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Abstract— A vertical channel ferroelectric-FET (FeFET)
with HfO2-based ferroelectric (Fe-HfO2) and atomic layer
deposition (ALD) Indium oxide (InOx) channel has been
developed and demonstrated for 3D high-density memory
applications. Reliable memory operation has been con-
firmed with memory window (MW) >1V in gate length
(Lg) = 50nm short channel FeFETs. Polar-axis transition of
Fe-HfO2 from in-plane in the initial film to out-of-plane after
electrical cycling has been verified by both experimental
and theoretical studies. A vertical channel anti-ferroelectric
(AFe) FET (AFeFET) with ZrO2 has been also demonstrated
by making use of half-loop hysteresis in AFe, which can be
a new solution for the weak erase problem seen in oxide
semiconductor channel FeFETs.

Index Terms— Ferroelectrics, hafnium zirconium oxide,
ferroelectric memory, FeFET, endurance, retention.

I. INTRODUCTION

FERROELECTRIC FET (FeFET) is a promising can-
didate for high density memory with high-speed and

low-power operation due to its field-driven write operation.
Since the discovery of HfO2–based ferroelectric (Fe-HfO2),
FeFET has attracted much attention because of its CMOS-
compatibility [1]. Moreover, 3D vertical-channel FeFET has
the potential for high-density storage memory [2]. For 3D
vertical-channel FeFET, compared to poly-Si, oxide semi-
conductor (OS) has potential benefits as a channel material,
such as high mobility and no low-k interfacial layer between
Fe-HfO2 and OS layers [3]–[7]. However, while program
operation can be easily done due to the high majority carrier
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Fig. 1. (a) Half-loop hysteresis in AFe can be used to improve erase
operation with small net charge. (b) Program and erase operations in
AFe-FET that can achieve efficient erase operation with low minority
carrier concentration.

concentration in OS, erase operation is weak due to the low
minority carrier concentration in OS.

Previous works theoretically and experimentally show that
shorter gate length (Lg) and thinner channel help to mitigate
the weak erase issue by enhancing the electric field in the
Fe-HfO2 layer [8]–[10]. For 3D vertical channel FeFETs,
OS channel material should be conformally deposited by
atomic layer deposition (ALD) in a high-aspect ratio trench
structure [11]–[14]. In addition, 3D FeFETs demand out-
of-plane polarization of Fe-HfO2 with respect to any type
of surface in the 3D structure. Anti-ferroelectric (AFe) gate
insulator is another approach instead of Fe-HfO2 and used
for planar AFeFET [15]–[19]. We think that AFeFET is a
practical approach because the use of half-loop hysteresis only
requires small net charge in anti-parallel polarization and thus
low carrier concentration for erase operation, but has not been
demonstrated in 3D vertical structure yet (Fig. 1).

Based on the motivations above, in this study, (1) we
develop and demonstrate a vertical channel FeFET/AFeFET
with ALD indium oxide (InOx) channel at Lg = 50nm for
high-density memory, (2) experimentally and theoretically
investigate the polar-axis transition of FE-HfO2 under the
electric field.

II. DEVICE FABRICATION

The device fabrication process for the proof-of-concept
starts from SOI substrate. Lg = 50nm N+ Si gate was formed
by ion-implantation, thermal activation, and SOI thinning.
A trench was formed by EB lithography and RIE, followed
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Fig. 2. (a) Top-down microscope image for a single device. (b) Cross-
sectional schematic for a single device. (c) Cross-sectional TEM images
of the vertical channel FeFET with ALD InOx. (d) EDX elemental mapping
of the vertical channel FeFET at the region of gate, Fe-HfO2, and InOx
channel.

by gate isolation RIE. 1nm ZrO2/10nm HfZrO2/1nm ZrO2 and
12nm ZrO2 were grown by ALD at 250◦C for FeFETs and
for AFeFETs, respectively. Crystallization anneal was done at
600◦C by RTA. 5nm InOx was grown by ALD at 200◦C and
patterned. O3 anneal was applied at 200◦C to reduce oxygen
vacancy [20]. S/D metal contacts were formed with 20nm TiN.
Gate contact was formed with 5nm Ti and 20nm TiN.

Fig. 2(a) shows the top-down microscope image and
Fig. 2(b) shows the cross-section schematic of a single device
that contains two FETs in series, sharing source and drain.
One FET is kept turned on while the other is in measurement.
Fig. 2(c) and (d) show the cross-sectional TEM images and
EDX elemental mapping of the fabricated vertical-channel
FeFET, respectively. Conformal and uniform formation of the
gate insulator and the channel is confirmed thanks to the ALD
process. Note that the parasitic resistance is large between gate
and source/drain in this work because of the N+ Si resistance
and patterning process limitation, which limits write pulse
width ∼100µs but can be improved in the future work.

III. RESULTS AND DISCUSSION

First, we show and discuss the results of the fabricated
vertical channel FeFETs. Before FeFET characteristics, fer-
roelectricity was examined in a Fe-HfO2 capacitor with the
same Fe-HfO2 layer as the FeFET, and N+ Si and TiN
electrodes. Fig. 3(a) shows the measured polarization charge
(Q) – voltage (V) curves and Fig. 3 (b) shows the measured
current (I) - V curves. As the voltage amplitude increases
from 3V to 5V, the ferroelectric hysteresis approaches to a
saturation curve till the leakage current becomes prominent.
Both curves are not symmetric, showing the negative shift
∼1V in the voltage axis. The shift is made by the two factors:
1) work function difference and 2) positive fixed charge in the
Fe-HfO2 layer. The work function difference ∼0.5eV between
N+ Si and TiN generates built-in bias and causes the shift of
the hysteresis loop [21], [22]. The remaining shift is caused
by the fixed charge.

Fig. 3(c) shows the memory-read drain-current (Id) – gate
voltage (Vg) curves of the vertical channel FeFET with
Lg = 50nm, varying program and erase pulse voltage. As the
pulse voltage increases, memory window (MW) increases.
This corresponds to Fig. 3(a) where hysteresis increases as
the voltage on the Fe-HfO2 layer increases. MW of >1V
was obtained and applicable for memory operation. Note that,
since the fast I-V measurement module was used for read

Id-Vg curves, the off-state current was limited by the resolution
of the module at the dynamic range. Fig. 3(d) and Fig. 3(e)
show measured endurance and retention characteristics,
respectively. >103 endurance cycles and >103 seconds reten-
tion were obtained. Threshold voltage (Vth) at erase state
decays faster than at program state, which is due to the larger
depolarization field at erase state with OS channel [3].

Next, we show the results of the polar-axis transition of
Fe-HfO2 under the electric field. Fig. 4(a) shows the surface
energies of the Fe-phase of crystalline HfO2 in slab structure
calculated by the first-principles simulation [23]. While the
out-of-plane polar Fe-HfO2 with (001) orientation shows the
largest surface energy, the in-plane polar Fe-HfO2 with (010)
orientation has the lowest and the most stable surface energy.

Fig. 4(b) shows the plan-view TEM images of the annealed
HfZrO2 films with and without the 104 electric-field cycling
as wake-up operation. The grain maps within 1µm2 area and
their colored orientation analyses are also shown in Fig. 4(b).
Fig. 4(c) is the inverse polar mapping from Fig. 4(b), which
represents the distribution of the grain crystal orientations [24].
In the film without wake-up, the dominant grain orientation is
in-plane polar (010), which is consistent with Fig. 4(a). After
wake-up, however, the dominant grain orientation becomes
out-of-plane polar (001). This indicates that the initial in-plane
polar-axis transits to the out-of-plane polar-axis in the Fe-HfO2
grains under the electric field.

Fig. 4(d) shows the simulated kinetic pathway of the
atomic structure transition. For typical up/down polarization
switching, the transition barrier is comparable because of the
symmetry. For the transition from the in-plane polar to the
out-of-plane polar Fe-HfO2, there is an intermediate tetragonal
phase (t and t’) [25]. The transition barrier is low between t
and t’. Therefore, the out-of-plane polar axis can be realized
from the initial in-plane polar axis via the tetragonal phases.
This finding is useful in that Fe-HfO2 can maximize the
polarization for memory operation on any type of surface in
3D structure.

Then, we show the results of the fabricated vertical channel
AFeFETs. Before AFeFET characteristics, half-loop hysteresis
behavior was examined in an AFe- capacitor with the same
AFe-layer as the AFeFET, and N+ Si and TiN electrodes.
Fig. 5(a) shows the measured Q-V curves and Fig. 5 (b) shows
the measured I-V curves. In the voltage sweep between −3V
and 5V or narrower range, half-loop hysteresis was obtained
similar to ferroelectric hysteresis. Moreover, as we saw in
Fig. 3(a) and (b), the built-in bias generated by the work func-
tion difference and the positive fixed charge shift the Q-V and
I-V curves in the negative direction in the voltage axis. This
results in one polarization switching at positive voltage and the
other polarization switching at negative voltage, which realizes
ferroelectric-like nonvolatile behavior in AFe [21], [22].

Fig. 5(c) shows the memory-read Id–Vg curves of the
vertical channel AFeFET with Lg = 50nm, varying program
and erase pulse voltage. MW of >0.5V was obtained. This
value is smaller than that of the FeFET because of the smaller
hysteresis in the half-loop hysteresis. Fig. 5(d) and Fig. 5(e)
show measured endurance and retention characteristics,
respectively. >103 endurance cycles and >103 seconds reten-
tion were obtained. Vth decay at erase state is slower than
that of the FeFET. This indicates that erase operation requires
only small net polarization charge and channel charge in the
AFeFET, so that the depolarization field is small and the
retention is maintained. The small retention loss at erase state
can be due to the depolarization of the excess polarization
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Fig. 3. (a) Measured Q-V and (b) I-V curves of the fabricated N+ Si / ZrO2-HfZrO2-ZrO2 / TiN Fe-capacitor, varying voltage amplitude from 3V to
6V at 1kHz. (c) Measured read Id-Vg curves of the vertical channel FeFET. Measured (d) endurance and (e) retention characteristics of the vertical
channel FeFET.

Fig. 4. (a) Calculated surface energies of Fe-HfO2 slabs with different orientations. (b) Plan-view TEM images and crystal-orientation color-maps
of FE-HfO2 film (i-ii) without and (iii-iv) with wake-up operation. (c) Inverse polar maps from (b) (i) without and (ii) with wake-up operation by 104

electrical cycling. (d) Simulated pathway of (i) up/down polarization switching and (ii) in-plane/out-of-plane polarization transition via t-phases as
intermediate steps.

Fig. 5. (a) Measured Q-V and (b) I-V curves of the fabricated N+ Si / ZrO2 / TiN AFe-capacitor, setting offset voltage and varying voltage amplitude
at 1kHz. (c) Measured read Id-Vg curves of the vertical channel AFeFET. Measured (d) endurance and (e) retention characteristics of the vertical
channel AFeFET.

TABLE I
BENCHMARK OF Fe-HfO2 VERTICAL CHANNEL FeFET

induced by slight over-erase in the current write operation.
Retention loss due to polarization charge loss in imprint may
not be severe based on the previous work on IGZO-capped
ferroelectric capacitors [26]. Further study will be needed to
elucidate the retention behavior in AFeFET. Note that low Vth
in the FeFET and AFeFET in this work are attributed to InOx
channel. Higher Vth can be obtained by engineering gate stack
and OS channel.

Table I benchmarks the vertical channel FeFET and
AFeFET in this work with previously reported FeFETs with
Fe-HfO2 and various channel materials. The FeFET in this
work shows the comparable MW and reliability character-
istics at given thickness at relatively low voltage operation.
We demonstrated the first vertical InOx channel AFeFET,
showing its feasibility for vertical channel memory devices.
Smaller MW in AFeFETs can be improved by AFe thickness
while robust erase operation and reliability are maintained.

IV. CONCLUSION

We demonstrated a vertical channel FeFET with ALD InOx
at Lg = 50nm. The FeFET shows >1V MW with reliable
memory operation. We confirmed polar-axis transition from
in-plane to out-of-plane in Fe-HfO2 by experimental and theo-
retical study. We also demonstrated a vertical channel AFeFET
with ALD InOx at Lg = 50nm. The AFeFET shows >0.5V
MW. Erase state retention is improved by AFeFET thanks to
the efficient erase operation by using the half-loop hysteresis
of AFE. This work shows the feasibility of 3D vertical channel
FeFETs and AFeFETs with OS channel for high-density
storage memory.
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