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Abstract— This paper proposes an original approach to
separately characterize self-heating and substrate effects
in Fully-Depleted Silicon-on-Insulator (FD-SOI) devices.
As both dynamic self-heating and drain to source coupling
through the back-gate and substrate of an FD-SOI MOSFET
induce a frequency transition in the Y-parameters in a
common frequency range, it is crucial to properly separate
them for further modeling. The proposed novel method is
based on the extraction of the back-gate and substrate
networks from the S-parameters measured at the zero-
temperature coefficient bias. It enables the accurate and
unambiguous extraction of thermal impedance for different
biases, thus providing the extraction of the device thermal
resistance and capacitance for different power levels from
S-parameters measurements.

Index Terms— Back-gate modeling, FD-SOI MOSFET,
RF extraction, self-heating, S-parameters measurements,
substrate coupling, ultra-wideband modeling.

I. INTRODUCTION

THE downscaling of CMOS technology has been crucial
for improving device performance and reducing manu-

facturing cost. However, aggressive scaling results in higher
current and power densities, thereby increasing the self-heating
(SH) effect and the lattice temperature (Tc). Fully-Depleted
Silicon-on-Insulator (FD-SOI) transistors offer outstanding
electrostatic control, very low mismatch, excellent analog and
RF figures of merit [1]–[4]. However, due to the presence of
the buried oxide (BOX), SH of more significance is present
in FD-SOI MOSFETs than in their bulk counterparts [5].
Dynamic self-heating is known to induce a transition in the
Y-parameters over frequency that is used in turn to extract the
thermal parameters [5]–[13]. Furthermore, the drain to source
coupling through the back-gate (B-G) node (or Si substrate
under the BOX) also induces a transition in the Y-parameters
in a similar frequency range [9], [14]. Although this transi-
tion was originally very pronounced in FD-SOI devices with
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thin BOX [9] contrarily to previous device generations [14],
the introduction of a highly-doped region below the BOX
strongly reduces the transition [5]. The transition associated
to the coupling via substrate is thus usually neglected/ignored
in these devices, which may however lead to misinterpretation
and erroneous modeling of SH [5], [10]. To the best of the
authors’ knowledge, no method has been proposed to sepa-
rately characterize each contribution, i.e. SH and B-G effect
(also called substrate effect, SE), into Y-parameter frequency
response. In this paper, we will (i) demonstrate that the SE
partially overlaps SH forming a common, indistinguishable
distributed transition from 100 kHz to 10 GHz, (ii) show
that the dynamic SH effect vanishes at the zero-temperature
coefficient (ZTC) bias point, (iii) use this bias point to extract
the SH-free transistor electrical model including the B-G and
substrate nodes, (iv) extract the frequency-dependent thermal
impedance Zth(f) for different bias conditions, and (v) compare
it to the conventional extraction procedure that neglects the
transitions associated to the B-G node.

II. SELF-HEATING AND BACK-GATE NODE EXTRACTION

A. Advantage of ZTC Bias for Unambiguous Extraction
An FD-SOI super-low threshold voltage nMOSFET from

22FDX® [2] featuring a gate length of 20 nm, finger width
of 0.5 μm, 20 fingers and a multiplicity of 6 for a total width
of 60 μm is studied. Its S-parameters are measured on-wafer
from 100 kHz to 10 GHz using a vector network analyzer
from Keysight, coupled with a probe station hosting a thermal
chuck for additional dc I-V measurements at 300, 320, 335,
350, 370 and 390 K. The back-gate voltage (Vbg) is set to 0 V.
The RF MOSFETs are probed using a Ground-Signal-Ground
(GSG) configuration. A Short-Open-Load-Thru (SOLT) cali-
bration is performed and dedicated open and short structures
are measured to de-embed the transistor measurements down
to the first metal layer.

The conventional method to extract SH parameters from
S-parameter measurements [6]–[8] relies on the fact that the
lattice temperature is able to follow a “slowly” (w.r.t. its
thermal time constant) varying ac signal, but ceases to follow
the ac signal if it is too “fast”, leading to a step between the
low and high frequency values of Ydd (Y22) and Ydg (Y21).
This so-called dynamic SH effect has been rigorously put into
equations for a general two-port device in [11]. In our case,
the equations simplify into:

Ydd = YddT + Zth
dId

dTA
(YddTVd + Id) , (1a)

Ydg = YdgT + Zth
dId

dTA
YdgTVd (1b)
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Fig. 1. Variation of the output conductance gd(f) (Re(Ydd)) w.r.t. its value
at 100 kHz (a) and Cdd(f) (Im(Ydd/ω), (b) of a 20 nm FD-SOI MOSFET
biased at Vd = 0.8 V and Vg = 0.54, 0.62 and 0.7 V (symbols). Fitted
electrical model at ZTC bias point Vg = Vg,ZTC = 0.62 V in solid lines,
such that the dynamic self-heating effect is not present. Inset of (a):
Measured Id-Vg at Vd = 0.8 V from an ambient temperature of 300 K to
390 K.

with YddT and YdgT being the admittances for the isothermal
case, i.e. when the lattice temperature does not vary with the
ac signal. YddT and YdgT are by definition not affected by
dynamic self-heating. TA is the ambient temperature.

The inset in Fig. 1(a) shows the Id-Vg curves for different
ambient temperatures. Due to the threshold voltage reduction
with increasing temperatures, Id increases with TA at low Vg.
Whereas, Id decreases with TA for large Vg biases because of
stronger phonon scattering decreasing carrier mobility. These
two mechanisms compensate each other at the ZTC bias
point [15], such that the Id associated to this bias does not
change with temperature. For the studied device, the ZTC bias
is Vg,ZTC = 0.62 V for Vd = 0.8 V and Vbg = 0 V.

Fig. 1(a) shows the variation of gd(f) computed as Re(Ydd).
The curve for Vg = 0.54 V shows a monotonic decrease
in gd(f) starting from ∼1 MHz related to SH, followed by
an increase for frequencies above 100 MHz that cannot be
described by dynamic self-heating (1a) and which is attributed
to the SE. The SE is also present at the other biases. For
Vg > Vg,ZTC, both substrate and self-heating effects contribute
to a step increase in gd(f), such that the thermal resistance
Rth (and thus lattice temperature) would be overestimated if
the SE were to be ignored. At the ZTC bias, the dynamic
SH does not affect the ac curves and the observed transition
(Fig. 1, green data) is solely due to the SE. Similar trends
are observed in the output capacitance Cdd (computed as
Im(Ydd)/ω) in Fig. 1(b). The ZTC bias point therefore enables
the extraction of the small-signal parameters associated to the
B-G and substrate nodes without any dependency on the SH
effects. As the ZTC bias point is not specific to this technology
[16]–[20] and has been experimentally verified down to cryo-
genic temperatures [21], [22], the proposed methodology can
be widely applied.

By taking the real and imaginary parts of (1a), we can derive
the equations describing the dynamic SH effect on gd(f) and
Cdd(f):

gd ≡ Re (Ydd) ≈gdT+Re (Zth)
dId

dTA
(gdTVd+Id) , (2)

Cdd ≡ Im (Ydd)

ω
≈CddT + Im (Zth)

ω

dId

dTA
(gdTVd+Id) . (3)

From (2) and (3), it is plain to see that the low frequency
values of gd and Cdd (and the transition sign) depend on the

Fig. 2. (a) Small-signal equivalent circuit of an FD-SOI MOSFET
including back-gate and substrate nodes and, (b) 4th-order thermal
network used to model the thermal impedance Zth(f). (c) Schematic
cross-section of an FD-SOI nMOSFET (not to scale).

sign of dId/dTA, and is thereby governed by the two opposing
mechanisms of mobility and threshold voltage reduction with
increasing temperature [6], [7], [23]. The frequency transition
in itself is due to a delay in the heat transport mechanism
from device to heat sink, yielding a lattice temperature that is
not able to follow instantaneous variations of an ac power at
frequencies above the isothermal frequency.

B. Extraction of Substrate and Back-Gate Nodes Model
The substrate and B-G lumped circuit parameters (in green

in Fig. 2(a)) are extracted from optimization for a best fit
of the measured Y-parameters to the small-signal equivalent
circuit in Fig. 2(a) in the frequency range from 10 MHz to
10 GHz, similar to [24]–[26]. The series resistances Rg, Rd
and Rs are extracted beforehand with Bracale’s method [27].
The resulting fitting of Ydd(f) and measurements at the ZTC
bias point is shown in Figs. 1(a) and 1(b) in solid (green) lines.

C. Thermal Impedance Extraction
Knowing the B-G model, the complex thermal impedance

Zth(f) is extracted at other bias conditions than at ZTC. The
values of some bias-dependent parameters (Cgd, Cgs, gm,i,
gd,i, in blue in Fig. 2(a)) are updated accordingly. However,
the parameters associated to the B-G and substrate nodes (in
green in Fig. 2(a)) are assumed to remain constant with Vg in
the (strong) inversion regime. It is nevertheless important to
emphasize that they are not assumed independent of Vd and
Vbg, since for any applied Vd and Vbg there will exist a Vg
yielding ZTC conditions. The frequency dependent (due to SE)
YddT(f) term is then computed using the updated small-signal
equivalent circuit parameters for each bias.

Next, an nth-order thermal network representing Zth is used
to fit the Ydd(f) data according to (1a). Both the imaginary
and real parts of Ydd are used for fitting, although only
fitting Im(Ydd) gives very close results. The term dId/dTA is
experimentally obtained from dc I-V measurements at several
TA (see inset of Fig. 1(a)). In our case, selecting n = 4
(cf. Fig. 2(b)) appeared to be sufficient to correctly model
the distributed transition. The resulting thermal and electrical
model is shown for different bias points and compared with
the measured Y-parameters in Fig. 3.

III. RESULTS

We observe that a very good fitting is obtained across a
very wide frequency range from 100 kHz up to approximately
10 GHz for the different bias points. The sign of the step
(either positive or negative) is correctly reproduced in accor-
dance with (2) and (3). To the best of our knowledge, it is
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Fig. 3. gd(f) (left) and Cdd(f) (right) of a 20 nm FD-SOI MOSFET biased
at Vd = 0.8 V and different Vg, with dynamic self-heating. Measurements
in symbols and fitted model (with n = 4) in solid lines.

Fig. 4. Left (a): Re(Zth) normalized to the total device width of a 20 nm
FD-SOI MOSFET biased at Vd = 0.8 V and different Vg. Measurements
in symbols and fitted model in solid lines. Right (b): extracted self-heating
model of Re(Zth) including back-gate and substrate nodes (solid lines)
and ignoring their modelization (dashed lines).

the first time that gd(f) and Cdd(f) curves for Vg < Vg,ZTC
with a negative step in gd(f) are shown and that the total Rth
is extracted from them. Although the physical origin of this
negative step is known and explained in Section II.A, such
curves have not been presented previously, since high biases
-where SH has higher impact, and thus a positive step in
gd(f)- are commonly used in self-heating characterization.
With technology scaling down and power reduction, the volt-
age range below ZTC becomes of interest. Even if SH is lower
in that range, it nevertheless has to be taken into account (in
particular its frequency response).

Fig. 4(a) shows the real part of the extracted Zth for
different biases. All curves superimpose meaning that the
frequency-dependent Zth (f) is power-independent (or almost),
as expected at room temperature, thus confirming the con-
sistency of the method. Though a roughly constant Rth with
power is extracted in this work, it is not necessarily the case for
other devices or in different conditions, such as at cryogenic
temperatures [28]. We also observe that Re(Zth) becomes
negligible only above 2.4 GHz (<1% its maximum value),
therefore yielding an isothermal frequency above 2.4 GHz.
This confirms our previous statement that SH and the SE
cannot be easily distinguished in such devices as they appear
in the same frequency range.

Indeed, Fig. 4(b) shows that extracting Zth without taking
into account the B-G and substrate nodes, i.e. by using
constant gdT and CddT versus frequency as in [12], [13], can
lead to a strong misestimation of Zth. Ignoring the existance
of the B-G associated transition leads to an overestimation
(underestimation) of the total Rth (Rth = ∑

i Rth,i) when
Vg > Vg,ZTC (Vg < Vg,ZTC), because its effect adds up

Fig. 5. Variation of total Rth,n = Wtot
∑

iRth,i of a 20 nm FD-SOI
MOSFET biased at Vd = 0.8 V and different Vg, in dots. Median Rth,n of
202 Kμm/mW in dashed line. Variation of Rth,n extracted neglecting the
back-gate and substrate nodes, in squares. Inset: extracted temperature
rise versus dissipated power normalized by the total transistor width
(60 μm).

(counteracts) with the SH effect, respectively, as shown in
Fig. 5, which plots the extracted total Rth for different Vg,
with (blue data) and without (pink data) accounting for SE.
The Rth is not extracted close to the ZTC bias point, because
of the singularity (divide by zero) provided by the dId/dTA
term tending to 0 as Vg tends to Vg,ZTC, thus introducing a
larger error.

While for large Id(Vg) bias conditions (as in [5], [10]),
the SH effect dominates the transition and neglecting the
B-G/substrate nodes leads to a minor (5%) error in the Rth
evaluation, accounting for SE (and its independent modeling)
is crucial for low-power applications. An extensive comparison
of the electrical characteristics of the model extracted with and
without taking into account the corrected value of Rth merits
additional investigations, but is out of scope of this Letter.
Indeed, neglecting the SE modeling can lead to an error as
large as 60% in Rth at lower Id(Vg) (red curves in Fig. 4b).

In contrast, the novel method achieves an excellent accuracy
at intermediate power and still performs well at low power,
with resulting errors below 5% and 20%, respectively. The
small remaining error at low Vg can be explained by a slightly
bias-dependent YddT not accounted for. The corresponding
temperature rise (�T = Rth.P) versus power (P) is displayed
in the inset of Fig. 5. The extracted Rth is roughly con-
stant across the whole Vg range and gives a median value
of 202 Kμm/mW.

IV. CONCLUSION

In this paper, we propose a method to extract the thermal
impedance from device measurements unaffected by the sub-
strate network in the frequency range of interest for dynamic
self-heating. The ZTC bias condition can be used to extract
any dynamic self-heating-free small-signal model. It can there-
fore be directly applied to measurements without requiring
a compact model or simulation to capture the transition not
related to SH. The developed procedure enables the extraction
of Rth(P,TA) from S-parameters at different bias conditions and
could be of particular interest for measurements at cryogenic
temperatures for which Rth is not constant versus power.
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