Scaled T-Gate β -Ga₂O₃ MESFETs With 2.45 kV Breakdown and High Switching Figure of Merit

Daniel M. Dryden[®], Kyle J. Liddy, Ahmad E. Islam, Jeremiah C. Williams,

Dennis E. Walker, Jr., *Member, IEEE*, Nolan S. Hendricks, Neil A. Moser[®], *Member, IEEE*, Andrea Arias-Purdue[®], *Member, IEEE*, Nicholas P. Sepelak, Kursti DeLello,

Kelson D. Chabak[®], *Senior Member, IEEE*, and Andrew J. Green

Abstract—We demonstrate a passivated MESFET fabricated on (010) Si-doped β -Ga₂O₃ with breakdown over 2.4 kV without field plates, high Power Figure of Merit (PFOM), and high estimated Huang's Material Figure of Merit (HMFOM), owing to low gate charge and high breakdown. MESFETs with 13 μ m source-drain spacing and 75 nm channel exhibited a current density of 61 mA/mm, peak transconductance of 27 mS/mm, and on-resistance of 133 $\Omega \cdot$ mm. The device showed a PFOM competitive with state-of-theart β -Ga₂O₃ devices and a record high estimated HMFOM for a β -Ga₂O₃ device, competitive with commercial wide-band gap devices. This demonstrates high-performance β -Ga₂O₃ devices as viable multi-kV high-voltage power switches.

Index Terms— Field effect transistors, gallium oxide, MESFET, power transistors, ultra wide band gap semiconductors.

I. INTRODUCTION

β-Ga₂O₃ is an emerging ultra-wide band gap (UWBG) semiconductor that shows great promise in the highvoltage, high-power, and high-efficiency device space, particularly for power switching and switch-mode amplification [1], [2]. β-Ga₂O₃ has a range of compatible shallow n-type dopants, including Sn, Si, and Ge [3], allowing for tunable carrier densities from 10^{15} cm⁻³ to $>10^{20}$ cm⁻³ [4], [5] enabling a wide range of breakdown voltages V_{bk} with low on resistance R_{on} . The material has a high critical electric field strength E_c estimated at 8 MV/cm due to its wide band

Manuscript received 18 May 2022; revised 2 June 2022; accepted 9 June 2022. Date of publication 13 June 2022; date of current version 26 July 2022. This work was supported in part by the Air Force Research Laboratory under Award FA807518D0015, and in part by the AFOSR/Cornell Center of Excellence, under Grant FA9550-18-1-0529. The review of this letter was arranged by Editor R.-H. Horng. (*Corresponding author: Daniel M. Dryden.*)

Daniel M. Dryden and Nicholas P. Sepelak are with KBR, Inc., Beavercreek, OH 45431 USA (e-mail: daniel.dryden.3.ctr@us.af.mil).

Kyle J. Liddy, Ahmad E. Islam, Jeremiah C. Williams, Dennis E. Walker, Jr., Nolan S. Hendricks, Neil A. Moser, Kelson D. Chabak, and Andrew J. Green are with the Air Force Research Laboratory, Sensors Directorate, Dayton, OH 45431 USA.

Andrea Árias-Purdue is with Teledyne Scientific Company, Thousand Oaks, CA 91360 USA.

Kursti DeLello is with the Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850 USA.

Color versions of one or more figures in this letter are available at https://doi.org/10.1109/LED.2022.3182575.

Digital Object Identifier 10.1109/LED.2022.3182575

gap of 4.8 eV [1], resulting in a Baliga's Power Figure of Merit (PFOM) of 28 GW/cm², exceeding that of GaN (8.6) and SiC (3.35).

Baliga defined the inherent trade-off between V_{bk} and R_{on} leading to the PFOM $V_{bk}^2/R_{(on,sp)}$ [6]. A similar tradeoff exists between switching charge Q_G and R_{on} , compelling a Huang's power switching material figure of merit (HMFOM) of $\sqrt{\mu} \cdot E_c = V_{bk}/\sqrt{R_{on}Q_G}$ for comparing devices to the unipolar material limit [7], where μ is the majority carrier mobility. Here β -Ga₂O₃ also excels, with an HMFOM of 126 (W/C)^{1/2} versus 114 for GaN and 79 for SiC [8].

Many transistor topologies have been demonstrated, including MOSFETs [9]–[13], MESFETs [14]–[16], MODFETs [17], FinFETs [18], [19] and vertical devices [18], [20], both with optimized field plates [14], [21], [22] and without [23].

This letter presents a β -Ga₂O₃ MESFET that simultaneously achieves a state-of-the-art PFOM, an estimated HMFOM competitive with commercially available wide-band gap devices, and a V_{bk} of 2.45 kV, the highest reported for a non-field-plated β -Ga₂O₃ MESFET. Elimination of the gate oxide and the parasitic capacitance from sourceconnected field plating results in a device well-optimized for power switching, as corroborated by pulsed I-V measurements. We estimate Q_G , extracting the contributions of source-side and drain-side charge, and compare these values and methods to those of prior reported devices.

II. METHODS

A device schematic and scanning electron micrograph (SEM) plan view with T-gate cross-section are shown in Figures 1a and b, respectively, for the device under test (DUT). A 75 nm Si-doped layer was homoepitaxially grown *via* ozone molecular beam epitaxy on an (010)-oriented, semiinsulating Fe-doped substrate by Novel Crystal Technologies, Japan. Devices were isolated using a high power BCl₃/Cl₂ ICP etch.

Ohmic contacts were formed first by Si ion implantation and a 900 °C furnace anneal in N₂ ambient, followed by electron beam evaporation and liftoff of a Ti/Al/Ni/Au metal stack and subsequent 60 s RTA anneal at 470 °C in N₂ ambient. A scaled T-Gate was defined *via* electron beam lithography with a gate

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1. a) Cross-sectional schematic of MESFET design and dimensions, and b) SEM plan view of the device under test; inset, SEM FIB crosssection of the scaled T-gate.

length L_g of ~270 nm and head spanning ~730 nm. The gate and source-drain contact pads consisted of Ni/Au deposited via electron beam evaporation and liftoff. An Al₂O₃ passivation layer with a nominal thickness of 20 nm was deposited by plasma-enhanced atomic layer deposition over the device's channel region outside the gate.

The resulting transistor had a source-drain spacing L_{sd} of nominally 13 μ m, source-gate access length L_{gs} of 0.6 μ m, gate-drain length L_{gd} of 11.8 μ m, and channel width W of 50 μ m.

III. RESULTS

MESFETs were characterized at room temperature (Figure 2). The DUT exhibited an off-voltage V_{off} of -6 V, a threshold voltage V_{th} of -4.2 V, an on/off ratio of 10^4 , and a subthreshold slope of 329 mV/dec (Fig. 2a) measured at $V_{ds} = 10$ V, along with a peak current I_{max} of 60 mA/mm at $V_{ds} = 10$ V and transconductance $G_{m,peak}$ of 26.5 mS/mm. Reverse leakage and non-ideal subthreshold slope may be attributed to defect states induced by the passivation, and contamination at the substrate-epilayer interface. Conduction at $V_g = 0$ V was linear (Fig. 2b) indicating ohmic contacts but high series resistance, with an R_{on} of 133 $\Omega \cdot \text{mm}$ (R_{on,sp} of 17.3 $m\Omega \cdot cm^2$ normalized to the active device area).

Wafer-scale contact resistance was determined by Transfer Length Method (TLM) to be $15 \pm 4 \ \Omega \cdot \text{mm}$ $(2 \times 10^{-4} \pm 8 \times 10^{-5} \Omega \cdot \text{cm}^2)$. Hall measurements on micro-van der Pauw structures indicated a charge carrier density of $1.1 \pm 0.4 \times 10^{18} \text{ cm}^{-3}$ and a Hall mobility of $84\pm7 \text{ cm}^2/(\text{V}\cdot\text{s})$ in the epilayer. Breakdown under Fluorinert occurred at $V_{ds} = 2.45 \text{ kV}$ (Fig. 2c), a record for a β -Ga₂O₃ MESFET without field plating [14]. Average electric field at breakdown increases as function of L_{gd} across all measured MESFETs (Fig. 2d). Pulsed I-V measurements (Fig. 2e) indicate negligible gate lag, and drain lag that increases with increasing quiescent drain bias $V_{ds,q}$. Pulsed I-V performance at $V_{ds,on} = 10$ V is consistent across most devices tested (Fig. 2f).

IV. DISCUSSION

The PFOM of the DUT (Fig. 3a) was 347 MW/cm², exceeding the theoretical performance of both Si and GaAs, nearly as high as record field-plated β -Ga₂O₃ MESFETs (Fig. 3a, inset) and a record for non-field plated MESFETs, three times

Fig. 2. a) Transfer curve (black) and transconductance (blue) of the DUT vs V_{gs} at $V_{gd} = 10$ V; b) family of curves I_d vs. V_{ds} of the DUT; c) gate and drain currents I_d and I_g of the DUT measured in the off state at $V_{gs} = -8$ V, exhibiting breakdown at $V_{ds} = 2450$ V; d) average breakdown field of MESFETS vs. L_{gd} ; e) pulsed I-V (1 ms off, 200 ns on) measurements of a 13 μ m L_{sd} device at four quiescent biases; f) table of gate and drain lag (current collapse) at $V_{ds} = 9.5$ V for six 13 μ m L_{sd} devices with performance comparable to the DUT.

higher than the previously reported record of 115 MW/cm² [14], [16], [24]. Other devices from the same sample are also shown in Figure 4, with L_{sd} of 3 μ m, 8 μ m, and 13 μ m.

The device PFOMs increase with increasing L_{gd} , as a result of an increase in V_{bk} disproportionate to the increase in R_{on} . Treating channel depletion as a one-dimensional, single-sided abrupt junction predicts a maximum depletion width of 400 nm and V_{bk} of ~160 V at this channel doping, independent of L_{gd} . Larger devices appear to spread the applied potential over longer distances (higher depletion widths) than predicted, leading to decreased peak fields and thus higher V_{bk} than expected. The head of the T-gate likely provides some degree of electric field management in all devices, independent of L_{gd} . This observed deviation in the device depletion profile from the 1D approximation—as well as the apparent increase in average field with increasing L_{gd} (Fig. 2d)—is not intuitive, and determining the underlying mechanism is a subject of ongoing modeling and investigation.

Pulsed I-V measurements show very little current collapse as a result of gate bias alone. The lack of gate oxide and its associated defect traps plays a role, though previously reported β -Ga₂O₃ MOSFETs also show low gate lag [25], [26]. Drain lag is comparable to previous reports, and even at a quiescent drain bias of 25 V, current collapse at $V_{ds,on} = 10$ V is under 30% (Fig. 2e). Among devices with DC characteristics similar

Fig. 3. a) Baliga's Figure of Merit $R_{on,sp}$ vs. V_{bk} for reported β -Ga₂O₃ devices (green) and β -Ga₂O₃ devices in literature (black). Devices with source-drain spacings of 3 μ m, 8 μ m, and 13 μ m are indicated by small, medium, and large symbols, respectively. Inset: MESFETs from this work (green) and, from literature with field plates (empty) and without (filled). b) Huang's Material Figure of Merit $R_{on}Q_{gd}$ vs. V_{bk} , including this device (green) and reported devices in literature and data sheets. Color indicates material system and shape indicates device geometry.

to the DUT, pulsed I-V performance is consistent across most devices tested (Fig. 2f).

The DUT breaks down at an average source-drain electric field of 2.08 MV/cm. Field plates and passivation layers could potentially increase V_{bk} further [14], [27]; however, field plating and other field management are likely to increase parasitic capacitance, potentially in excess of the intrinsic capacitance accounted for by simple methods of estimating Q_G used next for HMFOM calculation.

The estimated HMFOM for the DUT was 17.15 (W/C)^{1/2} (Fig. 3b), which was calculated by considering that the Miller charge Q_{gd} dominates Q_G (true for high-voltage applications [28]) and by estimating $Q_{gd} = qN_Dt_DA = 7.89$ pC that considers full depletion of the drift region, as proposed by Zhang *et al.* [29]. Here, N_D is the channel doping of 1.1×10^{18} cm⁻³, t_D is the channel thickness of 75 nm, $A = L_{GD} \cdot W \sim 597 \ \mu\text{m}^2$ and q is the elementary charge. (Fig. 1a). This estimated HMFOM is the highest reported for β -Ga₂O₃, competitive with commercial SiC devices, [29] and comparable to some GaN [30] devices but at a markedly higher V_{bk} .

We also estimated the source-side charge $Q_{gs} = 0.128$ pC by assuming that at V_{th} the full thickness of the channel was depleted along with a lateral depletion radially from the source-side gate edge of 75 nm. Calculated Q_{gs} is therefore negligible compared to Q_{gd} , but may require consideration for low-voltage, high-current applications. The remaining component of Q_G , *i.e.*, reverse capacitance charge Q_{rss} , has been ignored as it is negligible in unipolar devices [29]. Therefore, a geometric estimation of the drift region depletion charge provides the best conservative estimate of Q_G for benchmarking purposes, as it overestimates the intrinsic channel charge while disregarding extrinsic capacitances. This method produces a conservative estimate only in the absence of sources of extrinsic capacitance integral to device performance, *i.e.* field plates or other field management schemes.

Future work is underway to fabricate a large-periphery device to measure an experimental value of Q_G directly from the dynamic measurement [28]. Further care must be taken in comparing values of HMFOM or Q_G to commercial devices, as data sheets often do not report V_{bk} , and the switching conditions and relative contributions for different components of Q_G .

We also envision future device optimizations by improving contact resistance to $0.5 \Omega \cdot \text{mm}$ which would improve the PFOM to 390 MW/cm² and the estimated HMFOM to 18.2 (W/C)^{1/2}. Eliminating access resistance—*via* a selfaligned gate design, *e.g.* [13]—would improve them to 408 MW/cm² and 18.6 (W/C)^{1/2}, respectively. One can also gain by improving carrier mobility towards the predicted room-temperature value of ~200 cm²/V·s [31]; this will increase the PFOM and estimated HMFOM to 967 MW/cm² and 28.6 (W/C)^{1/2}, respectively. Gains from eliminating extrinsic resistances will be limited, as most of the series resistance in this device comes from the drain region used for obtaining large V_{bk} .

On account of the V_{bk} of these devices being significantly higher than predicted by the single-sided abrupt junction assumption for material of this geometry and doping level, future device design may move towards higher-doped channels, as multi-kV devices can be fabricated at dopings in excess of 1×10^{18} cm⁻³. This allows for low- R_{on} , high- V_{bk} parts with performance tunable both by doping and gate-drain spacing.

V. SUMMARY

 β -Ga₂O₃ MESFETs with high PFOM and multi-kV V_{bk} show competitive performance with commercial wide-band gap devices, and a record-high estimated HMFOM for a β -Ga₂O₃ device, without the use of field plating. This work demonstrates the great potential for β -Ga₂O₃ power switches and switch-mode amplifiers.

REFERENCES

- M. Higashiwaki and G. H. Jessen, "Guest editorial: The dawn of gallium oxide microelectronics," *Appl. Phys. Lett.*, vol. 112, no. 6, Feb. 2018, Art. no. 060401, doi: 10.1063/1.5017845.
- [2] K. D. Chabak, K. D. Leedy, A. J. Green, S. Mou, A. T. Neal, T. Asels, E. R. Heller, N. S. Hendricks, K. Liddy, A. Crespo, N. C. Miller, M. T. Lindquist, N. A. Moser, R. C. Fitch, D. E. Walker, D. L. Dorsey, and G. H. Jessen, "Lateral β-Ga₂O₃ field effect transistors," *Semicond. Sci. Technol.*, vol. 35, no. 1, Nov. 2019, Art. no. 013002, doi: 10.1088/1361-6641/ab55fe.
- [3] N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, and G. Jessen, "Ge-doped β-Ga₂O₃ MOSFETs," *IEEE Electron Device Lett.*, vol. 38, no. 6, pp. 775–778, Jun. 2017, doi: 10.1109/LED.2017.2697359.
- [4] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of Ga₂O₃ materials, processing, and devices," *Appl. Phys. Rev.*, vol. 5, no. 1, Mar. 2018, Art. no. 011301, doi: 10.1063/1.5006941.
- [5] H. M. Jeon, K. D. Leedy, D. C. Look, C. S. Chang, D. A. Müller, S. C. Badescu, V. Vasilyev, J. L. Brown, A. J. Green, and K. D. Chabak, "Homoepitaxial β-Ga₂O₃ transparent conducting oxide with conductivity σ = 2323 S cm⁻¹," *APL Mater.*, vol. 9, no. 10, Oct. 2021, Art. no. 101105, doi: 10.1063/5.0062056.
- [6] B. J. Baliga, "Semiconductors for high-voltage, vertical channel fieldeffect transistors," J. Appl. Phys., vol. 53, no. 3, pp. 1759–1764, Mar. 1982, doi: 10.1063/1.331646.
- [7] A. Q. Huang, "New unipolar switching power device figures of merit," *IEEE Electron Device Lett.*, vol. 25, no. 5, pp. 298–301, May 2004, doi: 10.1109/LED.2004.826533.
- [8] G. Jessen, K. Chabak, A. Green, J. McCandless, S. Tetlak, K. Leedy, R. Fitch, S. Mou, E. Heller, S. Badescu, A. Crespo, and N. Moser, "Toward realization of Ga₂O₃ for power electronics applications," in *Proc. 75th Annu. Device Res. Conf. (DRC)*, Jun. 2017, pp. 1–2, doi: 10.1109/DRC.2017.7999397.
- [9] M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, "Depletion-mode Ga₂O₃ metal-oxide-semiconductor field-effect transistors on β-Ga₂O₃ (010) substrates and temperature dependence of their device characteristics," *Appl. Phys. Lett.*, vol. 103, no. 12, Sep. 2013, Art. no. 123511, doi: 10.1063/1.4821858.
- [10] K. D. Chabak, J. P. McCandless, N. A. Moser, A. J. Green, K. Mahalingam, A. Crespo, N. Hendricks, B. M. Howe, S. E. Tetlak, K. Leedy, R. C. Fitch, D. Wakimoto, K. Sasaki, A. Kuramata, and G. H. Jessen, "Recessed-gate enhancement-mode β-Ga₂O₃ MOSFETs," *IEEE Electron Device Lett.*, vol. 39, no. 1, pp. 67–70, Jan. 2018, doi: 10.1109/LED.2017.2779867.
- [11] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, "3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga₂O₃ MOSFETs," *IEEE Electron Device Lett.*, vol. 37, no. 7, pp. 902–905, Jul. 2016, doi: 10.1109/LED.2016.2568139.
- [12] Y. Lv, H. Liu, X. Zhou, Y. Wang, X. Song, Y. Cai, Q. Yan, C. Wang, S. Liang, J. Zhang, Z. Feng, H. Zhou, S. Cai, and Y. Hao, "Lateral β-Ga₂O₃MOSFETs with high power figure of merit of 277 MW/cm²," *IEEE Electron Device Lett.*, vol. 41, no. 4, pp. 537–540, Apr. 2020, doi: 10.1109/LED.2020.2974515.
- [13] K. J. Liddy, A. J. Green, N. S. Hendricks, E. R. Heller, N. A. Moser, K. D. Leedy, A. Popp, M. T. Lindquist, S. E. Tetlak, G. Wagner, K. D. Chabak, and G. H. Jessen, "Thin channel β-Ga₂O₃ MOSFETs with self-aligned refractory metal gates," *Appl. Phys. Exp.*, vol. 12, no. 12, Oct. 2019, Art. no. 126501, doi: 10.7567/1882-0786/ab4d1c.
- [14] A. Bhattacharyya, P. Ranga, S. Roy, C. Peterson, F. Alema, G. Seryogin, A. Osinsky, and S. Krishnamoorthy, "Multi-kV class β -Ga₂O₃ MESFETs with a lateral figure of merit up to 355 MW/cm²," *IEEE Electron Device Lett.*, vol. 42, no. 9, pp. 1272–1275, Sep. 2021, doi: 10.1109/LED.2021.3100802.
- [15] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga₂O₃) metal-semiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates," *Appl. Phys. Lett.*, vol. 100, no. 1, Jan. 2012, Art. no. 013504, doi: 10.1063/1.3674287.

- [16] Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, and S. Rajan, "Delta doped β-Ga₂O₃ field effect transistors with regrown ohmic contacts," *IEEE Electron Device Lett.*, vol. 39, no. 4, pp. 568–571, Apr. 2018.
- [17] S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, "Modulation-doped β-(Al_{0.2}Ga_{0.8})₂O₃/Ga₂O₃ field-effect transistor," *Appl. Phys. Lett.*, vol. 111, no. 2, 2017, Art. no. 023502.
- [18] W. Li, K. Nomoto, Z. Hu, T. Nakamura, D. Jena, and H. G. Xing, "Single and multi-fin normally-off Ga₂O₃ vertical transistors with a breakdown voltage over 2.6 kV," in *IEDM Tech. Dig.*, Dec. 2019, pp. 12.4.1–12.4.4, doi: 10.1109/IEDM19573.2019.8993526.
- [19] K. D. Chabak, N. Moser, A. J. Green, D. E. Walker, S. E. Tetlak, E. Heller, A. Crespo, R. Fitch, J. P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, "Enhancement-mode Ga₂O₃ wrap-gate fin field-effect transistors on native (100) β-Ga₂O₃ substrate with high breakdown voltage," *Appl. Phys. Lett.*, vol. 109, no. 21, Nov. 2016, Art. no. 213501, doi: 10.1063/1.4967931.
- [20] M. H. Wong and M. Higashiwaki, "Vertical β-Ga₂O₃ power transistors: A review," *IEEE Trans. Electron Devices*, vol. 67, no. 10, pp. 3925–3937, Oct. 2020, doi: 10.1109/TED.2020.3016609.
- [21] S. Sharma, K. Zeng, S. Saha, and U. Singisetti, "Field-plated lateral Ga₂O₃ MOSFETs with polymer passivation and 8.03 kV breakdown voltage," *IEEE Electron Device Lett.*, vol. 41, no. 6, pp. 836–839, Jun. 2020, doi: 10.1109/LED.2020.2991146.
- [22] M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, "Field-plated Ga₂O₃ MOSFETs with a breakdown voltage of over 750 V," *IEEE Electron Device Lett.*, vol. 37, no. 2, pp. 212–215, Feb. 2016, doi: 10.1109/LED.2015.2512279.
- [23] K. Tetzner, E. B. Treidel, O. Hilt, A. Popp, S. B. Anooz, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Würfl, "Lateral 1.8 kV β-Ga₂O₃ MOSFET With 155 MW/cm² power figure of merit," *IEEE Electron Device Lett.*, vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.
- [24] Z. Xia, H. Xue, C. Joishi, J. Mcglone, N. K. Kalarickal, S. H. Sohel, M. Brenner, A. Arehart, S. Ringel, S. Lodha, W. Lu, and S. Rajan, "β-Ga₂O₃ delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz," *IEEE Electron Device Lett.*, vol. 40, no. 7, pp. 1052–1055, Jul. 2019, doi: 10.1109/LED.2019.2920366.
- [25] N. A. Moser, T. Asel, K. J. Liddy, M. Lindquist, N. C. Miller, S. Mou, A. Neal, D. E. Walker, S. Tetlak, K. D. Leedy, G. H. Jessen, A. J. Green, and K. D. Chabak, "Pulsed power performance of β-Ga₂O₃ MOSFETs at L-band," *IEEE Electron Device Lett.*, vol. 41, no. 7, pp. 989–992, Jul. 2020, doi: 10.1109/LED.2020.2993555.
- [26] C. N. Saha, A. Vaidya, and U. Singisetti, "Temperature dependent pulsed IV and RF characterization of β-(Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructure FET with *ex situ* passivation," *Appl. Phys. Lett.*, vol. 120, no. 17, Apr. 2022, Art. no. 172102, doi: 10.1063/5.0083657.
- [27] N. K. Kalarickal, Z. Xia, H.-L. Huang, W. Moore, Y. Liu, M. Brenner, J. Hwang, and S. Rajan, "β-(Al_{0.18}Ga_{0.8})₂O₃/Ga₂O₃ double heterojunction transistor with average field of 5.5 MV/cm," *IEEE Electron Device Lett.*, vol. 42, no. 6, pp. 899–902, Jun. 2021, doi: 10.1109/LED.2021.3072052.
- [28] D. Reusch and J. Strydom, "Evaluation of gallium nitride transistors in high frequency resonant and soft-switching DC-DC converters," in *Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC)*, Fort Worth, TX, USA, Mar. 2014, pp. 464–470, doi: 10.1109/APEC.2014.6803349.
- [29] Y. Zhang, M. Sun, J. Perozek, Z. Liu, A. Zubair, D. Piedra, N. Chowdhury, X. Gao, K. Shepard, and T. Palacios, "Large-area 1.2-kV GaN vertical power FinFETs with a record switching figure of merit," *IEEE Electron Device Lett.*, vol. 40, no. 1, pp. 75–78, Jan. 2019, doi: 10.1109/LED.2018.2880306.
- [30] H. Wang, R. Xie, C. Liu, J. Wei, G. Tang, and K. J. Chen, "Maximizing the performance of 650 V p-GaN gate HEMTs: Dynamic Ron characterization and gate-drive design considerations," in *Proc. IEEE Energy Convers. Congr. Expo. (ECCE)*, Sep. 2016, pp. 1–6, doi: 10.1109/ECCE.2016.7855231.
- [31] Z. Feng, A. F. M. A. U. Bhuiyan, M. R. Karim, and H. Zhao, "MOCVD homoepitaxy of Si-doped (010) β-Ga₂O₃ thin films with superior transport properties," *Appl. Phys. Lett.*, vol. 114, no. 25, Jun. 2019, Art. no. 250601, doi: 10.1063/1.5109678.