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Selective Scan Driver for Low-Power
Consumption Using Oxide Thin Film Transistors

Jae-Hee Jo™', Won-Been Jeong, Yu-Seong Joung, and Seung-Woo Lee™, Senior Member, IEEE

Abstract—In this letter, a scan driver circuit that can
generate scan signals only in a selected area is proposed.
It refreshes only the area that needs to be updated without
refreshing the whole display. The proposed circuit with ten
stages was fabricated using oxide thin film transistors. The
additional area for selective driving occupies only 14.5 %
of the unit stage area. This study confirms that the power
consumption in the data lines and pixels for a dot pattern
can be reduced by 25 % and 37.5 % when 50 % and 25 % of
scan lines are selected, respectively.

Index Terms—Scan driver, oxide thin film transistor
(TFT), adaptive frequency, low power display.

I. INTRODUCTION

IGH refresh rates have become one of the main factors

in display devices as people prefer smoother motion
changes [1]. However, a higher refresh rate requires more
power. So, it has been difficult to apply the high refresh rate
driving to mobile devices due to the limited battery time.
Meanwhile, with the development of oxide thin film transistors
(TFTs), low refresh rates have also become possible [2], [3].
Unlike low temperature polycrystalline silicon (LTPS) TFTs,
oxide TFTs have an ultra-low leakage current characteris-
tic [4]-[8]. It means pixel voltage is maintained for a very
long time without refreshing.

To achieve both high performance and efficient power
consumption, a new driving method that changes the refresh
rate depending on display contents has emerged [9]. Not all
contents need high refresh rates. For example, high refresh
rates are not necessary when reading text messages. On the
other hand, the higher refresh rate is better when watching
videos such as sports games. Therefore, if the display can vary
its refresh rate depending on the content, power consumption
can be optimized without sacrificing the performance of the
display.
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Fig. 1. A schematic diagram comparing conventional driving and
proposed selective scan driving.

However, not all cases are suitable for the content-based
refresh rate control technique. As shown in the example of
Fig. 1, there is a complex case where dynamic video and
static images are displayed simultaneously. In this case, the
conventional display cannot optimize its refresh rate by con-
tents. Because the conventional scan driver circuit sequentially
generates scan signals from the first line to the last one. Even if
there is no change in areas (A) and (C) in Fig. 1, unnecessary
updates are needed to update the area (B). In other words,
unnecessary power is wasted in areas (A) and (C) because of
the high refresh rate for area (B).

Fig. 1 shows the concept of our proposed selective scan
driving. Scan signals are generated only in the selected area.
In the area where scan signals are not generated, pixels hold
the previous frame data. Thus, it is possible to save the power
consumption of the data drivers because they don’t need to
charge or discharge data lines and pixels by holding data
voltages at the timings for the unselected areas.

In this letter, we propose a scan driver circuit that can
generate scan signals only in the selected area. We can select
an arbitrary area to refresh by only adding a simple memory
unit comprising three transistors and one capacitor (3T1C).
We will show fabrication results of the proposed circuit with
ten stages using oxide TFTs.

Il. PROPOSED CIRCUIT

Owing to the low leakage current, oxide TFT memories
and their applications have been studied [10]-[13]. Fig. 2(a)
shows our proposed scan driver circuit. We add a simple
memory unit comprising 3T1C to a scan driver circuit. There
are two additional signals for the proposed memory unit.
OE determines whether the input of the scan driver unit is
connected to the previous stage or not. Vpara is used for both
programming and the start signal for the arbitrarily selected
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Fig. 2. (a) Circuit diagram, (b) timing diagram, and (c) detailed operation

of proposed scan driver circuit.

area. The output of the memory unit is connected to the input
node of the scan driver unit. Although we use a typical type
of scan driver circuit [14], the proposed memory unit is also
compatible with other types.

Fig. 2(b) shows a timing diagram of the proposed circuit.
It represents an example of driving five stages ([n]-[n+4])
selectively. The operation principle is described as follows:

A. Programming Period

After the start pulse (STP) is generated, scan signals are
sequentially generated from the first to the last stage. As shown
in Fig. 2(a) and 2(b), OE keeps high (Vgg) in this period so
that the previous output signal can be the input to the scan
driver unit via MM3. The previous output signal turns on the
transistor MM of the current stage. In Fig. 2(b) Vpara goes
high when SL[n-1] and SL[n+2] are high. Thus, high voltage
(Vgn) is stored in Me[n] and Me[n—+3]. The former is for the
start and the latter is for the end of the selective scan.

B. Selective Driving Period

Fig. 2(c) illustrates detailed operation of the two stages
where Vg voltage is stored in the Me nodes. Unlike the
programming period, there is no STP during the selective
driving period. Instead, Vpara is applied as a new start pulse
via MM2 in the two stages, stages [n] and [n+3], during period
T1. However, the high voltage of Vpara is not transferred
to Q[n+3] but to Q[n] because only CLKI1 is high during
period T1 as illustrated in Fig. 2(c). For this reason, the high
voltage must be stored in two Me nodes of two stages where
the clock connections are different. Thus, the total number of
the selected scan lines becomes odd. Note that OE turns off
MM3 to prevent the input node from being discharged by the
previous scan line.

In period T6, OE turns off MM3 to prevent the last scan
signal (SL[n+4] in Fig. 2(b)) from propagating to the next
stage, SL[n+5]. However, it also prevents the Q[n+3] node
from being discharged through MM3. Instead, Q[n+3] is
discharged by Vpara via MM2, as shown in Fig. 2(c). For this,
the Vgu voltage must be stored in the memory node Me[n+3]
during the programming period. As shown in Fig. 2(b), the
last scan line is SL[n+4], but the high voltage is stored in
Me[n+3] to specify the end position.

[1l. RESULTS AND DISCUSSION

To evaluate the performance of the proposed circuit, we fab-
ricated the proposed scan driver circuit with ten stages using
the oxide TFTs. Fig. 3(a) represents the cross-section view of a
fabricated oxide TFT with a top gate and a coplanar structure.
Fig. 3(b) shows the measured transfer characteristics of the
fabricated oxide TFT. The channel width and length of the TFT
were 3.2 um and 3 um, respectively. Its threshold voltage was
about —0.96 V, which means TFT operates in depletion mode.
Fig. 3(c) shows the micrograph of the fabricated circuit. The
area of a unit stage was 300 um x 40 um. The additional
area for selective driving occupies only 14.5 % of the unit
stage area.

Fig. 4 shows the results of the selective driving for three
selected scan lines. We assumed the display has a resolution
of 1080 x 1920. Refresh rates of the selected area and the
rest are 120 Hz and 60 Hz, respectively. The pulse width was
set to 4 us to meet the target specification. The combination
of the control signals (OE and Vpata) selects scan lines
with a higher refresh rate during the selective driving period.
However, MM1 is slightly turned on even when Vgs is 0 V
because Vry is below 0 V. To prevent leakage of the stored
data voltage, the low voltage of Vpara was adjusted as much
as the threshold voltage (about 1 V). As a result, scan signals
were successfully generated in the selected stages highlighted
in blue. The rise and fall times of the measured output
waveform were 1 us and 0.55 us, respectively.

We investigated how much the proposed selective scan
driving method can reduce power consumption. Fig. 5 shows
an operation example of proposed driving method and the
estimated power consumption according to the number of
selected lines. A dot pattern that requires the highest dynamic
power was used for estimation. The dynamic power of the
proposed scan driver (Pscq,) is dissipated in scan lines (Psy)
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Fig. 3. (a) Cross-section view and (b) measured transfer characteristics
of fabricated Oxide TFT (W/L = 3.2 um / 3 um). (c) Micrograph of the
fabricated scan driver circuit.
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for three lines.

and clock lines (Pcy) during the selective driving period.
Thus, total dynamic power can be expressed as follows:

Pscan = Psp + PcL
=Cs. x (Vo — VGL)2 X fframe X Nstage select
+CcL x (Vou — VGL)2 X feLk X Nstage,total

1)

where Csr and Ccy are the capacitance of scan lines and
clock lines per unit stage. fframe, fCLK» Nstage,roral» and
Nitage,selec: are frame frequency, clock frequency, the number
of total stages, and the number of selected stages, respectively.
Based on the fabricated circuit, the capacitance of the target
specification was assumed as 25 pF and 110 fF for Cg
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Fig. 5. (a) Operation example of the proposed driving method and

(b) estimated power consumption according to the number of selected
lines.

and Ccp, respectively. Most dynamic power is dissipated in
the clock lines (Pcr) because the clock frequency is much
higher than the frame frequency (fcrx > frrame). PcL is
independent of the number of selected lines, as shown in (1).
Thus, the total dynamic power of the scan driver, depicted in
blue in Fig. 5(b), changes a little according to the number of
selected lines.

The dynamic power for data refreshing (Pyqs4) is dissipated
in pixels (Ppjxe) and data lines (Ppy) during the selective
driving period. Thus, total dynamic power can be expressed
as follows:

Piata
= Ppixei+PpL
= Cst - (Ve w+Vé w+Vaw) - frrame
. (Nstage,select . NDL)+CST . (VI%,B+V§,B+VI%,B)
- frrame (Nstage.setect - Np£)+Cpr-(VR.w—Vr.5)*
+(Ve,w — Va,8)*+(Ve,w — Vg,8))) - ferk
. (Nstage,select/NSL) . NDL (2)

where, Csr, Cpr, and Npy are the capacitance of storage
capacitor, data line capacitance, and the number of data lines,
respectively. Vg w, Vo, w, Vp,w and Vg g, Vi B, Vp,p are the
data voltages of RGB sub-pixels for white and black images,
respectively. The dynamic power in pixel (Ppixer) is consumed
only in selected pixels, not in the others. Moreover, as shown
in Fig. 5(a), data voltages are updated only when a scan pulse
is applied and remain constant for the rest of the period, which
reduces dynamic power dramatically as the number of selected
lines decreases. As a results, the dynamic power consumption
for data refresh can be reduced by 25 % and 37.5 % when 50
% and 25 % of scan lines are selected, respectively. Thus, the
proposed circuit mainly reduces the dynamic power required
for unnecessary data refresh.

IV. CONCLUSION

In this letter, we have proposed a new scan driver circuit
using oxide TFTs, which can generate scan signals only in the
selected area. By reducing unnecessary refresh, it is possible
to save wasted power. We added an extra memory unit to the
scan driver circuit for selective driving. The additional area
occupies only 14.5 % of the unit stage area, and it is also
compatible with other types of scan drivers. We expect that the
proposed circuit can contribute to a longer battery usage time
for mobile devices by optimizing power consumption while
maintaining high performance.
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