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Abstract— The ≥ 650 V power electronics market
penetration by GaN HEMTs on Si has been impeded by
the GaN buffer. Recently, GaN-on-sapphire, a promising
solution, attracts great attentions. In this work, p-GaN gate
HEMTs are successfully manufactured on 6-inch sapphire
by CMOS-compatible process in our pilot line. Device pro-
cess modules of p-GaN selective etching, low-temperature
Ohmic contact, and Al2O3/SiO2 passivation have all be
realized. The fabricated 16 µm–LGD devices with a sim-
plified epitaxy and device structure, feature a low RON of
14.8 �·mm, a high VTH of 2 V, and a high OFF-state break-
down voltage (BV ) over 1360 V. Further, the nonuniformity
of the RON and VTH across the 6-inch whole wafer is well
controlled. Devices also passed the preliminary reliability
assessment of high temperature gate bias (HTGB) stress
and high temperature reverse bias (HTRB) stress. The high-
reliability, high-uniformity, and low-cost p-GaN gate HEMTs
on 6-inch sapphire will probably be a strong driven force for
the power electronics market in the near future.

Index Terms— p-GaN gate HEMTs, 6-inch sapphire,
CMOS-compatible process, reliability.

I. INTRODUCTION

GAN HEMTs have opened a new era for solid-state
power electronics, which not only improve the energy

conversion efficiency but also boost the system’s power den-
sity [1], [2], [3], [4] [5], [6], [7]. Since 2023, GaN HEMTs
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are also adopted for other consumer applications such as Class
D-Audio, e-tools, and home appliance [8]. Industrial and even
vehicle applications are expected to be accelerated since 2024.

At present, the commercialized GaN HEMTS are mostly
based on the large-diameter low-cost GaN-on-Si wafers [9],
[10]. As two decades passed, other solutions, for instance,
6 and 8-inch sapphire [11], 8-inch SiC [12], 8-inch SOI [13],
[14], and 8-inch QST [15] are gradually available. For
these novel substrates, sapphire is the most promising
game-changing candidate for many factors. Firstly, the sub-
strate cost is limited. Secondly, the high mechanical strength
of sapphire helps to fight against stress, avoid crack, so as to
simplify the buffer design. The parasitic conductive channel
at the AlN/Si interface is significantly suppressed at the
AlN/sapphire interface, which enables GaN-on-sapphire to
have a much higher lateral blocking capability [16]. Thirdly,
they can be manufactured by the existing silicon fabrication
facilities.

Moreover, Transphorm has reported the work of 1200 V
d-mode GaN switches on sapphire for a 900:450V buck
converter [17], [18]. Later, e-mode p-GaN gate HEMTs on
sapphire substrate with a high breakdown voltage VBD of
1.4 kV was demonstrated [19]. We have recently shown
the 1700 V d-mode GaN HEMTs on sapphire with a 1.5 µm
ultra-thin buffer [16]. Notably, study on the p-GaN gate
HEMTs on sapphire is still in its infancy. To verify the
possibility for commercialization, various difficulties must be
overcome first, for instance, the uniformity and manufactura-
bility of the GaN-on-sapphire epitaxy wafer, the applicability
of the existing mass production tools, the portability of
the CMOS-compatible process dedicated for GaN-on-Si, the
reliability of the fabricated devices, etc.

In this work, the feasibility of fabricating low-cost p-GaN
gate HEMTs on 6-inch sapphire for next-generation GaN
technique will be comprehensively explored. The epitaxy and
CMOS-compatible process in our pilot line will be first intro-
duced. Then, electrical characterization will focus on checking
the performance and yield, as well as dynamic RON and
p-GaN gate robustness. Finally, preliminary reliability of high
temperature gate bias (HTGB) and high temperature reverse
bias test (HTRB) stress will be evaluated in details.
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Fig. 1. Photograph of the 6-inch GaN-on-sapphire wafer manufactured
by CMOS-compatible process.

Fig. 2. Cross-sectional schematic and process flow of the p-GaN gate
HEMTs on the 6-inch sapphire. [X, Y] denotes the field plate structure.

II. EPITAXY AND FABRICATION

The HEMT structure was epitaxially grown on 6-inch
sapphire using a Metal Organic Chemical Vapor Deposition
(MOCVD) system, as illustrated in Fig. 1. The epitaxial stack
consists of a 25 nm AlGaN nucleation layer, a 1.5 µm ultra-
thin GaN buffer layer, a 250 nm GaN channel layer, a 0.5 nm
AlN spacer layer, a 15 nm Al0.2Ga0.8N barrier layer, and an
80 nm Mg-doped p-GaN layer with a doping concentration of
4 × 1019 cm−3, which is depicted in Fig. 2.

As shown in Fig. 2, the CMOS-compatible process in
our pilot line starts with the deposition of a 40 nm TiN
layer on the p-GaN surface, followed by device isolation
through nitrogen implantation [20]. Then, high-selectivity
Cl2/BCl3/SF6-mixed gas plasma etching of p-GaN was carried
out, where a surface root mean square (RMS) roughness of
0.35 nm was achieved, measured by atomic force microscope
(AFM). A thin Al2O3 passivation layer was deposited and a
260 nm SiO2 was deposited using plasma enhanced chemical
vapor deposition (PECVD), followed by gate window opening
through reactive ion etching (RIE), gate metal TiN/Ti/Al/TiN
(40/20/250/30 nm) deposition by physical vapor deposition
(PVD) and patterning by inductively coupled plasma (ICP)
etching, as shown by the scanning electron microscope (SEM)
images in Fig. 3. Further steps include the deposition of a
260 nm SiO2 layer, Ohmic contact window opening, and
deposition of Ohmic metal stack Ti/Al (10/200 nm) and rapid
thermal annealing at 565 ◦C for 90 seconds in N2. Finally, a
300 nm SiO2 layer was deposited. The fabricated devices have
a gate length LG of 4 µm, gate-source distance of 1.5 µm,
and various gate-drain distance from 6 to 30 µm.

III. RESULTS AND DISCUSSION

In Fig. 4(a) and (b), the output and transfer characteristics of
the 650 V HEMTs with LGD of 16 µm prepared on the 6-inch
wafer are presented, where the on-state resistance RON and
threshold voltage VTH reach 14.8 �·mm and 2 V, respectively.
The current droop in the saturation region of the ID-VD curves

Fig. 3. SEM images of (a) the p-GaN gate HEMT, (b) the gate region,
and (c) the p-GaN region on 6-inch sapphire.

Fig. 4. (a) Output, (b) transfer, and (c) gate forward-bias leakage
characteristics of the p-GaN gate HEMTs with LGD of 16 µm on the
6-inch sapphire.

Fig. 5. The statistical distribution and electrical mapping of (a) V TH and
(b) RON of 245 devices with LGD = 16 µm across the 6-inch wafer.

is possibly stemming from trapping effect [21] and self-heating
effect [22]. Fig. 4(c) demonstrates the gate forward-bias BV
exceeds 12 V, thanks to the TiN retraction process as shown in
Fig. 3(c) [23]. The 1st degradation is probably the breakdown
of the metal/p-GaN Schottky contact, and the 2nd degrada-
tion is probably the p-GaN/AlGaN/GaN PiN junction failure
[24], [25].

In Fig. 5, the statistical distribution and electrical mapping
of VTH and RON of the 245 HEMTs across the 6-inch whole
wafer are demonstrated. The VTH is concentrated in the range
of 2.0 to 2.2 V, and the RON is predominantly between 14.0 to
16.0 �·mm. The statistical results prove the possibility of
producing HEMTs on large-scale sapphire.
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Fig. 6. (a) OFF-state breakdown characteristics and (b) the statistical
distribution of V BD and RON versus LGD.

Fig. 7. (a) ID-V D and (b) ID-V G curves of p-GaN gate HEMTs on
sapphire with LGD of 16 µm after various OFF-state stress, and the
corresponding (c) dynamic RON and (d) VTH versus the stress voltages.

Fig. 8. (a) Transient current curves and (b) dynamic RON after
high-voltage pulse stress by Keysight N1267.

Fig. 6(a) illustrates the breakdown characteristics of
HEMTs on sapphire. As shown in Fig. 6(b), the OFF-state
VBD and RON both linearly depends on the LGD. In our design,
30 µm-LGD HEMTs with a simple device structure exhibit
an OFF-state VBD of up to 2.9 kV, which demonstrates the
potential of GaN-on-sapphire for future 1200 V applications.

Next, to evaluate the dynamic performance of the devices
with the advanced Al2O3/SiO2 passivation, high-voltage OFF-
state stress was applied to the p-GaN gate HEMTs with LGD
of 16 µm. During the measurements, the devices were first
stressed for one second in OFF-state. Afterwards, their output

Fig. 9. (a) Gate and drain leakages during the HTGB stress where the
temperature is 150 ◦C and VGS, stress is 6 V, and (b) ID-V G and (c) ID-
V G curves before and after the 1-ks HTGB stress.

Fig. 10. (a) Gate and drain leakages during the HTRB stress where
the temperature is 150 ◦C and V DS, stress is 520 V, and (b) ID-V G and
(c) ID-V G curves before and after the 1-ks HTRB stress.

and transfer curves were recorded. Fig. 7(a) and (b) both
indicate the trapping effect mainly takes place in the gate-to-
drain access region. It can be observed that the current collapse
does not exist in the saturation region. This is because in the
saturation region, the channel is partially pinch-off, as illus-
trated by the inset of Fig. 7(a), in which case the drifting
electrons can hardly be impacted by the charged traps [26].
The boxplots of dynamic RON and VTH after OFF-state stress
are plotted in Fig. 7(c) and (d), respectively. Moreover, current
collapse was further assessed by high-voltage pulse stress by
Keysight N1267 as shown in Fig. 8, where the overlap time
between the VDS falling and VGS rising is about 1.6 µs.

Furthermore, preliminary long-term reliability was assessed
at 150 ◦C. 1-ks HTGB and HTRB stresses were conducted.
During the stress, the gate and drain leakages were monitored.
As shown in Fig. 9 and 10, the VTH keeps reliable without
significant degradation. A slight current collapse takes place
after HTRB stress, consistent with the dynamic RON in Fig. 7.

IV. CONCLUSION

p-GaN gate HEMTs on 6-inch sapphire have been suc-
cessfully fabricated by CMOS-compatible process in our pilot
line. The critical process modules of p-GaN selective etching,
Al2O3/SiO2 passivation, low-temperature Ohmic contact, and
power metal deposition have been fully transferred to the
platform of sapphire substrate. The high-uniformity and high-
reliability of the fabricated HEMTs, combining the low-cost
thin-film epitaxy and extremely simplified device structure
and processing flow, make GaN-on-sapphire a promising
game-changing technique for the future power electronics
market.
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