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I
n recent decades, there has been 
a rapid development of theory 
and methods for optimal trans-
port, both within systems and 
control as well as in other areas 

such as signal processing, medical 
imaging, statistics, and machine 
learning. These advancements 
have developed optimal transport 
into an extensive framework with a 
large set of theoretical and compu-
tational tools that can be used to 
address problems in the areas of 
systems, control, and estimation. 
This special issue is organized to 
introduce optimal transport to a 
larger audience in the control com-
munity and summarize some of 
the recent progress in the field. 
The four articles in this issue pres-
ent both theoretical and computa-
tional results, with a focus on the 
aspects relevant to the field of sys-
tems and control. 
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The optimal transport problem is to determine an optimal 
way to transport one mass distribution to another, where the 
cost of moving a unit mass depends on the distance it is moved. 
This means deforming one distribution into another as cheaply 
as possible, where the price for moving mass depends both on 
the amount and distance moved. This minimal transport cost 
defines a distance between the two distributions [1]. 

Since this distance does not compare the distributions 
point by point (as do normal distances, such as Lp  distances 
and the Kullback–Leibler divergence) but instead quanti-
fies the required transport, it can be used for comparing 
distributions of different types (for example, comparing a 
density with a discrete set of agents). This property makes 
the distance a good candidate for quantifying uncertainty 
[2] and modeling deformations [3]. It also has appealing 
geometric properties, and when linking objects via geode-
sics of the optimal transport distance, there is a natural 
deformation between the objects that preserves “lumpi-
ness.” A graphical illustration of this is given in Figure 1, 
which compares a geodesic of the optimal transport dis-
tance with a geodesic of the L2  distance. 

Introducing geodesics can be seen as a first step in extend-
ing the traditional static optimal transport formulation (com-
paring two given distributions) to include dynamics. Further 
progress in this direction includes the reformulation of the 
optimal transport problem as a fluid dynamics problem [4], 
which can be interpreted as an optimal control problem for a 
density of particles or agents with simple dynamics. This 
interpretation can further be used to incorporate generalized 
underlying dynamics [5] and discrete dynamics over graphs 
[6]. All of these properties make the framework suitable for 
ensemble control and the control of densities as well as for 
estimation problems integrating data from a variety of 
sources or tracking moving objects [7]. This often results in 
optimization problems where the objective function contains 
one or more optimal transport costs [8]. Thus, it is also impor-
tant to develop methods for solving such problems. 

The optimal transport framework has many desirable 
properties, but it is often computationally challenging. The 
original formulation by Monge is a nonconvex optimization 
problem, while the later formulation by Kantorovich leads to 
a large-scale optimization problem that is intractable to solve 
with standard methods even for modest size problems. To 
address this computational problem, a recently popular 
approach is to add an entropic barrier term. The resulting 
optimization problem can then be solved using the so-called 

Sinkhorn iterations [9] that allow for computing an 
approximate solution to large transportation problems. This 
has opened up the field for new applications where no com-
putationally feasible method previously exists. 

Interestingly, the entropic regularized optimal transport 
coincides with another fascinating subject in physics started 
by Schrödinger, known as the Schrödinger bridge problem. 
This physics perspective brings tremendous insight into 
understanding the effects of entropic regularization in optimal 
transport, especially from a dynamical system perspective. 

The following section provides a brief overview of the 
optimal transport problem. Specifically, the most common 
formulations of the problem are presented, with a focus on 
some of the properties that have made it such an interesting 
and useful tool in many areas (including control and estima-
tion). The four articles in this issue are then summarized. 
Finally, a short exposition of the history related to the opti-
mal transport problem is given in “A Brief History of Opti-
mal Transport.”

AN INTRODUCTION TO OPTIMAL TRANSPORT
Let ,0n ( )XM1 !n +  be two nonnegative distributions 
defined on the state space X Rd1  with the same total 
mass, that is, y y( ) ( ) .x dx x dx0 1n n=X X  The optimal transport 
problem defines a notion of distance between the two dis-
tributions based on how costly it is to transform 0n  into 

1n  by moving mass, where the cost of moving a unit mass 
is specified by a cost function ( , ).c x x0 1  However, there are 
several different ways to mathematically formulate the 
problem of optimally moving the mass distributed as 0n  
into the distribution .1n

The first (the so-called Monge formulation) is based on 
the assumption that the transport plan is specified by a func-
tion : ,X X"z  which means that the mass at point x  is 
moved to the point ( ).xz  Monge’s formulation of the opti-
mal transport problem is then given by

	 ( , ( )) ( ) ,inf c x x x dx
X

0z n
z
# � (1a)

	
,A X

subject to 

for all measurable 
( )x A x A

1 0

1

n n
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( ) ( )x dx x dx=# #
�

(1b)

where the total transportation cost (1a) for a transport plan 
z  is obtained by integrating the product of the mass moved 
[that is, ( )]x0n  and the cost of moving the mass between 
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two points [that is, ( , ( ))] .c x xz  The transport plan z  must be 
such that 0n  is transported to ,1n  which is ensured by the 
constraint (1b). Specifically, (1b) means that for any subsets 

,A X1  the total mass of 1n  in the set A  is the same as the 
mass of 0n  in the set that z  transport into .A

Although the Monge formulation (1) is an intuitive and 
straightforward definition, it has several shortcomings. 

For example, even if the marginals have the same total 
mass, there might not be a function z  that maps 0n  to .1n  
Specifically, if 0n  contains a point mass (that is, a Dirac 
delta function), then z  cannot split the mass into several 
points and therefore, (1b) is infeasible if 1n  is a density. 
Further, the problem is nonconvex, and it is not symmetric 
in its arguments. 

Introducing geodesics can be seen as a first step  

in extending the traditional static optimal transport formulation  

(comparing two given distributions) to include dynamics.
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FIGURE 1 A numerical example illustrating the geodesics connecting the two distributions 0n  and ,1n  which are shown in (a). A geodesic 
( )tt  can be understood as an optimal interpolation between the two distributions and corresponds to the optimal movement of the mass 

as a function of time for transforming the distribution 0n  into the distribution .1n  Different ways of measuring the distance between the 
two mass distributions, therefore, give rise to different geodesics ( ).tt  When the distance used is the optimal transport distance with 
underlying cost ( , )c x x x x0 1 0 1< <= - 2

2, the geodesic is the one shown in (b). When the L2 distance is used, the obtained geodesic is the 
one shown in (c). As illustrated, the optimal transport geodesic better preserves the modality of the distribution in the intermediate time 
steps (that is, the geodesic better preserves the “lumpiness”).
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The following formulation of Kantorovich overcomes 
these issues. Instead of using a function z  to define the 
transport plan, consider a nonnegative distribution on the 
product space ( )X XM #!r +  (called the transport plan or 
coupling plan), where ( , )x x0 1r  denotes the amount of mass 
transported between the points x0  and .x1  This allows for 
the optimal transport problem to be formulated as the 
linear programming problem

	 :( , ) ( , ) ( , ) ,infT c x x x x dx dx
( )X X X X

0 1 0 1 0 1 0 1
M

n n r=
##!r +

# � (2a)
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subject to
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x Xfor 
X
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Specifically, note that this formulation is symmetric in the 
marginals 0n  and 1n  and that it allows for splitting mass in 
the allocation process. More precisely, in (2), mass in ( )x0 0n  
can be moved to multiple points in the marginal 1n  by 
simply making ( , )x x0r  nonzero for multiple values of .x  
The latter also explains the constraints (2b) and (2c); the 
mass moved from one point in one of the marginals must 
be received in the other marginal. 

The formulation (2) also has several other useful proper-
ties. For example, the problem is convex, there is always a 
feasible solution r  to (2), and the minimum exists as long as 

the cost function c  is lower semicontinuous. In fact, (2) can 
be seen as a relaxation of (1). Specifically, if (1) has an opti-
mal solution, then the corresponding mass transport plan 
of (2) is also optimal, and the optimal costs are the same in 
both problems. 

A discrete version of problem (2) (where the marginals 
0n  and 1n  are finite-dimensional vectors, and the trans-

port plan r  is a matrix) can be interpreted as a well-known 
minimum-cost flow problem on a complete bipartite graph 
[10, Lemma 9.3]. This is illustrated in Figure 2. Methods for 
numerically solving (2) can be derived based on discretiz-
ing the problem and solving the resulting finite-dimen-
sional linear program. 

However, such an approach has the drawback that the 
problem scales unfavorably in the dimension of the state 
space X  and in the number of discretization points. More 
precisely, if X Rd1  and each dimension is discretized into N  
points, then the marginals will be of dimension ,Nd  and the 
discrete transport plan will be of dimension .N N Nd d d2# =  
Hence, the resulting linear programming problem has N d2  
variables. Even for modest numbers such as d 2=  and 

,N 100=  this results in 108  variables. 
A recent approach for addressing this problem, which 

has been very successful, is to perturb the linear program 
with an entropy term [11]. The optimal solution to this 
perturbed problem, which is still a convex optimization 
problem, is highly structured. Specifically, this structure 
reduces the number of variables from N d2  to .N2 d  Moreover, 

A Brief History of Optimal Transport

The subject of efficiently (optimally) allocating and trans-

porting resources is an age-old subject. However, the first 

mathematical formulation of the optimal transport problem is 

attributed to the French mathematician and engineer Gaspard 

Monge (1746–1818). Monge was studying how to optimally 

transport soil for the construction of forts and bridges. In 1781, 

he formulated the problem as “divide two equal volumes into 

infinitesimal particles and associate them one to another so 

that the sum of the path lengths multiplied by the volumes of 

the particles be minimum possible.” 

As partly explained in this article, Monge’s formulation (1) 

is mathematically challenging, and it took until the 1930s and 

1940s before the next big breakthrough came. More precisely, 

in 1939, the Russian mathematician and economist Leonid 

Kantorovich (1912–1986) formulated and analyzed the optimal 

transport problem (2). Kantorovich developed a framework 

based on duality, where the variables in the dual problem to (2) 

represent the prices for selling and buying at the different loca-

tions. Hence, he is regarded as one of the founders of linear 

programming. For these (and other) achievements, he was the 

winner of the Stalin Prize in 1949, the Lenin Prize in 1965, and 

the Nobel Memorial Prize in Economic Sciences in 1975. 

What followed was a period of rapid development of the the-

ory for optimal transport, where fundamental properties of the 

problem were investigated and discovered. Important results 

include the existence and regularity of optimal solutions, polar 

decomposition (which characterizes the solution to the optimal 

transport problem), the introduction and investigation of dis-

placement convexity (which later led to fruitful connections be-

tween optimal transport and curvature bound for Riemannian 

manifolds), the Benamou–Brenier dynamic formulation (3) of 

optimal transport, and the gradient flow formulation induced by 

optimal transport. Some of these results—as well as the use 

of these methods—have resulted in prestigious prizes such as 

the Fields Medal (C. Villani in 2010 and A. Figalli in 2018). 

Lately, the focus of optimal transport research has shifted 

to algorithms and applications. Specifically, over the last 

decade there has been a massive amount of applicational 

work of optimal transport in areas such as imaging, machine 

learning, control, signals, and systems. Meanwhile, many ef-

ficient algorithms have been developed that made various 

applications possible. The most well-known algorithm that is 

widely used to solve optimal transport problems is the Sink-

horn algorithm.
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the optimal values of these variables can be found via the 
Sinkhorn iterations [11]. The latter is a simple, efficient, iter-
ative procedure for the diagonal scaling of a nonnegative 
matrix to have given marginals, and this solution method 
has also motivated further research that has revealed 
deeper connections between optimal transport and the 
Schrödinger bridge problem [12]. 

The cost function c  is defined on the underlying space ,X  
and thus the optimal transport distance inherits proper-
ties of this space. Specifically, if the cost is selected as 

( , )c x x x x p
0 1 0 1= -  with p 02  and where ·  is any norm 

on ,X  then ( , )T ( , / )min p
0 1

1 1n n  is a Wasserstein metric on the 
space of nonnegative distributions on X  with the same total 
mass. These metrics can be used for quantifying the distances 
between discrete and continuous distributions (for example, 
to quantify when a particle cloud converges to a continuous 
density as the number of particles goes to infinity). Another 
useful property is that it allows for a shortest path interpola-
tion, which, in these metrics, often corresponds to the smooth 

transportation of mass (in particular, when ) .p 2=  An exam-
ple illustrating this is the one given in Figure 1. 

When the cost function is the squared Euclidean dis-
tance [that is, for ( , ) ,]c x x x x0 1 0 1 2

2
= -  the optimal trans-

port problem can be created as an optimal control problem 
in fluid dynamics. This formulation (which is rather recent) 
was introduced in [4], where it was shown that when 0n  
and 1n  are densities, both (1) and (2) are equivalent to

	 ( , ) ( , ) ,inf t x v t x dxdt
,v X 0

1

2
2

t
t
## � (3a)

	 ( ) ,v 0subject to ·t2 dt t+ = � (3b)

	 ( ·) , ( , ·), .0 10 1t n t n= = � (3c)

Here, ( , )t ·t  is the density of agents at time ,t  and ( , )v t x  is 
the vector field representing the control action taken at a 
point x  in the state space at time .t  Since the amount of 
control needed in a point ( , )t x  is proportional to the den-
sity of agents, (3a) is the total cost of steering the density t  
between the given initial and final distributions in (3c). 
Moreover, ·d  denotes the divergence of the vector field, and 
the constraint (3b) is a continuity equation that describes 
how the control affects the agent distribution and also 
guarantees that the latter has constant total mass. 

The dynamic nature of the formulation in (3) makes it 
suitable for a range of applications in control and estima-
tion. For instance, it is straightforward to rewrite it into a 
form familiar to those acquainted with stochastic control, 
namely as

( , ( )

( ) ( , ( )), ( ) ~ , ( ) ~ ,

inf v t x t dt

x t v t x t x x0 1subject to 

E
v 2

2

0

1

0 1n n=o

' 1#

where the minimization is over all well-defined feedback 
control laws. This gives another interpretation of the illustra-
tion in Figure 1(b), namely as the expected evolution of a 
swarm of simple systems (integrators) when steered to tran-
sition from the initial to the final distribution using the com-
bined, total minimum amount of energy. These formulations 
allow for generalizations to other dynamics, which will be 
addressed in several of the articles in this special issue.

These metrics can be used for quantifying the distances between discrete  

and continuous distributions (for example, to quantify when a particle  

cloud converges to a continuous density as the number of  

particles goes to infinity).
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FIGURE 2 A small example of a discrete version of the optimal 
transport problem (2), illustrated as a minimum-cost flow problem 
on a complete bipartite graph. Here, the production in the four 
production nodes is represented by ,R0

4!n +  and the consumption 
in the five consumption nodes is represented by .R1

5!n +  The flow 
between two nodes ,i0n  and , j1n  is given by ,i jr  and the transport 
plan [ ] ( , ) ( , )

( , )
i j i j 1 1

4 5
r r= =  is feasible if there is flow balance (that is, if 

,j ii j1
5

0r nR ==  for all i  and ,i i j j1
4

1r nR ==  for all ).j  Moreover, the 
cost of transporting a unit from ,i0n  and , j1n  is given by ,ci j  and the 
total cost of transportation is thus .c( , ) ( , )

( , )
i j i ji j1 1
4 5

rR =
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CONTRIBUTIONS TO THIS SPECIAL ISSUE
This issue contains four articles focused on presenting opti-
mal transport and its use in systems and control-related areas. 
The first article, by Amirhossein Taghvaei and Prashant G. 
Mehta, leverages optimal transport for understanding and 
constructing particle filtering algorithms. Specifically, they 
consider the feedback particle filter, where the Bayesian 
update step is done using a mean-field-type feedback control 
law instead of the conventional importance sampling and 
resampling. This updated step is understood using the notion 
of optimal coupling (a central concept in optimal transport 
theory) between prior and posterior distribution, and optimal 
transportation is then used to design the update rule. 

The second article, by Isabel Haasler, Johan Karlsson, 
and Axel Ringh, uses structured multimarginal optimal 
transport to derive effective methods for optimal control 
and state estimation in multiagent systems. In fact, a duality 
result between control and estimation for multiagent sys-
tems is presented. The methods are designed by leveraging 
recent advances for both incorporating underlying dynam-
ics into optimal transport problems and for efficiently solv-
ing the resulting large-scale optimization problems. 

The third article, by Haomin Zhou, discusses optimal 
transport problems defined on networks and graphs. This is 
a relatively young area, and the article reviews some of these 
recent results and highlights some of the challenges of trans-
lating optimal transport onto networks and graphs. The 
practical implications of this effort are illustrated in an exam-
ple where the concepts developed in the article are used to 
design a provably convergent algorithm for path exploration 
in an unknown environment in high-dimensional space. 

The fourth article, by Yongxin Chen, Tryphon T. Geor-
giou, and Michele Pavon, is a survey of a recent line of 
research using optimal transport and its regularized ver-
sion, the Schrödinger bridge theory, to control uncertainties 
in both continuous and discrete dynamics. For linear-qua-
dratic Gaussian cases, this problem has been extensively 
studied under the name covariance control/steering. Appli-
cations of this emerging field include guidance and naviga-
tion in aerospace, active cooling of stochastic oscillators, 
robust transportation over networks, and many others.
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