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Abstract— In-memory computing seeks to minimize data move-
ment and alleviate the memory wall by computing in-situ,
in the same place that the data is located. One of the key
emerging technologies that promises to enable such computing-in-
memory is spin-transfer torque magnetic tunnel junction (STT-
MTJ). This paper proposes AM4, a combined STT-MTJ-based
Content Addressable Memory (CAM), Ternary CAM (TCAM),
approximate matching (similarity search) CAM (ACAM), and
in-memory Associative Processor (AP) design, inspired by the
recently announced Samsung MRAM crossbar. We demonstrate
and evaluate the performance and energy-efficiency of the AM4-
based AP using a variety of data intensive workloads. We show
that an AM4-based AP outperforms state-of-the-art solutions
both in performance (with the average speedup of about 10 ×)
and energy-efficiency (by about 60 × on average).

Index Terms— Non-von Neumann computer architecture, asso-
ciative processor, associative memories, MRAM, MTJ, double-
barrier MTJ, CAM, TCAM, emerging memories.

I. INTRODUCTION

COMPUTING is increasingly dominated by the transfer
of large data volumes through bandwidth-limited inter-

faces to the locations where computations are performed,
which hampers the performance and energy-efficiency of
conventional computer architectures [1]. This is leading to
a change in computing paradigms: instead of moving the
data to the computation, the computation is moved closer
to the data. The straightforward approach, known as “near-
memory computing”, places processing units close to memory
arrays [2], [3], [4], [5]. An alternative way to overcome the
so-called “memory wall” is to compute in-data, i.e., directly
within the memory arrays. This paradigm, which we refer to
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throughout this work as “in-memory computing”, employs the
same memory cells for both data storage and data processing.

This work is inspired by the 2-transistor 2-resistor (2T2R)
magnetoresistive (MRAM) crossbar design, recently unveiled
by Samsung [6]. We keep the original topology of Samsung’s
MRAM crossbar to develop a massively parallel general-
purpose in-memory computer architecture. We accomplish this
goal by:

1) Converting the crossbar into an associative memory
(AM), and

2) Transforming the associative memory into a massively
parallel in-memory associative computer.

Specifically, we propose AM4, a novel associative
in-memory computing architecture, and investigate its design
trade-offs, explore its design space, and evaluate its perfor-
mance and energy-efficiency. Additional use cases for AM4

include Content Addressable Memory (CAM), Ternary CAM
(TCAM), and approximate match (similarity search) associa-
tive memory (ACAM).

To our knowledge, AM4 is the first magnetoresistive NAND
CAM based on an MRAM crossbar. In a conventional NOR-
type CAM [7], [8], [9], [10], the matchline discharges on a
mismatch. In a typical CAM and TCAM application, only
one memory row matches, while the rest mismatch. Since
mismatches are much more frequent than matches, all match-
lines need to be precharged prior to every search/lookup,
resulting in a very significant energy consumption. In contrast,
in a NAND-type CAM, only the matching row(s) discharge,
reducing the energy consumption of search/lookup by orders
of magnitude.

Our research methodology spans from high-level software
simulation through to accurate transistor-level circuit simula-
tion. Our circuit design utilizes a 28 nm FDSOI technology
node along with a Verilog-A based compact model for the
double-barrier magnetic-tunnel junction (DMTJ) device [11].
Evaluations under exhaustive Monte Carlo simulations show
that AM4 offers a compare time of about 1.4 ns, which
consumes and 1.73 fJ of energy. These results are achieved
with a bit cell footprint of just 0.138 µm2. Smith-Waterman
optimal sequence alignment algorithm [12] is used to evaluate
AM4 and compare it to state-of-the-art computing in-memory
and conventional solutions. Results show that AM4 can pro-
vide orders-of-magnitude performance and energy-efficiency
improvement versus traditional von Neumann architecture.
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The contributions of this work are summarized as follows:
• AM4 is the first NAND-type CAM based on a

random-access magnetoresistive crossbar.
• AM4 is the first solution that converts an MRAM crossbar

into a massively parallel, general purpose digital in-
memory computer.

• The proposed AM4 architecture enables multiple appli-
cations including CAM, TCAM, approximate CAM, and
in-memory associative processor within the same basic
design.

• We thoroughly evaluate AM4 under both software and
circuit simulation, and conduct a rigorous design space
exploration, including susceptibility to process variations.

The rest of this work is organized as follows: Section II
overviews the background of this work; Section III intro-
duces the proposed MRAM crossbar based associative mem-
ory/processor design; Section IV presents the functional ver-
ification of AM4; Section V presents the simulation results,
while Section VI and Section VII show application results and
related work, respectively. Finally, Section VIII summarizes
the main conclusions of this work.

II. BACKGROUND

A. Samsung’s MRAM Crossbar Array

Samsung recently unveiled an MRAM crossbar design for
in-memory computing [6], which was used to implement a
binary neural network. The crossbar array and a schematic rep-
resentation of a 2T2R MRAM cell are illustrated in Fig. 1(a)
and (b). Each crossbar cell comprises two magnetic-tunnel
junction (MTJ) devices, which store the data bit and its
complement, and two selector transistors (INx and INy), which
are driven by signals INj and its complement (INj) that are
shared by all cells in a row j . The bottom node of each
cell is connected to the top node of the cell immediately
below to enable writing to the crossbar. To complete the
write connectivity, an additional switch (WENi) connects two
vertically adjacent cells to the vertically routed WDATA signals,
as shown in Fig. 1(c). These connections are interleaved, such
that even rows are connected to WDATA[0] and odd rows are
connected to WDATA[1]. To write a value into the 2T2R bitcell,
the WEN switches that are adjacent to the target cell (above
and below) are enabled, and a two-cycle operation is applied.
During the first cycle, the INx switch is turned on and the
WDATA signals are driven to write the parallel or anti-parallel
states into the left MTJ, denoted as MTJ1 in Fig. 1(c). The
same procedure is applied during the second cycle, in which
the INy switch is enabled to write the complementary state
into the right MTJ (MTJ2).

B. Associative Processor

An associative processor (AP) is a non-von Neumann com-
puter [13]. A 9T static CMOS CAM-based AP is illustrated
in Fig. 2. The main component of an AP is an associative
memory array (CAM), which allows (1) comparing the entire
dataset to a search data pattern (refer to COMPARE KEY
in Fig. 2), (2) tagging the matching rows (TAG circuitry

is shown in Fig. 2(b)), and (3) writing another data pattern
(WRITE KEY in Fig. 2) to all tagged rows. An AP performs
no computations in a conventional sense, as no dedicated
arithmetic logic units (ALUs) are provided [14]. Instead,
arithmetic operations are broken down into a series of Boolean
logic equations, which are evaluated by the AP in-memory, in a
perfect induction-like fashion, as follows. The dataset is stored
in the associative memory, in the input field, typically one data
element per CAM row (comprising a virtual Processing Unit,
PU, as shown in Fig. 2(a)). The AP matches all possible input
combinations of a Boolean function against the input field (for
the entire dataset in parallel). During each iteration, the CAM
rows containing the matching data elements are tagged, and the
corresponding function values (precalculated and embedded
in the AP microcode), are written into the designated output
fields of the tagged rows. During compare and parallel write
cycles, the input and output fields are selected by the MASK
register of Fig. 2.

For an m-bit argument x (x ∈ dataset), any Boolean function
b(x) has at most 2m input combinations. Therefore, a perfect
induction-like evaluation of any Boolean function with an
m-bit argument would incur up to O(2m) cycles on an AP,
regardless of the dataset size. This can lead to significant
performance gains when applied to large datasets.

The main associative instructions (primitives) are:
1) Compare (y1 == x1, y2 == x2, . . . ,ym == xm):

Compares the query (key) xi (1 ≤ i ≤ m) to the field yi
in all rows of the AP array, in parallel. The rows where
xi equals yi are tagged;

2) Write (y1 ← x1, y2 ← x2, . . . ,yk ← xk): Writes the
value xi (1 ≤ i ≤ k) into the position yi in all tagged
AP rows in parallel.

Arithmetic operations can be performed on an AP in a word-
parallel, bit-serial manner, reducing compute time from O(2m)

to O(m). For instance, vector addition may be performed as
shown in Fig. 3: Let AP bit-columns 0-3 and 4-7 hold four-bit
vectors A and B, respectively. Columns 8-11 are reserved for
the lower 4-bits of the sum vector S, while bit column 12 is
used for storing and updating the carry bit c (after the addition
is complete, it holds the MSB of the vector S). The addition is
carried out in four single-bit iterations (refer to Algorithm 1),
in parallel for all vector elements in the AP:

Algorithm 1 Example of Vector Addition in an Associative
Processor.
For all rows in parallel: .

1: for i = 0; i < 4; i++ do
2: si = ai · bi · c + ai · bi · c + ai · bi · c + ai · bi · c;
3: c = ai · bi · c + ai · bi · c + ai · bi · c + ai · bi · c;
4: end for

(2) and (3) are performed in parallel
i is the bit index and c and s are, respectively, the carry
and sum bits;

A single-bit addition iteration is carried out in eight steps,
where in each step, one entry of the truth table (a three-bit
input pattern, A, B, CIN in Fig. 3(a)) is compared against the
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Fig. 1. (a) MRAM Crossbar array. (b) Samsung’s 2T2R MRAM cell. (c) Additional data lines for writing into the array. Figures redrawn from Samsung’s
work [6].

Fig. 2. (a) In-memory associative processor architecture. At the top-right,
the 9T NAND CAM cell comprising a 6T-SRAM cell and a wired NMOS
XNOR. (b) TAG circuitry. BL is a Bit Line (used also as a Select Line during
compare); ML is a Match Line.

contents of the ai · bi · c bit columns and the matching rows
are tagged; the logic result (two-bit output (COUT, S) of the
truth table as listed in Fig. 3(a)) is written into the si and c
bits of all tagged rows.

A snapshot of the second step (processing the second entry
of the truth table) of the first iteration (processing LSBs of
all vector elements in parallel) is presented in Fig. 3(b)-(c).
Fig. 3(a) shows the truth table with the second entry delin-
eated. Fig. 3(b) and (c) show compare and write operations,
respectively. During compare (Fig. 3(b)), the input pattern
‘001’ is compared against bit columns a0, b0 and c for all
vector elements in parallel. The matching rows (two in this
example) are tagged. During write (Fig. 3(c)), the output

Fig. 3. Example of vector addition in an associative processor, for two 4-bit
vectors A and B, snapshot at zero bit, second entry of the truth table: (a) Full
Adder Truth Table, (b) Compare, only c, a0 and b0 are affected, (c) Write,
only c and s0 in the tagged rows (PUs) are affected.

pattern ‘01’ is written into bit columns s0 and c, respectively.
Only the tagged rows are written. Each compare and write
affects the entire dataset (vectors A, B and S).

In a straightforward implementation of a Boolean function
evaluation, every compare is typically followed by a write
operation. This could adversely affect the overall performance
and energy-efficiency, since a write may be more time- and
energy-consuming than a compare operation. Additionally,
this reduces the memory lifetime of write endurance-limited
memories. We mitigate the parallel write overhead by using the
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Fig. 4. Sparse Matrix Multiplication [5], [17]: (a) performance, and
(b) power.

observation that any Boolean function has only two values (‘0’
and ‘1’). Therefore, regardless of the truth table size, we can
aggregate all compares that are followed by write ‘0’ and write
‘1’ into separate groups, and thus perform a single write per
multiple compares [15].

To summarize the complexity of performing typical ALU
operations in an AP, a fixed-point addition and subtraction
takes O(m) cycles, whereas fixed-point multiplication and
division require O(m2) cycles, where m is the wordlength.
Applying a single-precision floating point multiplication on
an entire dataset takes 4,400 cycles, regardless of the dataset
size [16].

The scaling of CMOS associative processors [16], [17] is
limited due to the CMOS CAM density. However, an MRAM
AP cell is at least an order-of-magnitude smaller, thus paving
the way for associative in-memory computing at scale.

C. Application Space

An AP is a general-purpose computer, whose efficiency
strongly depends on the workloads and datasets. As typical
for a single instruction, multiple data (SIMD) architecture, the
efficiency of an AP is limited in control-flow workloads, but
grows quickly for regular iterative workloads with fine-grained
parallelism. Since in many algorithms, AP execution time does
not depend on the dataset size (as in the above example of
vector addition), the efficiency of an AP typically improves
with the dataset sizes. Since an AP is an in-memory computer,
it is more efficient when running data-intensive applications.
Due to the fact that an AP typically implements bit-serial
(but word-parallel) arithmetic, it intrinsically supports flexible

Fig. 5. k-means runtime (lower is better) and energy-efficiency results [18]
versus different reference solutions: Intel i7-3770, Xilinx ZC706, Altera
Stratix V, NVIDIA K20M, and a 10 node GPU cluster.

and user-configurable data wordlengths and formats, including
fixed and floating point with flexible mantissa and exponent
sizes.

Data in associative memory is accessed by its contents
rather than its address. Data elements of the same dataset
are normally identified by a unique index, or a member
ID. Unlike random access memories (SRAM or DRAM),
APs do not require dense and structured data allocation to
operate efficiently. Individual data elements do not have to be
placed in any specific order but can rather be scattered across
random locations (rows) within the CAM arrays. Since modern
datasets become increasingly sparse, the ability of computers
to properly process sparse data (for example, not wasting time
and energy on fetching and multiplying zero-data elements)
becomes a critical requirement. An AP holds a significant
intrinsic advantage in sparse data processing: sparse data in
one of the compressed formats (such as compressed sparse
row or compressed sparse column) can be processed almost
as efficiently as dense data [17].

A variety of applications have been suggested for APs,
including sparse and dense matrix multiplication [17], graph
processing [5], deep learning [14], financial and scientific [13],
genomics [15] and others [5]. APs exhibit a performance
improvement of up to 300×, and an energy-efficiency gain
of up to 150×, compared to CPU, GPU, FPGA, and
ASIC implementations. Some selected results are presented
in Fig. 4 for different sparse square matrices [5]. Fig. 4(a)
and Fig. 5(b) present the performance and power results,
respectively, as compared to two reference baselines, CPU and
GPU. Fig. 5 presents the k-means runtime (lower is better)
and energy-efficiency results versus a variety of CPU [19],
FPGA [20], [21] and GPU [22], [23] implementations.
The associative processor solution outperforms state-of-the-
art alternatives in terms of both performance and energy-
efficiency (in all but one case). Another application is shown
in Fig. 6, comparing the Convolutional Neural Network AP
implementation with state-of-the-art solutions (CPU and a
dedicated in-memory accelerator NeuralCache [24]). Again,
the benefit of using an AP for such an application is dramatic.
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Fig. 6. Speedup and normalized energy savings for a Convolutional Neural
Network implementation on an AP [14].

TABLE I
MAIN PHYSICAL AND ELECTRICAL PARAMETERS OF THE DMTJ WITH

TWO REFERENCE LAYERS AND DOUBLE FREE LAYER

III. MRAM CROSSBAR BASED ASSOCIATIVE MEMORY
AND ASSOCIATIVE PROCESSOR DESIGN

A. Double-Barrier Magnetic Tunnel Junction (DMTJ)

Perpendicular MTJs have been widely adopted since 2016,
paving their way into stand-alone and embedded memory
designs. While standard single-barrier MTJ is the most
mature option, it suffers from high writing currents. Using
a double-barrier MTJ (DMTJ) with two reference layers is an
appealing alternative [11].

The structure of a DMTJ device is shown in Fig. 7. The
free layer (FL) is sandwiched between two tunnel oxide
barriers (tOX,T and tOX,B) with two polarizing reference layers
(RLT and RLB). Depending on the relative magnetization
orientations between the FL and the RLs, the DMTJ features
two stable states: the parallel or low-resistance state (LRS),
and antiparallel or high-resistance state (HRS). Thanks to the
inherently stochastic nature of the spin-transfer torque (STT)
switching, the DMTJ can switch between the stable states
when a current pulse that is above the critical switching current
(Ic0) is sent between the top and bottom terminals of the
device.

In order to ensure low-energy operation, the AM4 cell
design, introduced in the next subsection, utilizes DMTJ
devices as storage elements. We consider an advanced (20 nm
diameter) DMTJ structure, whose main bottleneck is the
reduced thermal stability factor (1), i.e., shorter data retention

Fig. 7. Structure of a DMTJ featuring two reference layers and two free
layers.

time [25]. To mitigate this, we target a double FL struc-
ture [26]. Therefore, by using a DMTJ with two reference
layers and double free layer, we ensure low-energy operation,
while maintaining sufficient data retention times.

To simulate DMTJ devices with double free layers,
we extended the DMTJ Verilog-A compact model reported
in [11]. The model was calibrated with the experimental data
reported in [25], [27] by considering the DMTJ parameters
shown in Table I.

B. AM4 Cell

The fundamental idea of AM4 is transforming the Samsung
MRAM crossbar into an associative memory, which can then
be operated as CAM, TCAM, ACAM or in-memory AP. The
proposed AM4, therefore, is based on a silicon-proven tech-
nology, where the primary novelty is the way that it is operated
and utilized. This approach is inspired by CMOS-based CAM
built upon a modified 6T CMOS SRAM [28].

The concept of AM4 is to virtually rotate the 2T2R MRAM
bitcell by 90◦ and repurpose the control signals, as illustrated
in Fig. 8. The INj and INj signals are used as Search Lines
(SLleft and SLright), where the compare (query) pattern is
asserted. The resistive path through the serially connected
MRAM bitcells serves as a NAND-style Match Line (ML),
enabling the NAND CAM compare functionality. We further
label the stored states as ‘1’ and ‘0’ according to the resis-
tances of the left (now top) and right (now bottom) DMTJs.
A ‘0’ is stored by writing parallel spin (LRS) into the top
DMTJ and anti-parallel spin (HRS) into the bottom DMTJ.
The complementary state (HRS, LRS) is considered a ‘1’.

C. Working Principle

The first of two primary operations of AM4 is the compare
operation. Its implementation in the 2T2R MRAM crossbar-
based AM4 is presented in Fig. 9. Compare is achieved by first
precharging the ML and then driving the search pattern onto
the SLs (SLright = SLleft), connecting the leftmost bitcell in
a row to ground, and disabling both the WENi and WDATA
signals (refer to Fig. 1(c)). If SLleft = 1 (SLright= 0) and
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Fig. 8. Rotating and relabeling the 2T2R MRAM cell to transform it into an
AM4 cell. Note that this conceptual rotation and signal repurposing does not
require any circuit design or process changes to the silicon-proven crossbar,
fabricated by Samsung [6].

the cell is in the ‘0’ state (LRS, HRS), or if SLleft = 0
(SLright= 1) and the cell is in the ‘1’ state (HRS, LRS),
the output resistance of the cell is low, representing a match
between the query bit of that column and the bit stored in the
bitcell. If all cells in a row match, a low resistance is displayed
by the row, enabling a fast discharge of the ML to ground.
A mismatch occurs when at least one bit of the query pattern
does not match the bit stored in the corresponding AM4 cell.
In such a case, the conductance path through the row goes
through HRS DMTJ(s), preventing or slowing down the ML
discharge. By differentiating between these two options, a per-
row compare operation can be achieved.

The other main primitive of AM4 is a parallel write opera-
tion. It is achieved using the WDATA[0] and WDATA[1] signals,
which we label TAG and TAG, respectively, since they are
driven by the AM4 tags (refer to Fig. 2(b)). As presented
previously, writing into the MRAM cell requires two cycles
to separately bias each DMTJ for applying the required
magnetization orientation. However, due to the sharing of the
WEN switches between adjacent columns (which creates a
potential sneak path along the bitcell row), a parallel write
operation requires four single-cycle phases, as illustrated in
Fig. 10 (phases 1 to 4). During the entire write operation, all
WEN switches are turned on, and the selection of individual
MTJs is done using the SLleft and SLright signals. In phases
1 and 2, the even columns are written. In phases 3 and 4, the
odd columns are written. Multiple rows can be written at the
same time.

During phases 1 and 3, ‘1’ is written to the top DMTJ for
bitcells where ‘1’ is supposed to be stored and to the bottom
DMTJ for bitcells where ‘0’ is supposed to be stored. During
phases 2 and 4, ‘0’ is written to the top DMTJ for bitcells
where ‘0’ is supposed to be stored and to the bottom DMTJ
for bitcells where ‘1’ is supposed to be stored.

During phases 1 and 2, SLright is a complement of SLleft
(SLright = SLleft) in all even columns. The SLleft and SLright
signals of the odd columns are both driven to 0, thereby
isolating these columns and blocking a potential sneak path
through the bitcell rows.

In phase 1, TAG and TAG lines are driven to Vwrite and
GND, respectively. The SLleft bit of the even columns, where
‘1’ is supposed to be stored, is asserted to ‘1’ to enable writing
‘1’ to the top DMTJ. The SLleft bit of the even columns, where

‘0’ is supposed to be stored, is asserted to ‘0’ (i.e., SLright
is asserted ’1’) to enable writing ‘1’ to the bottom DMTJ.
In phase 2, the TAG and TAG lines are swapped; The SLleft
bit of the even columns, where ‘0’ is supposed to be stored,
is asserted to ‘1’ to enable writing ‘0’ to the top DMTJ. The
SLleft bit of the even columns, where ‘1’ is supposed to be
stored, is asserted to ‘0’ (i.e., SLright is asserted ’1’) to enable
writing ‘0’ to the bottom DMTJ.

After finishing the write operation to the even columns, the
same procedure is followed in phases 3 and 4 to write to the
odd columns (refer to Fig. 10).

Using the compare and parallel write operations, described
above, the Samsung MRAM crossbar-inspired topology can be
used “as is”, i.e., with no alterations, to enable CAM, TCAM,
ACAM and AP functionalities.

D. AM4-Based Associative Processor

The AM4-based associative processor is presented in
Fig. 11. Its core is the 2T2R AM4 crossbar. The columns
are supplemented with write/compare key and mask regis-
ters above the array. Masking-off (i.e., rendering certain bit
columns unaffected by either compare or write), is achieved
by setting SLleft = SLright = ‘1’ for compare and SLleft =
SLright = ‘0’ for write, respectively. The Matchline Sensing
(MLS) column is built with row-connected sense amplifiers,
which drive the TAGs, as follows:

1) Sense Amplifier: The matchline sensing (MLS) topology
is based on the single-ended self-reference sense amplifer
proposed in [29]. The MLS comprises two transistors and
two inverters as shown in Fig. 12(a). The precharge transistor
(MPC) enables the ML precharge (PC = 0) and ML evaluation
stages (PC = 1). The MX transistor, along with inverter I1,
serve to limit the ML precharge to the voltage level of the
tipping point of I1. Inverter I2 evaluates the final response of
the ML.

Different from the standard operation of the MLS [29], the
SL patterns are driven into the AM4 cell during the evaluation
stage. The sensing stage starts by driving the PC signal to
GND (PC = 0), precharging the ML. The VX line is charged
up to VDD, and MLout is discharged to GND. Similarly, the
ML is charged up to a voltage level that depends on the I1
threshold, whose value, when exceeded, drives the gate of
MX. This turns off MX, thereby halting the ML precharge.
Subsequently, the SL signals are driven to the AM4 cells,
and PC is asserted (‘1’) to start the evaluation stage. The ML
starts to discharge quickly or slowly depending on the output
resistance of the AM4 cells. A match is detected when all cells
are in LRS (MLLRS), presenting the lowest resistance path in
the NAND-based AP word, and therefore, raising MLout to
VDD. Conversely, a mismatch occurs when an HRS state is
present, slowing down the ML discharge. During the mismatch
sensing (MLHRS), the evaluation time-frame is short enough
to avoid compare errors, maintaining the MLout signal close
to ‘0’. This is shown in Fig. 12(b).

The worst case ML sensing scenario differentiates between
a match (all cells are in LRS) and a single-bit mismatch
(all cells but one are in LRS). There is an overlap between
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Fig. 9. Compare operation in AM4. The row connectivity serves as a NAND-style Match Line (ML). The ML is terminated by GND on the left. The ML
is connected to a precharge circuit and the ML sense amplifier (MLS) on the right.

Fig. 10. Write operation in AM4. The write pattern is ‘0011’ (the MSB is written to the leftmost column 4). (a) In phase 1, we write ‘1’ in the top DMTJ
of the 2nd column and the bottom DMTJ of the 4th column. In phase 2, we write ‘0’ in the bottom DMTJ of the 2nd column and the top DMTJ of the 4th

column. (b) In phase 3, we write ‘1’ in the top DMTJ of the 1st column and the bottom DMTJ of the 3rd column. In phase 4, we write ‘0’ in the bottom
DMTJ of the 1st column and the top DMTJ of the 3rd column.

the match and a single-bit mismatch, mainly due to poor
HRS/LRS ratio of MRAM. We mitigate this through redun-
dant data coding, specifically by ensuring a certain minimum
Hamming Distance (HD) between any two data words. Since
contemporary memories typically use Error Correction Codes
(ECC) [30], there is a “built-in” minimum Hamming distance
which we utilize for the purpose of match vs. single-bit
mismatch differentiation. Based on this insight, ECC-protected
AM4 provides a safe margin between match and mismatch
cases for a limited HRS/LRS ratio memory. This method is

more relevant for exact searching. On the contrary, using ECC
might be inapplicable in approximate search scenarios, which
fortunately are likely to be less sensitive to inexact matching
results.

2) TAG Circuitry: The bottom part of Fig. 11 details the
circuitry of the TAG register cells. Its main component is a
flip-flop (FF) that holds the compare result according to the
control logic signals, i.e., compare and write.

To compare the query (key) data word against the data
stored in the AM4 array (the entire row, a number of bits or a
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Fig. 11. AM4 based in-memory associative processor. The ML precharge
circuitry is within the ML sensing scheme (MLS).

Fig. 12. (a) Matchline sensing structure of AM4 n-bit row. (b) Timing
diagram of the sensing scheme for a 32-bit AM4 word.

single bit), the ML is precharged, and the key is driven onto the
SLs. In order to mask a column (i.e., ignore it during compare),
the SLleft and SLright lines are set to ‘1’. If every unmasked
bit in a row matches the corresponding query bit, the ML is
discharged and a ‘1’ is accumulated in the TAG FF. If even a
single unmasked bit mismatches the corresponding query bit,
the ML remains high and the TAG FF remains unchanged.

As detailed in Section II-B, a compare (or several compare)
operation(s) in an AP are typically followed by a parallel write
into the unmasked bits of all tagged AP rows. To write data
from the write key register into AM4, each TAG FF (set earlier
by compare operation(s)) is connected to its corresponding
WEN. We accumulate the compare results in each AP row to
reduce the number of writes, which improves the performance

of the AP. If the result of aggregated compare operations is ‘1’,
the write key data set on SL lines is written into the AP row
in accordance with the MASK pattern. Otherwise, the write
does not affect the row.

E. Content Addressable Memory (CAM) and Ternary CAM
(TCAM)

In addition to its functionality as an AP, AM4 can be
operated in CAM/TCAM mode. Operation in CAM mode is
straightforward, according to the search and write operations,
described previously. To support TCAM mode, either the
search (query) pattern bits or the bits of the data patterns
stored in the MRAM crossbar can be “don’t care” in addition
to conventional ‘1’ and ‘0’ values. To store a “don’t care”, a
‘0’ is written to both top and bottom MTJs of an AM4 cell,
presenting a LRS through both top and bottom discharge paths
to the ML. During a compare, the “don’t care”-written cell will
not affect the result of the operation (match or mismatch).
To create a “don’t care” search pattern bit, we simply mask it
off, as presented above.

F. Approximate Search CAM (ACAM)

Multiple applications, including text processing (e.g., text
retrieval, signal processing, computational biology [31], [32],
[33], and genome analysis [9], [15]), require approximate
rather than exact search, for example to tolerate errors, or find
similarities among erroneous or ambiguous data patterns.
In approximate search, if the difference between a stored
pattern and the query pattern is below a certain predefined
threshold, the compare result should still be considered a
“match”. AM4 can support approximate search by adjusting
the MLS sampling time, using the speed of the matchline
discharge as a measure of Hamming distance.

To make the operation mode robust, an ML can be amended
by an NMOS discharge transistor with a configurable gate
voltage. In such a configuration, the approximate search uti-
lizes the matchline charge redistribution rather than its rise or
fall time. By tuning this gate voltage (possibly automatically),
we can set a desired level of Hamming distance without
adjusting the ML sampling time [34], [35].

IV. COMPARE AND WRITE FUNCTIONAL VERIFICATION

To validate the write and compare operations we considered
a 32× 32 array, operating with a supply voltage (VDD) of 1 V
at nominal conditions.

A. Write Operation

Fig. 13 shows the simulation waveforms of write ‘0’, ‘1’,
and ‘X’ operations. As an initial condition, we set all DMTJ
devices to HRS. The write key (pattern) is (000XXFFF)Hex,
i.e., top and bottom MTJs are written to be (00000FFF)Hex
and (FFF00000)Hex, respectively.

WEN signals are enabled during four phases of the write
operation (refer to Section III-C). An extra phase is added at
the end of phases 2 and 4 to write the “don’t care” value
(as required in TCAM). The write key bus drives the write
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Fig. 13. Functional verification of AM4 write operation. The write operation
refers to a 32-bit row.

pattern to SLleft and SLright. As a result, top and bottom
DMTJs are set into the desired stable resistance state. The
final result is highlighted at the end of the write operation.
For the sake of clarity, the top and bottom DMTJs states are
also highlighted. Refer to the colored patterns within the 37 ns-
45 ns time-frame. The AM4 cell in ‘0’, ‘X’, and ‘1’ states
correspond to DMTJTop (DMTJBottom) in ‘0’ (‘1’), ‘0’ (‘0’),
and ‘1’ (‘0’), respectively. Therefore, the write operation is
verified.

B. Compare Operation

Fig. 14 shows the AM4 compare operation involving all
possible stored values, i.e. ‘0’, ‘1’, and ‘X’. We consider
a compare time of about 2 ns (see Section V). In the
precharge stage, the ML is precharged to about half VDD
(see Section III-D.1), and MLout is discharged to ‘0’. Then,
during the evaluation stage, SL signals are assigned. When
comparing with ‘0’, ‘1’, and masking out the entire AM4

row (which is equivalent to comparing with an ‘X’), the
SLleft/SLright pattern is (FFFFFFFF)Hex/(00000000)Hex,
(00000000)Hex/(FFFFFFFF)Hex, and (FFFFFFFF)Hex/
(FFFFFFFF)Hex, respectively. In the match (mismatch) case,
the LRS (HRS) path discharges the ML (maintains the ML at
approximately half VDD), and the MLout outputs a ‘1’ (‘0’).
If a certain AM4 cell stores an ‘X’, or a certain bit column is
masked out (by setting SLleft = SLright = ‘1’), such a cell
keeps both top and bottom paths at LRS (open) and hence
does not affect the outcome of compare.

Overall, the compare operation was successfully demon-
strated with all possible stored data, i.e., ‘0’, ‘1’, ‘X’.

V. CIRCUIT-LEVEL RESULTS

Results provided in this section rely on extensive Monte
Carlo simulations (1000 samples) at the 3σ corner probability
distribution from the statistical models given by the 28 nm
FDSOI commercial PDK. For the DMTJ devices, the effect
of process variability follows Gaussian-distributed variations

Fig. 14. Functional verification of AM4 compare operation in a 32-bit AM4

row. Search ‘0’, ‘1’, and ‘X’ operations are evaluated with respect to all
possible stored values (Case 1–‘0’, Case 2–‘1’, and Case 3–‘X’.)

with a variability (σ/µ) of 5% for the DMTJ cross-section
areas, and 1% for tOX,T, tOX,B, and tFL [36].

Fig. 15 shows the compare timing for a 32-bit AM4 row
operating at a supply voltage of 1 V at the Typical-Typical
corner. In particular, MLout responses to match and several
mismatch cases are shown. MLout is simulated over the
evaluation time-frame tcomp ranging from 1 ns to 3 ns. The
wider the evaluation time-frame tcomp, the longer the ML has
to discharge through the NAND-style resistive path, eventually
driving MLout to ‘1’ (which results in a compare error). For
example, if the compare evaluation stage extends to 3 ns,
the 4-bit mismatch will register as a “match” rather than a
“mismatch” (thus creating a compare error). This happens
because of the poor DMTJ HRS/LRS ratio.

As presented above, we mitigate the effects of the limited
HRS/LRS ratio by data coding which ensures a certain mini-
mum HD between datawords. A minimum HD, h, guarantees
that the lowest number of mismatching bits in the worst case
mismatch equals h rather than 1. Since ECC schemes are
regularly included in contemporary memories, especially in
nonvolatile ones [30], a certain HD is typically maintained.
Hence, we do not necessarily have to extend the memory
redundancy to introduce minimum HD. To identify the mini-
mum HD required for safe AM4 operation, the compare times
of the match and several mismatch cases are analyzed through
Monte Carlo simulations.

Fig. 15(b) shows the statistical distribution of tcomp for
the highlighted cases of Fig. 15(a), i.e., match and 12-bit
mismatch. We define the tcomp difference between match and
mismatch at nominal and 3σ conditions, as δµ and δ3σ ,
respectively. δµ gives a difference of about 870 ps, and at the
3σ corner this difference is reduced by 2.5×. Nevertheless,
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Fig. 15. Compare time results of a 32-bit AM4 row at the Typical-Typical
(TT) corner with VDD of 1 V. (a) Nominal results: match line response for
a match and different mismatch cases. (b) Monte Carlo results: Statistical
distribution of the compare time of match and 12-bit mismatch cases for 3σ

corner evaluation. Results are from 1000 Monte Carlo simulations.

these Monte Carlo results show that 3σ values do not overlap,
suggesting that AM4 performs correctly at a tcomp of 1.4 ns.
In this example, we show that tcomp results remain within a safe
time-frame region, assuming the minimum HD between any
two data words is 12-bit. To identify the effective minimum
HD allowed by a 32-bit AM4 word, we repeat the same Monte
Carlo simulations for different match and mismatch cases.

Fig. 16 shows the compare time analysis through Monte
Carlo simulation at the 3σ corner. For a tcomp time of 1.44 ns,
AM4 operates correctly during compare operations, properly
differentiating between match and a 5-bit and above mismatch.
This result is obtained while also ensuring a δ3σ of about
100 ps. As shown in Fig. 16, the overlap region (refer to red
time-frame at the left) between the match and 4-bit mismatch
suggests that a minimum HD distance of 4 may be always
required to avoid compare errors. To ensure the minimum HD
of at least 4, we may use one of the error correcting codes,
such as BCH. For example, BCH(31,21,2) code guarantees the
minimum HD of 2×2.1=5. While a 32-bit wide AM4 suffices
for a number of applications [5], it is reasonable to assume

Fig. 16. Compare time results for different match and adjacent mismatch
cases. Results are from 1000 Monte Carlo simulations at 3σ and TT-corner
with a VDD of 1 V.

Fig. 17. AM4 susceptibility to process variations: Compare time for
the Typical-Typical (TT), Fast-Fast (FF), Slow-Slow (SS), Fast-Slow (FS),
Slow-Fast (SF) corners.

that for certain other applications, a wider AM4 array will be
required. Due to the low HRS/LRS ratio of the MTJs, a wider
AM4 row leads to a higher compare error probability. In such
a case, the minimum HD should be increased accordingly.

Lastly, we evaluate the the impact of local variations on
tcomp at 3σ , based on the match and 6-bit mismatch from
the above analysis (refer to Fig. 16). The local variations are
around even corners, i.e., Typical-Typical (TT), Fast-Fast (FF),
and Slow-Slow (SS), and skewed corners, i.e., Fast-Slow (FS),
and Slow-Fast (SF), as shown in Fig. 17. The δ3σ results
present robustness to local variations, mainly because of the
adopted single-ended sensing scheme. The same behavior was
presented for the other mismatch cases.

Table II summarizes the main circuit-level results for a
32-bit wide AM4 array operating at a nominal voltage of
1 V. The reported data is obtained through Monte Carlo
simulations for both write and compare operations, evaluated
at the 3-sigma corner. AM4 compare operation consumes
1.73 fJ per bit, and presents a compare time of 1.44 ns. A write
latency of 6.68 ns is mainly due to the DMTJ resistances in
HRS and LRS; it can be reduced by increasing the access
transistor size. However, since we aggregate compare results
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TABLE II
SUMMARY RESULTS FOR CIRCUIT-LEVEL ANALYSIS OF THE

NAND-BASED ASSOCIATIVE PROCESSOR

Fig. 18. (a) Layout of the AM4 cell. (b) 3D hybrid CMOS/DMTJ process.
MTJs are placed between Metal-3 (M3) and Metal-4 (M4).

to reduce the number of writes, the effect of write latency on
AM4 performance is minimal.

Table II also reports the area of the AM4 cell, whose layout
and an illustration of the 3D hybrid CMOS/DMTJ process, are
shown in Fig. 18(a)-(b). The inclusion of the access transistor
for write operation (refer to Fig. 10) would incur an overhead
of about 48% of the cell area. This access transistor is also
presented in the Samsung crossbar cell [6].

VI. APPLICATION OF AM4 AP TO SMITH-WATERMAN
DNA SEQUENCE ALIGNMENT

Smith-Waterman is a dynamic programming algorithm [12]
that identifies the optimal alignment of two sequences. It is
widely used in bioinformatics and computational biology for
DNA (genome) sequence alignment. Smith-Waterman algo-
rithm has two steps. The first step is scoring, which builds a
two-dimensional scoring matrix to find the maximum edit dis-
tance between two sequences. The second step is a traceback,
which reconstructs the optimal alignment path. Scoring is the
most computationally demanding step [15], while traceback

requires significantly less computing power and can therefore
be performed by an external host CPU. In the following,
we focus on AM4-based AP implementation of the scoring
step.

The sequential time complexity of the Smith-Waterman
score matrix calculation is O(nm) where n and m are
the lengths of both sequences. The upper bound of the
Smith-Waterman scoring complexity on a parallel von Neu-
mann machine with p parallel processing units is O(nm?p).
AM4 based AP can achieve linear time complexity of
O(max(n,m)). Smith-Waterman is used in genome analysis
to find the optimal local alignment (of two or more DNA
sequences). Global alignment, which is also a frequently used
genome analysis tool, can be implemented on an AM4-based
AP with only a few modifications to the local alignment
implementation. Similarly, an AP can efficiently implement
a multiple sequence alignment [15].

We compare AM4 with state-of-the-art sequence align-
ment solutions SWAPHI-LS [37], RIVYERA [38], CUD-
Align 4.0 [39], PRINS [9], and SWhybrid [40]. For eval-
uation, we used six genomes from the publicly available
NCBI nucleotide database [41], with lengths varying from
4.4M basepairs1 (bps) up to 50M bps. Performance of the
Smith-Waterman algorithm was measured in Cell Updates per
Second (CUPS). As shown in Fig. 19, AM4 outperformed (was
more energy-efficient than) SWAPHI-LS by 41× (125×),
RIVYERA by 3.3× (2.2×), CUDAlign 4.0 by 1.6× (176×),
and Swhybrid by 4.9× (11×). As for the PRINS reference
solution, AM4 is about 12% slower, mainly due to the multiple
number of cycles during a write operation. Nevertheless, AM4

is still more energy-efficient (1.5×) than PRINS.
Our comparison includes the resistive device-based NOR-

type AP (RAP) presented in [42]. NOR configuration is the
reason RAP outperforms the AM4. However, for the same
reason, RAP achieves significantly lower energy efficiency (–
69%) compared to AM4.

For the above examined workload, AM4 performance is
limited by the density of the datasets and the parallelism of
the task. Smith-Waterman DNA sequence alignment scoring
matrix calculation is an example of a highly parallelizable
task where a large number of data elements are processed
simultaneously, allowing AM4 to apply its parallel processing
abilities. In a Smith-Waterman workload, AM4 scales to the
dataset size.

VII. RELATED WORK

A. Content Addressable Memory

Several ternary and binary CAM designs have been pro-
posed in recent years, including CMOS-based [16], [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52], as well as
emerging memory based [5], [9], [13], [53], [54] solutions.
Several emerging memory (memristor crossbar) approximate
search CAM designs have also been proposed [55], [56]. Some
offer soft-error tolerance using error correction coding (which
requires memory redundancy) and replacing the matchline

1DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine
(T)) are frequently referred to as DNA basepairs, bases or bps.
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Fig. 19. Smith-Waterman DNA and Protein Sequence Alignment: (a) speedup
and (b) energy-efficiency gain of AM4 and the design (RAP) proposed in [42]
versus different reference solutions: SWAPHI-LS [37], RIVYERA [38],
CUDAlign 4.0 [39], PRINS [9], and SWhybrid [40]. Higher is better; TCUP =
Tera cell updates per second.

sense amplifier with an analog comparator [57], [58]. These
designs typically tolerate only a limited Hamming distance
(1-4 bits) [59], [60].

A variety of approximate search CAM designs use tim-
ing (i.e., score signal delay or the speed of the matchline
discharge) as a measure of Hamming distance. Bui and
Shibata [61] exploits the delay of the score signal for a
Hamming distance search CAM. A small Hamming distance
tolerance (≤ 2 bits) approximate CAM is proposed in [62],
[63]. Garzón et al. [34] and Hanhan et al. [35] use the com-
bination of the voltage, controlling the speed of the matchline
discharge, and the sense amplifier reference voltage to define
the Hamming distance threshold. These designs are capable of
tolerating very large Hamming distances.

AM4 differs from conventional and approximate CAM
solutions in that to our knowledge, it is the first NAND-type
CAM based on a random-access magnetoresistive crossbar.
Typical state-of-the-art emerging memory based CAMs are
designed as NOR CAM, where the matchline discharges on
a mismatch occurrence. Since mismatches are much more
frequent than matches (in typical CAM/TCAM applications,
only one memory row matches, while the rest mismatch), all

matchlines need to be pre-charged before every search/lookup,
resulting in significant energy wasting. In contrast, in NAND
CAM, only the matching row(s) discharge, reducing the energy
consumption of search/lookup by orders of magnitude.

B. Associative Processor

The use of STT-MRAM and Resistive Ternary CAM
(TCAM) for data-intensive computing was proposed by
Guo et al. [64]. ReAP, a resistive memory based, massively
parallel in-memory associative processor was first intro-
duced by Yavits et al. [13]. Yantir et al. [65] introduced a
two-dimensional model of an in-memory associative processor.
Hout et al. [66] extended the associative processor model
to support multi-valued logic. Imani and Rosing [67] pro-
posed another design of an associative processor for near-
memory processing. Caminal et al. [68] applied in-memory
associative processing to database analytics acceleration,
while Yavits et al. [17] and Neggaz et al. [69] implemented
in-memory matrix multiplication on an associative processor.
Garzón et al. [14] and Yantir et al. [70] separately proposed
a convolutional neural network design using an in-memory
associative processor. Complete system designs of in-memory
associative processors have been separately proposed by Zha
and Li [71] and Caminal et al. [72]. Yantir [73] studied CMOS
and resistive NOR CAM based associative processors and their
applications.

To our knowledge, AM4 is the first solution that converts
a MRAM crossbar designed for random access storage, into
an associative processor. We achieve that without altering the
MRAM core, only by manipulating data and amending the
peripheral circuitry.

VIII. CONCLUSION

In this work, we presented AM4, a multiple purpose (i.e.,
CAM, TCAM, approximate CAM, and in-memory associa-
tive processor) NAND-type architecture based on the silicon-
proven MTJ-based Samsung crossbar array. AM4 enables a
wide range of in-memory computing applications. We vali-
dated the basic AM4 functionality and evaluated its timing
and energy consumption by circuit-level simulations using
Cadence EDA tools. AM4 was designed using a commercial
28 nm FDSOI technology node. A Verilog-A based compact
model for the DMTJ device was amended. Simulation results
show that AM4 may require data coding (such as ECC) to
operate reliably due to very limited high resistance / low
resistance ratio. We conducted an exhaustive design space
exploration, showing that AM4 exhibits very low susceptibility
to process variations around even and skewed corners. AM4

was applied to Smith-Waterman DNA sequence alignment,
a frequent bioinformatics workload. AM4 was shown to sig-
nificantly outperform state-of-the-art conventional as well as
other in-memory computing alternatives in terms of perfor-
mance and energy-efficiency.
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