent image and video processing tasks, including restoration,
synthesis, editing, and interpolation. This section provides
a brief overview of the important works on these research
topics, highlighting the important role of generative models for
these applications. It is noted that there is another important
research area focusing on the generation of visual signals
from texts. Due to the limited length of this paper, here
we solely review the approaches that take visual signals as
input.

A. Generative Visual Signal Restoration
Image and video restoration is a process to recover the

high-quality version of a visual signal that is associated
with different perceptual artifacts. These artifacts can be
generated in different production stages, including content
capture, transmission, and display, which could potentially
degrade the perceptual quality of visual signals and reduce
the effectiveness of high-level computer vision algorithms
(e.g., detection and classification) [194]. Various restoration
methods are commonly applied at different steps in the pro-
duction pipeline. According to the nature of the artifacts,
restoration methods can be classified as denoising (to remove
camera and production noises), deblurring (to reduce focal or
motion blurs), dehazing/deraining (to alleviate the haze and
raining effect), super-resolution (for spatial resolution upsam-
pling) and compression enhancement (to remove compression
artifacts) [195]. As the review of visual signal coding with
generative models has already been conducted in Section III,
here we solely focus on other restoration tasks, providing a
concise summary of some key works based on generative
models, which are proposed for visual signal restoration. For
a more comprehensive overview of the literature on this topic,
the reader is referred to references including [195], [196],
[197], [198].

1) VAE-Based Restoration: Early attempts at generative
restoration include [15], [199], which employ vanilla VAEs
to perform denoising. Their performance has been further
improved by Denoising Autoencoders (DAE) [200], which
train VAEs with noise injected into their stochastic hid-
den layer. Moreover, the DAE model has been enhanced
through the combination with a more advanced training
methodology, resulting in Denoising Adversarial Autoen-
coders (AAEs) [201], and by incorporating explicit models
of the image noise distribution in the decoder, with DivNois-
ing [202] as a notable work. VAE-based approaches have also
been applied to deblurring, with examples including [203],
[204], where the networks employed consist of an autoencoder
to learn the image prior and an adversarial network to discrim-
inate blurred and clean images or their features. Moreover,
VAEs have also contributed to the task of dehazing/deraining.
The variational image detraining (VID) [205] method uses
a conditional variational encoder (CVAE) to perform prob-
abilistic inference that increases the diversity of prediction.
pWAE (pixel-wise Wasserstein autoencoder) [206] introduces
2D latent tensors to the Wasserstein autoencoder to allow
pixel-wise matching, which is reported to offer better dehazing
performance compared to conventional autoencoders. Finally,
VAEs have also advanced the development of superresolution.
Important works include SR-VAE (Image Super-resolution
via Variational AutoEncoders) [207] and VDVAE-SR (Very
Deep Variational Autoencoder Super-resolution) [208]. SR-
VAE learns the conditional distribution of high resolution
images providing their low resolution counterparts, which
can generate super-resolution results with photorealistic visual
quality and relatively low distortion [207]. VDVAE-SR adapts
a very deep VAE model to single-image super-resolution and
employs a low resolution (LR) encoder to learn the image
prior. This has been demonstrated to provide competitive
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super-resolution performance compared to the SotA at the
time [208].

2) GAN-Based Restoration: As one of the primary types of
generative models, GANs have been widely used for visual
signal restoration. Typically, these GAN-based approaches
enable the generation of photorealistic details rather than
simply minimizing the distortion between the output and
the training targets. For the task of denoising, a number of
GAN-based methods have been proposed in the context of
natural and medical image denoising. For example, a GAN
was trained in [209] to learn the noise distribution within noisy
input images, based on which noise samples are generated
from clean images and used to train a deep CNN for denoising.
For this task, more advanced GAN architectures are also
employed, with examples based on CycleGAN [210], Style-
GAN [211], and Wasserstein GAN [212]. In the research field
of dehazing/deraining, researchers not only utilized existing
GAN models for clean image and video recovery [213],
[214], but also developed customized GAN-based approaches
for this purpose. A notable approach is FD-GAN, which
employs a fusion discriminator to learn additional priors from
frequency information - this allows the generation of more
photorealistic dehazed images. Similarly, DW-GAN [215] was
developed by combining a GAN with a discrete wavelet
transform to obtain excellent dehazing performance for images
with a nonhomogeneous haze effect. For superresolution,
a large number of methods have been proposed based on
existing GAN models such as standard GANs [5], [216],
conditional GANs [217], [218], patch GANs [219], [220],
relativistic average GANs [221], [222], [223] and Wasserstein
GANs [224]. One of the earliest but influential works is
SRGAN [5], which is arguably the first attempt focusing on
perceptually inspired super-resolution. Different GAN vari-
ants have also been designed specifically for this task, with
recent examples such as content-aware local GAN (CAL-
GAN) [225] and Generative and Controllable Face Super
Resolution (GCFSR) [226].

3) Restoration Based on Diffusion Models: In the past
three years, being one of the most popular research topics
in machine learning and computer vision [227], diffusion
models have now been actively exploited in the context of
image and video restoration. Although it is at a very early
stage, this type of approach shows the promise in competing
with classic CNN-based restoration methods and those based
on other generative models. For example, denoising diffu-
sion probabilistic models (DDPMs) have been employed for
single- and multiple-weather image restoration (e.g., desnow-
ing, deraining, and dehazing) in [228]. DDPMs have also
inspired super-resolution approaches such as SR3 (Super-
Resolution via Repeated Refinement) [229] and SRDiff [230].
Moreover, a new Denoising Diffusion Restoration Model
(DDRM) has been proposed in [231] for multiple restoration
tasks, including debluring, super-resolution, and inpainting.
While various diffusion models have been used and developed
for the restoration task, they can also be combined with
other deep learning techniques to achieve improved restoration
performance. One of the notable works in this category is
the Implicit Diffusion Model (IDM) [232], which integrates

the implicit neural representation and diffusion models in the
same framework - this allows the developed super-resolution
model to perform continuous-resolution requirement. Despite
the promising results generated by various diffusion models for
the restoration task, its low computational efficiency has also
been observed and considered a common drawback. Recently,
efforts have been made to design light-weight diffusion-based
restoration models, including Spectral Diffusion [123] and
DiffIR [233].

B. Generative Visual Signal Synthesis and Editing

As another important research area in visual signal pro-
cessing, image and video synthesis and editing focus on
generating photorealistic content, or editing existing images
or videos with a new style, background, or foreground [234].
In recent years, advances in generative models have made
significant contributions to this research field. According
to the input references, these synthesis and editing meth-
ods can be classified as visual guidance, audio guidance,
or text guidance. Due to the limited space in this survey
paper, here we mainly focus on the review of generative
synthesis and editing approaches based on visual guidance.
For a more detailed overview on this topic, the readers are
referred to [234]. Among all generative synthesis and editing
methods, an important approach is Pix2PixHD [235], which
generates high-resolution synthetic images using conditional
GANs from semantic label maps. Another influential work is
SPADE [236], in which semantic image synthesis is achieved
through spatially-adaptive normalization using a VAE. This
method has been reported to generate better synthesis results
compared to Pix2PixHD [235]. More recently, diffusion mod-
els have also been used for this task, with the latest examples
including SDM [237] and CycleDiffusion [238]. The former
exploits the use of DDPM for semantic image synthesis, while
CycleDiffusion investigates the stochastic diffusion probabilis-
tic models in the latent space, and shows its effectiveness
for various image editing tasks. Specific models have also
been designed for image-to-image translation, including those
based on GANs [239], [240], autoregressive models [241],
VAEs [242], [243] and diffusion models [244], [245].

C. Generative Video Frame Interpolation

Similar to super-resolution, which increases spatial res-
olution, video frame interpolation (VFI) is the technique
for generating content with higher frame rates through
synthetically creating intermediate frames between existing
consecutive video frames. Non-generative leaning-based VFI
methods are typically classified as kernel-based [246], [247] or
flow-based [248], [249], based on different network structures
and motion models, respectively. Recently, generative VFI
methods have also been developed to obtain interpolated
content with high-fidelity perceptual quality. GANs are widely
adopted in this research field, typically with an adversarial
network used to enhance the generator to produce results
with better visual quality. The standard GAN architecture has
been employed in [250] for VFI; A multiscale GAN structure
was developed in [251] to achieve improved visual quality
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Fig. 6. Visual comparison of the video frame interpolation results generated by SotA generative and non-generative models.

and faster interpolation speed; Two GANs are concatenated
in [252] to learn spatial and temporal (motion) information
separately. Moreover, Frame-GAN was developed based on
Wasserstein GANs with gradient penalty [253] and a modi-
fied generator loss. Recently, the research of VFI has been
boosted by the advances in diffusion models. One of the first
diffusion-based VFI approaches is the Masked Conditional
Video Diffusion (MCVD) [254], which is based on a proba-
bilistic conditional score-based denoising diffusion model. Its
performance has been further outperformed by MV-Diffusion
(Motion-aware Video Diffusion) [255], in which long-term
and short-term motion trajectories have been learned using
DDPMs with a motion trend attention model. More recently,
latent diffusion models (LDM) have been adapted to VFI,
and one of the resulting approaches, LDMVFI [256], achieves
superior interpolation performance, in particular for video
content with large motions and dynamic scenes. Fig. 6 shows
the visual comparison results between LDMVFI and four other
well-performing, non-generative VFI methods, IFRNet [249],
BMBC [257] and ST-MFNet [258]. It has been observed that
LDMVFI can reconstruct sharp edges and textural details,
which are similar to those in the ground truth content, while
other methods tend to result in interpolation results with
blurring and structural artifacts. This demonstrates the effec-
tiveness of diffusion models when employed for VFI.

VI. GENERATIVE QUALITY ASSESSMENT

In this section, we summarize the related work on gener-
ative model-based quality assessment and the quality metrics
developed for assessing generative models.

A. Generative Model-Based Quality Assessment

Visual quality assessment is one important research topic in
visual signal processing. It is typically used for evaluating and
comparing the performance of different processing methods.
In the context of deep learning, quality metrics can be also
employed in the training process as a loss function, to optimize
the model generalization. In the current literature, generative
models have also been used for image and video quality
assessment. For example, a no-reference image quality metric

has been proposed in [259] based on a GAN, which generates
training samples to tackle a common issue with deep learning
based quality assessment, the lack of reliable training content.
A further work [260] focuses on using a GAN to predict
the primary content of a distorted image, with internal gen-
erative mechanism inspired constraints. Moreover, alternative
GAN architectures have been exploited by researchers in this
research field, such as [261] using Wasserstein GANs to
achieve opinion-unaware image quality assessment. Recently,
diffusion models (DDPM in this case) have also been inte-
grated in the image quality assessment framework for facial
content [262], to generate perturbations and estimate their
influence on perceptual quality.

B. Quality Assessment for Generative Models

It is noted that generative models produce visual content
which tends to have different characteristics compared to
that generated by non-generative learning based and con-
ventional processing approaches. This challenges the current
common practices used for algorithm evaluation. It leads to
another research area, quality assessment for generative mod-
els. To this end, researchers have developed various quality
databases that contain content produced by generative models.
This provides a ground-truth database for benchmarking exist-
ing quality metrics and developing new assessment methods.
LCIQA [263] is one of such works, which generates test
content employing various learned video codecs based on
commonly used CNNs and GANs. The resulting database
was then used to evaluate several widely used full refer-
ence and no reference quality metrics. Another study [264]
investigates the performance of heuristic metrics such as the
Inception Score (IS) [265] and the Fr’echet Inception Distance
(FID) [266] for generative models in the context of image
generation. The results show that although these metrics offer
a relatively good correlation to several f-divergences, their
ranking ability is limited when generative model performance
is close. To further improve the quality prediction accuracy for
generative models, enhancement methods have been proposed,
including compound FID (CFID) [267], GAN-IQA [268] and
DR-IQA [269]. A recent work in this domain proposed a
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lightweight generalizable framework to evaluate generative
models [270]. The new metrics developed in this work demon-
strate improved quality prediction performance compared to
existing evaluation methods, such as FID [266].

VII. OPTIMIZATION OF VISUAL SIGNAL CODING AND
PROCESSING WITH GENERATIVE MODELS

Though generative models have shown promising results
in visual signal coding and processing, their implementation
requires care and optimization. First, due to the use of neural
networks, the complexity is often too high to meet real-time
requirements. To solve this problem, there have been several
fast optimization techniques at the algorithmic and architec-
tural levels. Second, issues such as the model robustness and
variable bitrate also deserve investigation.

A. Fast Optimization for Learned Image Compression

In this section, we introduce various optimization techniques
for learned image compression models that adopt the factor-
ized prior and/or hyperprior.

1) Algorithmic Optimization: Network quantization plays
an important role in algorithmic optimization. As shown
in [271], compared with the 32-bit floating-point arithmetic,
the 8-bit fixed-point arithmetic reduces the energy con-
sumption for additions and multiplications by 30x and 19x,
respectively. Therefore, network quantization is crucial for
fast and low-complexity implementations. Different from other
generative applications, learned codecs require entropy coding,
which demands the bit-exact accuracy to ensure interoper-
ability across platforms. As a result, network quantization is
also essential to bit-exact computation. Several quantization
methods have been proposed in the literature [272], [273],
[274], [275], [276], [277].

As reported in [278], there are two major approaches
to network quantization: (1) the quantization-aware training
(QAT) and (2) the post training quantization (PTQ). For the
QAT scheme, a pre-trained floating-point network is quantized
and fine tuned in the presence of quantization. The fine tuning
may be carried out with respect to the network weights and/or
the additional parameters (e.g. quantization bit depth) for
quantization. For the PTQ scheme, the pre-trained floating-
point network is directly quantized. The key procedure is
to use the calibration dataset to find the optimal clipping
range and quantization schemes (e.g. linear or non-linear
quantization with or without zero offset).

For learned image compression, [279] exploits the Vitis AI
Quantizer to generate an 8-bit quantized model. Both PTQ
and QAT are supported in the Vitis AI Quantizer. After the
quantization, the coding performance loss is tolerable in terms
of the bpp overhead and PSNR loss. Reference [273] proposes
a channel-wise QAT scheme for the weight quantization.
A heuristic fine-tuning scheme starting from the synthesis
transform is developed. In the case of the 8-bit quantization,
the coding loss is negligible compared with the 32-bit anchor.
In order to further reduce the coding loss resulting from the
activation quantization, a PTQ method based on the channel
splitting is proposed in [280]. Specifically, some channels with

large magnitudes are equivalently split into multiple channels
to reduce quantization errors while a few channels are pruned
to maintain the overall network complexity. As compared
with the previous work [273], it achieves a BD-rate saving
of up to 4.74%. Another innovative work [281] proves that
the well-used mean square error reduction is not an optimal
criterion to decide the quantization parameters. Alternatively,
they propose a rate-distortion optimized PTQ (RDO-PTQ),
which uses the rate-distortion cost as the criterion for PTQ.
Compared with [280] and [281] performs better on MSE-
optimized models.

In addition to network quantization, network pruning,
another type of network compression, has also been applied
to learned codecs. Reference [282] aims at pruning the
hyper path. Based on ResRep [283], a Lasso penalty is
added in the loss function to adapt the number of pruned
channels. Results show that at least 22.6% of the network
parameters are saved with a negligible coding loss. Ref-
erence [284] proposes an asymmetric framework composed
of a heavy encoder and a lightweight decoder. In addi-
tion, the unstructured element-wise pruning and structured
channel-wise pruning methods have been trialed. Interestingly,
in the case of channel-wise pruning, removing the channels
with larger l1 norms is found to be more effective than
removing the ones with smaller l1 norms.

There have been some other low-complexity algorithms.
To reduce the decoding complexity, [285] realizes a real-time
framework by mask decay. They utilize knowledge distillation
techniques to transform the parameters from large models
to small models. By doing so, the coding performance is
improved by more than 30% for smaller models. In addition,
the residual representation learning is proposed to implement
a variable-rate encoder. Reference [286] utilizes indepen-
dent separable downsampling and upsampling components
to reduce the network burden. Besides, similar to [284],
an asymmetric architecture is proposed to boost the decoding
speed. When implemented on Intel Core i7-9700K@3.6GHz,
it reaches a decoding throughput of 37.5 FPS for small models.

In addition, some hardware-oriented algorithmic optimiza-
tions have also been proposed. Reference [287] assumes that
activations (feature maps) dominate the data transfer between
the on-chip and off-chip memory. To reduce the bandwidth
for transferring the activations, they propose a differentiable
pipeline to include the required bandwidth in the classical
rate-distortion loss function for training. Compared with using
only the rate-distortion cost as the loss function, this modified
training objective incurs little loss in coding performance.
Reference [288] utilizes lookup tables to construct the hyper
decoder. Compared with inferencing neural networks, both the
model size and runtime are much reduced.

2) Architectural Optimization: This section further intro-
duces some FPGA implementations. Reference [289] utilizes
AMD/Xilinx Zynq UltraScale+ MPSoC ZCU104 fabri-
cated with 16nm technology. The PL chip is XCZU7EV-
2FFVC1156, which owns the resource of 504 kilo logic
cell, 38 Mb memory and 1728 DSP. Reference [289] uses
DPU as the hardware accelerator, and the working frequency
is 350 MHz. It achieves 3.90 FPS for 720P, 1.68 FPS for
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Fig. 7. A demo system for learned image compression. Encoding is
performed on an FPGA board KU115, while decoding is performed on an
FPGA board VCU118. The links of demo videos are given in the footnote.

1080P and 0.42 FPS for 4K resolutions, respectively. Though
the throughput is rather low, as one of very early FPGA-based
learned codec frameworks, [289] represents a starting point
and offers useful insights into future research directions.
It is a complete system, including video capturing, encoding,
decoding and display. The model of [289] is mainly based on
a block-wise coding framework [290].

Reference [291] also utilizes two UltraScale+ MPSoC
evaluation boards ZCU102 and ZCU104 working at 200 MHz
to implement a factorized model [49]. The authors implement
the hardware accelerator by Verilog HDL. When dealing with
256 × 256 images, it requires 15.87 ms and 14.51 ms for
encoding and decoding, respectively. Note that to reduce
the hardware complexity, [291] also proposes a piece-wise
linear approximation of the generalized divisible normalization
(GDN) operation and its inverse operation. L eLe [292]
proposes an FPGA architecture with a fine-grained pipeline to
implement the hyperprior model in [293]. Different from using
DPU, which is a generic architecture, the proposed pipeline
architecture is more flexible for the neural layers with various
CTC ratios. When implemented with an AMD/Xilinx Virtex
UltraScale FPGA VCU118 development board, it achieves
40.69 FPS and 35.77 FPS for encoding and decoding 720P
videos, respectively. For 1080P videos, it achieves 19.15 FPS
and 16.83 FPS for encoding and decoding, respectively. Refer-
ence [294] gives a CPU-FPGA system where entropy coding is
performed at the CPU side and neural computing is performed
at the FPGA side. A system-level pipeline is required to
process the tasks on CPU and FPGA in a parallel manner.
A demo system is given in Fig. 7 where the encoding is
performed on an FPGA acceleration board KU115 and the
decoding is performed on VCU118. Some demo videos can
be found here.1,2

For the above three FPGA codec systems, the power effi-
ciency are around 29 GOPS/W, 47 GOPS/W and 21 GOPS/W
for [289], [292], and [291], respectively. If those GOPS/W
satisfy the required performance of learned codecs, then those
codecs can run smoothly on the devices. For example, assum-
ing one watt power supply for the circuit performing the codec

1https://youtu.be/-unSbqsUS8Y
2https://youtu.be/Y4QO2h0LEDQ

operations, we can only compute about 40 giga operations per
second.

However, the above results are from FPGA implemen-
tations. As compared to FPGA implementations, ASIC
implementations are expected to have much higher power
efficiency. However, up to now, there has been no ASIC
implementation for learned image compression. One potential
reason is that traditional codecs have specific components
such as intra/inter prediction and DCT, so that we are able to
develop corresponding ASIC chips such as [295], [296], and
[297]. However, learned codecs are mainly based on neural
networks, the computation of which can be executed efficiently
on neural processing units (NPU). An edge device equipped
with an NPU chip capable of delivering 20 TOPS/W may
meet the computation requirements of some recent learned
image codecs such as [298], which consumes about hundreds
of GOP for one Kodak image.

B. Fast Optimization for Learned Video Compression

For video compression, since the inter frame is taken into
account, the complexity becomes even higher. As a result, fast
optimization techniques become even more desirable.

1) Algorithmic Optimization: Reference [299] presents a
real-time design, reaching 720P@25FPS decoding on GeForce
RTX 2080. To avoid the cross-platform interoperability issue,
the coordinates of the transboundary quantization positions are
included in the bitstream. Besides, several lightweight methods
such as model pruning have been adopted to reduce the
decoding complexity. As a result, decoding an I-frame takes
37.1 ms and decoding a P-frame takes 39.9 ms. With a Group
of Pictures (GOP) of 12 frames, the average time per frame
is 39.7 ms, which translates into 28.1 FPS. Reference [300]
proposes a novel model-agnostic pruning scheme based on
gradient decay and layer-wise distillation. The effectiveness
has been evaluated on various learned video codecs: FVC,
DCVC and DCVC-HEM. As a result, 2× speed-up with less
than 0.3 dB BD-PSNR loss is achieved.

2) Architectural Optimization: As an extension of [279]
and [289] gives an FPGA implementation for learned video
compression with P-frame. By using the same deployment
methods and evaluation board, a P-frame framework is
mapped onto FPGA. When tested on JVET Class B and
Class C datasets, it achieves better coding performance than
x264-veryfast.

Reference [301] gives an ASIC design for learned video
compression. Based on a residual coding framework, it fea-
tures a CNN-Transformer neural network to enlarge the
receptive field. Moreover, it adopts the Winograd algorithm
to implement fast convolution and deconvolution. Notably,
they develop a reconfigurable processing unit for the proposed
fast algorithm. In addition, a dedicated data flow is presented
to minimize the off-chip memory access. When synthesized
by Synopsys Design Complier with TSMC’s 28nm technol-
ogy, it is able to operate at 400 MHz. With a throughput
of 3525 GOPS, the real-time decoding of a 1080P video
at 25 FPS is made possible. Compared with CPU and GPU
implementations, this design has significantly higher energy
efficiency in terms of GOPS per Watt.



CHEN et al.: SURVEY ON VISUAL SIGNAL CODING AND PROCESSING WITH GENERATIVE MODELS 163

3) System Optimization: Mobilecodec [302] is the first-
ever real-time inter-frame learned video decoder. When tested
on Snapdragon 8 chip, it achieves a decoding throughput
of >30 FPS for 720P videos. Similar to traditional video
compression, video frames are processed in the unit of GOP.
For coding intra frames, a typical VAE-based model with the
hyperprior is adopted. For coding inter frames, they follow
the residual coding framework [93], which is composed of
the motion network and the residual network. To reduce the
complexity, a flow-agnostic motion compensation network
with only convolutional operations is proposed.

To run with the fixed-point arithmetic, [302] utilizes QAT
to fine tune the 8-bit quantized network. Based on the
dynamic range of the computation, the channel-wise quanti-
zation is adopted for both weights and activations. Regarding
the computational complexity, the I-frame decoding costs
130.9 kMAC/Pixel, and the P-frame decoding consumes
257.1 kMAC/Pixel.

As an enhanced version of [302] and [303] realizes faster
throughput and better coding performance. In detail, it reduces
the decoding MAC by 10 × and saves 48% BD-rate compared
with [302]. The same as [302] and [303] is also based
on the residual coding framework. Different from [302],
a block-based warping scheme is proposed for the P-frame
coding. Regarding the network quantization, the symmetric
channel-wise quantization is adopted for weights, whereas the
asymmetric layer-wise quantization is adopted for activations.
Here, the asymmetricity represents the use of a zero offset.
Reference [303] also provides a system-level pipeline for the
tasks on CPU, GPU, NPU and warping kernel. When tested on
HEVC-B dataset, it is able to decode the videos at 38.9 FPS.
Regarding the coding performance, there is still a gap between
the 8-bit integer version and H.264 (FFmpeg).

C. Fast Optimization Based on Implicit Neural
Representations

There are two types of Implicit Neural Representation
(INR). One uses the pixel coordinates as inputs and the
network learns to generate the color values for the pixel in
question. Another simply overfits an autoencoder or a decoder
for a given image/video.

For the first category, starting from [304], there have
been quite a few INR-based image/video compression meth-
ods [305], [306], [307], [308], [309], [310], [311], [312],
[313], [314].

As one of the very first attempt at INR compression, [304]
overfits the image with a small MLP. After that, the weights
of MLP are quantized and stored as the bitstream. Compared
with the typical hyperprior frameworks, there is still room for
improvement in terms of compression performance. However,
the model size is only 14 kB, which is smaller than the
hyperprior by several orders of magnitude.

Reference [305] tackles some issues of the design in [304].
The first issue is the prolonged encoding time for overfitting
the model. To accelerate the overfitting process, [305] uses the
idea of meta learning to determine the initial weights. The
second issue is the inferior coding performance. To solve

this problem, the post-quantization optimization and entropy
coding have been proposed for the INR-based compression
framework. As a result, it outperforms [304] significantly in
terms of the coding performance. The convergence speed is
also much faster than [304].

As a very recent work, [306] proposes a combined manner
of latent and INR-based compression. INR works for two
networks: the entropy network and synthesis network. At the
decoding side, the entropy network and the synthesis network
are reconstructed based on the decoded weights. The means
and scales are then generated to formulate the prior distribu-
tion. Through the entropy decoding, the latent is recovered.
Finally, the latent will be sent to the synthesis network to
generate the decoded image. In addition to image compression,
[306] also extends the framework to video compression. As a
result, [306] only consumes 3 kMAC/Pixel and 5 kMAC/Pixel
for image and video, respectively. Furthermore, its coding per-
formance is quite attractive. For image coding, it is comparable
with VVC. For video, it is comparable with [90].

For the second category, the key concept is to use overfitting
to reduce the amortization gap [315]. There have been several
works [316], [317], [318], [319], [320]. Reference [318]
improves the reconstruction quality by overfitting the bias in
the decoder. Reference [316] fine tunes not only the encoder
and latent, but also the entire model. Reference [317] makes
the factorized prior and hyperprior models more suitable to
the test instance. Reference [319] studies how to overfit some
important parameters in order to reduce the overhead. Different
from the above works for images, [320] fine tunes the model
for video.

D. Other Optimization Schemes for Practicality
Considerations

The above three subsections are mainly for fast and low-
complexity implementations. In addition to the speed, there are
several optimization techniques for practicality considerations.
We mainly introduce the adversarial attack and variable bitrate
in this subsection.

Adversarial attack is one way to mislead the results of
neural networks. For learned codecs, since the neural network
structure is usually disclosed, the attacker can easily fetch the
network parameters and generate adversarial inputs. The target
of the adversarial attack can be the reconstructed quality (e.g.
PSNR, MS-SSIM) or bitrate. There have been several works
targeting at the attack and defense of learned codecs [321],
[322], [323], [324]. Reference [321] is a very early attempt
at the white-box and black-box attack on learned image
compression. Reference [322] proposes a training-free defense
framework with a random input transform. The method does
not influence the rate-distortion result for the clean image.
Reference [323] gives a comprehensive study on various
attack methods, attacking targets, neural network structures
and bitrates. The attack transferability to VVC was also studied
in [323]. Reference [324] also tries various settings for the
attack. Besides, several efficient defense methods such as
pre-processing and adversarial training are proposed.

Variable bitrate is another important issue. Different
from the traditional codec which utilizes quantization
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parameters (QPs) to control the bitrate, learned codecs usually
incorporates a hyperparmeter λ to adjust the trade-off between
rate and distortion. Each λ corresponds to a specific model,
which increases the storage cost of network models. To solve
this problem, there have been several works [325], [326],
[327]. Reference [325] adopts a conditional autoencoder.
λ and quantization bin size are used for the rate control.
Reference [326] adopts multiple λ in the training phase, so that
the resulting model is able to interpolate between the pre-
trained λ to achieve variable-rate coding. Reference [327]
utilizes a quality map to generate prior condition features,
and then insert these features into the encoder and decoder
to realize variable-rate coding.

VIII. CONCLUSION

Generative models have become a vital and quickly pro-
gressing field of study in the era of artificial intelligence.
They have achieved great success in various tasks and have
also exerted a substantial impact on visual signal coding and
processing. This paper offers a concise review of genera-
tive models, along with a comprehensive survey of visual
signal coding with generative models, focusing specifically
on algorithms for image and video coding. Additionally,
it addresses the recent advancements in international standard-
ization efforts for visual signal coding with generative models.
These efforts are extremely important for media industry. This
paper also discusses the research works of applying generative
models to various image and video processing tasks, such as
restoration, synthesis, editing, and interpolation, along with
visual signal quality assessment using generative models and
quality assessment for generative models. Finally, this paper
discusses the latest advancements in optimization research on
visual signal coding and processing with generative models.
The field of visual signal coding and processing with genera-
tive models is vast and rapidly evolving, making it difficult to
undertake a comprehensive overview that includes all relevant
works. Inevitably, some important research or emerging trends
may have been overlooked in this paper. We hope that this
survey will provide valuable insights and encourage further
exploration and innovation among researchers in this field.
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