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I
n each day of their lives, patients affected by type 1 
diabetes (T1D) must maintain the blood glucose con-
centration (glycemia) within a safe range. T1D is a 
metabolic disorder characterized by a total insulin 
deficiency and, if not properly managed, would re-

sult in chronic hyperglycemia, thus increasing the risk 
of severe long-term complications. Insulin is a hormone 
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allowing for the utilization of glucose by body 
tissue and suppression of liver glucose produc-
tion. An insulin shortage must be compensated 
with exogenous administration. The external in-
sulin supply avoids hyperglycemia but can cause 
hypoglycemia if the amount of needed insulin is 
overestimated. Hypoglycemia is associated with 
short-term complications, which in severe cases 
can result in coma or death. To properly estimate 
the needed quantity of insulin, T1D patients nor-
mally rely on conventional therapy, which is de-
signed and continually updated by the physician, 
and consists of basal insulin (needed during fast-
ing periods) and insulin boluses (needed to com-
pensate for the glucose rise due to meals).

Insulin can be delivered by injections or infu-
sions. The latter is less invasive and requires a 
subcutaneous insulin pump, which continuously 
releases microboluses in the interstitial tissues of 
the patient and can be programmed with a patient-
specific conventional therapy. Subcutaneous glu-
cose sensing is also possible by continuous glucose 
monitor (CGM) devices, which are able to read the 
interstitial glucose concentration and inform the 
patient about glycemia levels and trends. The 
availability of subcutaneous insulin pumps and 
CGM has allowed the realization of the sensor 
augmented pump (SAP) therapy, which assists the 
patient in maintaining the glucose concentration 
within a safe range. However, with an SAP, the 
patient still needs to decide how much insulin has 
to be infused by the pump on the basis of the CGM 
readings. The automation of the insulin infusion 
management can be reached with the artificial 
pancreas (AP), a system aimed at closed-loop glu-
cose control.

The design of an AP dates from the 1970s, 
when the first experiments were conducted with 
highly invasive intravenous systems [1]. In the 
following years, AP systems have become pro-
gressively less invasive and more portable and, 
thanks to recent technological developments, 
newer AP systems have become wearable and 
usable in free-living conditions. Since the sub-
cutaneous route for a fully automatic blood glu-
cose control was shown to be feasible [1], [2], the 
AP architecture includes a subcutaneous insu-
lin pump for insulin delivery (actuator), a CGM 
for glucose sensing (sensor), and a standalone 
device aimed at the execution of the control 
algorithm (controller) [3]. This architecture, 
which relies on wireless connections among all 
of the components, is the result of several clini-
cal studies that were supported by the Juvenile 
Diabetes Research Foundation, the European 

Commission, and the National Institutes of 
Health [4]–[15].

The core of the AP is the control algorithm, 
which estimates the proper quantity of insulin to 
infuse in the subcutaneous tissues during fasting, 
meal, and postprandial periods. Beginning in 2008, 
several clinical trials were performed by relying on 
a model predictive control (MPC) algorithm [16]–
[20] in a hospital setting [21]–[26]. Subsequently, an 
improved MPC algorithm [27] based on the 
achieved clinical results has been adapted for out-
patient studies [28]. The aim was to move the AP to 
free-living conditions for long periods and, in 2014, 
an AP system equipped with the MPC algorithm 
[27] was used in the first randomized crossover 
outpatient clinical trial [15]. The AP was used for 
eight weeks during evening and night periods, 
paving the way for an extension study, completed 
in 2015, where the AP was continually used 24 h per 
day for one month [29]. The results showed that 
MPC, discussed in “Preliminaries on Model Pre-
dictive Control,” is a promising and feasible 
approach for AP. However, since different patients 
are characterized by different glucose-insulin 
dynamics, the control algorithm must be designed 
with robustness properties to make the closed-loop 
glucose control reliable and safe for each patient 
without compromising the desirable performance. 
Different dynamics are caused by the intersubject 
variability, which reflects the different biological 
characteristics of each patient. Since an MPC algo-
rithm determines the control actions on the basis of 
a model included in the cost function, patient-indi-
vidualized glucose-insulin models are expected       
to further improve the glucose control perfor-
mance. So far, the MPC used in the most recent 
clinical trials was synthesized on the basis of an 
average linear model [27]. The choice of using a 
linear model to describe the complex nonlinear 
glucose-insulin dynamics of diabetic patients is 
driven by the feasibility of the MPC implementa-
tion on a portable AP system [3], which is character-
ized by limited battery life and computational 
power. A similar approach (in which a compact 
model approximating the dynamics of the process 
under control was exploited to design the control 
law) was adopted in [30] in the context of type 2 
diabetes. As discussed in “Summary,” this article 
considers three techniques to synthesize custom-
ized MPC based on patient-tailored linear models. 
The final aim is to show through closed-loop         
simulations that customized MPC based on          
linear glucose-insulin models is able to improve the 
glucose control performance without losing the 
implementation feasibility on a portable AP device. 
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The in silico results are presented, and, to quantify the 
benefits of the customized MPC, a statistical comparison 
on the outcome metrics is performed versus the noncus-
tomized MPC.

Glucose-insulin models
The availability of a model describing the patient glucose-
insulin dynamics is mandatory to synthesize an effective 
MPC. One of the main components of an MPC algorithm is 
a model describing the dynamics of the process under con-
trol (see “Preliminaries on Model Predictive Control”). In 
the context of AP, the reliability of the model glucose predic-
tions are directly correlated to the efficacy of the controller, 
which commands the pump with the proper insulin to be 
infused as microboluses. A model able to predict the patient 
glycemia would be able to adjust the controller behavior to 
maintain the blood glucose concentration within the 
euglycemic range, which spans from 70 to 180 mg/dl, thus 
minimizing the risk of possible hyper- and hypoglycemia. 
However, methods used to directly measure the individual 
parameters of a T1D patient are invasive and expensive, 

making the identification of individualized glucose-insulin 
models a challenging task.

UVA/Padova Simulator
Several research groups have developed glucose-insu-
lin models [31]–[33]. Of particular interest is the model 
developed by the Universities of Virginia and Padova 
(UVA/Padova) [34], which was included in the first simu-
lator accepted by the U.S. Food and Drug Administration 
as a substitute to animal trials for preclinical testing of 
insulin therapies for T1D patients. The model included 
in the simulator is able to simulate the glucose-insulin 
dynamics of a specific person and belongs to the class of 
compartmental models, of which a brief introduction is 
presented in “Compartmental Models.” The structure of 
the UVA/Padova simulator model is depicted in Figure 1. 
Different dynamics for different people are simulated 
due to the availability of various sets of key metabolic 
parameters that describe the intersubject variability of a 
generic population of T1D patients. Each set of parameters 
represents a “virtual subject” and has been identified from 

Preliminaries on Model Predictive Control

I n several application contexts, there is the need to perform 

particularly critical tasks while fulfilling some plant constraints. 

MPC is one of the most effective solutions to this problem, as 

it can comply with large-scale systems with many control vari-

ables and provides a systematic method of dealing with con-

straints on inputs and states. MPC constraints are explicitly 

taken into account by solving an online CO problem used to 

determine the optimal inputs with respect to a predefined cost 

function. Typically, the optimization problem and the control law 

are defined in the discrete time domain, and the major require-

ments for its implementation are the model of the plant and a 

cost function to optimize.

Consider the discrete-time linear system

	 ( ) ( ) ( ) ( ),x k Ax k Bu k Md k1+ = + + � (S1)

where ( )x k Rn!  is the state vector, ( )u k Rm!  is the input vec-

tor, and ( )d k R l!  is a disturbance vector at the kth sampling 

time instant. Also, , ,A BR Rn n n m! !# #  and M Rn l! #  are the 

system matrices, and N  denotes the prediction horizon. Given 

a predicted input sequence

( ) [ ( ), ( ), , ( )]U k u k k u k k u k N k1 1T T T Tf= + + -

and a disturbance sequence

( ) [ ( ), ( ), , ( )] ,D k d k d k d k N1 1T T T Tf= + + -

the time evolution of the state is generated by simulating the 

model (S1) forward for N  sampling time intervals with initial 

condition ( | ) ( ) .x k k x k=  Consequently,

( ) [ ( | ), ( | ), , ( | )] ,X k x k k x k k x k N k1 1 2T T T Tf+ = + + +

with ( | )u k i k+  and ( | ), ,x k i k i N!+  being the input and state 

at time k i+  predicted at time .k  The control input applied to the 

plant is generated by solving an optimization problem driven by 

a prespecified cost function to be minimized, for instance, 
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with ( )x kref  and ( )u kref  denoting the states and inputs refer-

ences at time ,k  respectively, included in the reference vectors
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and where Q  and R  are symmetric positive definite matrices. 

The goal is to find the optimal control sequence ( )U ko  such that

( ) ( ( ), ( ), ),arg minU k J x k U ko

U
$=

subject to the model (S1) and possibly including input and 

state constraints.

Finally, after the generation of the control input and accord-

ing to the receding horizon approach, only the first element of 

the optimal control sequence ( )U ko  is applied to the plant 

( ) ( | ) .u k u k ko=  The optimization process is then repeated at 

each sampling time .k
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a large nondiabetic subject database, where each subject 
underwent a triple tracer meal protocol that provided 
quasi-model-independent estimates of glucose and insu-
lin fluxes [32]. The model was subsequently adapted to 
T1D by incorporating a model of subcutaneous insulin 
absorption and was shown to reliably describe the T1D 
literature data. Three “virtual populations” (children, ado-
lescents, and adults), each comprised of 100 subjects, were 
included in the simulator [34]. The UVA/Padova model 
was then refined by improving the hypoglycemia glucose 
kinetics (by adding glucagon kinetics and secretion) and 
refining the virtual subjects included in the simulator 
[35] (see Figure 2). The clinical validity of the model was 
assessed on T1D data [36], and the circadian variability of 
insulin sensitivity (IS) and meal absorption parameters 
were also included in the most recent version of the simu-
lator [37], [38].

Nonlinear Time-Variant Model
The complete state-space representation of the nonlinear, 
time-variant, compartmental model depicted in Figure 1 is
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where the definitions of all the states ( ), , ,x t i 1 16i f=  are 
shown in Table 1. This model is included in the UVA/Padova 
simulator and characterized by the set of parameters listed 

As previously discussed, one of the features of MPC is 

the presence of input and state constraints in the optimization 

problem. In addition to the equality constraints representing 

the model dynamics (S1), inequality constraints on input and 

state variables can be introduced. While the equality con-

straints are usually handled implicitly to compute predicted 

state trajectories as functions of initial conditions and input 

trajectories, the inequality constraints are explicitly imposed 

within the optimization problem.

The cost function defined in (S2) can be enriched with a 

weight associated with the state prediction at the horizon .N  

This modification can be performed by considering the qua-

dratic cost function
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subject to the state dynamics (S1), with P  being the unique 

nonnegative solution of the discrete time Riccati equation
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The matr ix P Rn n! #  is the weight related to the term 

( | )x k N k+ , which represents the predicted state at the horizon 

.N  P  takes into account the cost over an infinite horizon. By 

considering the horizon ,N  the predicted state trajectories of 

the system dynamics can be written as

( ) ( ) ( ) ( ),X k x k U k D k1 A B M+ = + +

where the matrices ,,R RBA nN n nN mN! !# #  and RM nN lN! #  

are obtained through algebraic calculations based on (S1). In 

the general case, ( )D k  can be known, estimated, or unknown 

depending on the specific application to control. In the case of 

unknown disturbance, the MPC calibration achieved through  

the Q  and R  parameters of (S4) must be robust enough to 

guarantee at least suboptimal (but safe) control performance. 

Thus, the cost (S4) can be rewritten as
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maintained and ,, ,Q F Q F QMH B B R B A BT
x

T
D

T= + = =  

and ,QF BX
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ref =  with ( , , )Q Qdiag RQ nN nNf != #  and R =

.( , , )R Rdiag RmN mNf ! #

If the optimization problem does not take into account input 

and state constraints, under the assumption of nonsingular-

ity of the matrix ,H  the solution exists, is unique, and can be 

explicitly written as

( ) ( ) ( ) ( ) ( ) .U k x k D k U k X kH F F R Fo
x D ref X ref

1
ref= - - + +- ^ h

On the other hand, in the case of constraints on input or states, 

the optimization problem must be solved online through a qua-

dratic programming optimizer.
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in Table 2. Each set of parameter defines a virtual subject, 
and a set of virtual subjects defines a virtual population 
(Figure 2). The considered inputs are ( )i t  and ( ),d t  which 
represent the exogenous subcutaneous insulin infusion and 
the meal intake, respectively. The measurable output is the 
subcutaneous glucose concentration, which is calculated by 
dividing the glucose contained in the subcutaneous glucose 
compartment x13  by the compartment volume .VG  More 
details on this model, the numerical values of the constant 
parameters, and the definition of the time-varying parame-
ters are available in [34] and [35].

Linearized Average Model
The UVA/Padova model is highly nonlinear and time vari-
ant, and its incorporation in an MPC algorithm is computa-
tionally demanding, making the implementation on a 
portable AP device [3] practically unfeasible. Moreover, the 
key metabolic parameters associated with the nonlinear 
glucose-insulin dynamics of an individual are unknown, 
thus preventing the direct use of the UVA/Padova model 
for synthesizing an MPC suitable for clinical purposes.

Since the virtual population is thought to statistically 
represent the intersubject variability of a generic population 

of T1D patients, an average time-invariant model repre-
senting the average dynamics of a diabetic patient can be 
computed by substituting all the time-varying parameters 
with their average values and then by averaging all the 
available sets of key metabolic parameters (see Table 2). The 
average parameters are imposed in the model (1), which is 
subsequently linearized around a fictitious basal equilib-
rium corresponding to the basal glucose ,Gb  a steady-state 
condition reached during fasting periods by infusing only 
basal insulin ib  [20]. Thus, by imposing ( ) ( )i t i tb=  and 
( ) ,d t 0=  the model reaches the fasting steady-state equilib-

rium and is subsequently linearized to obtain a linear 
model defined as

	
,

,
x k Ax k Bu k Md k

y k Cx k
1+ = + +

=

^
^ ^

^ ^ ^h
h h
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where ( )u k  ( )/tpmol s  and ( )d k  ( / )mg ts  are the variation of 
the subcutaneous insulin infusion with respect to the basal 
insulin and the meal intake, respectively; and ( )y k  (mg/dl) 
is the variation of the subcutaneous glucose concentration 
with respect to the fasting basal glucose .Gb  Model (2) is 
written in state-space form and is characterized by the state 

Summary

T1D is a metabolic disorder that causes a total insulin defi-

ciency and impedes the regulation of blood glucose con-

centration (also called glycemia) by the pancreas. Insulin is an 

essential hormone for blood glucose control, and the lack of 

insulin could result in chronic hyperglycemia, which exposes 

T1D subjects to risky long-term complications. The lack of in-

sulin must be compensated with exogenous, usually subcuta-

neous, insulin administration that can result in hypoglycemia 

if the amount of insulin is overestimated. Hypoglycemia is as-

sociated with short-term complications that, in severe cases, 

can result in a coma or death. Consequently, T1D subjects face 

the challenge of maintaining their glycemia within a safe range. 

An AP is a system devoted to the automatic regulation of ex-

ogenous insulin administration. Initial AP realizations used the 

intravenous route for insulin administration and were thus high-

ly invasive. Current AP systems rely on subcutaneous insulin 

pumps for insulin infusions and subcutaneous glucose sensors 

for glycemia measurements. The loop is closed through a con-

trol algorithm implemented on a portable device that evaluates 

the needed quantity of insulin based on the subjects’ state, 

which is estimated using the subcutaneous glucose sensing. 

The subcutaneous route for glucose sensing and insulin infu-

sion is well suited for 24-h use of the AP system. However, this 

architecture is affected by inherent delays in both sensing and 

(especially) actuation, which motivate the need for advanced 

control techniques. MPC has been used extensively as an AP 

control algorithm in several clinical trials completed in hospi-

tal, outpatient, and, more recently, free-living conditions. The 

results show that it is a feasible approach for the AP. However, 

because T1D subjects have different glucose-insulin dynam-

ics, the control algorithm must be robust to ensure that the 

closed-loop glucose control is reliable and safe for each sub-

ject without significantly compromising the performance. Dif-

ferent dynamics reflect the different biological characteristics 

of each subject, and, since the MPC algorithm determines the 

control actions through a model included in the cost function, 

subject-individualized models are expected to improve the AP 

performance. This article considers three individualization 

techniques to synthesize customized MPC based on tailored 

linear models. The individualized glucose-insulin models are 

presented first and subsequently included in an exhaustive 

description of the MPC algorithm used in the AP system. For 

each of the individualized techniques, results of closed-loop 

simulations performed on the adult virtual population of the 

UVA/Padova simulator are presented. These results are then 

compared with the results achieved through an MPC driven by 

the average model adopted in several clinical trials. The final 

aim is to show that customized MPCs are able to improve the 

glucose control performance without losing safety and imple-

mentation feasibility on a portable AP device, thus taking a 

significant step towards making individualized AP systems us-

able in vivo.



FEBRUARY 2018 «  IEEE CONTROL SYSTEMS MAGAZINE  91

Compartmental Models

Compartmental models are represented by a set of compart-

ments that can send control signals to other compartments 

and contain material that can be exchanged with other com-

partments. The generic equation that describes the quantity of 

material contained in a specific compartment is

	 ( ) , , , ,Q t R R i N1
j
j i
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j i
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where Qm
i  is the quantity of material of the ith compartment, 

Nc  is the total number of compartments, Rij  is the incoming 

flux of material from compartment j  to compartment ,i  and Rji  

is the outgoing flux from compartment i  to compartment .j  A 

set of equations of the form of (S6) describes the relationships 

among compartments, defining the whole system dynamics. 

The flow rate between two compartments can be described by 

linear or nonlinear laws. Examples of nonlinear laws are [S1]
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where ,k1  ,k2  and k3  are constants and Km  and Vmax  are 

rate parameters. The flux can be also described by a lin-

ear relationship

	 ( ( )) ( ),R Q t k Q tij m
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ij m
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where kij  is the rate constant associated with the incoming flux 

from compartment j  to compartment .i  When a compartmen-

tal model is used to represent a biological system, each com-

partment usually represents a part of the body that contains a 

specific material. For instance, in a very simplified human body 

representation, the stomach and the blood compartments can 

be defined, as shown in Figure S1. If the material is an oral drug, 

the first represents the drug concentration into the stomach, and 

the second represents the drug concentration into the blood. 

The two compartments together represent a simplified whole-

body model of the drug, starting from the oral intake [ ( ),u t  the 

system input], the absorption in the bloodstream [driven by the 

flux ( ( ))R Q tm21
1 ], and the excretion [driven by the excretion rate 

( ( ))R Q tm02
2 ]. The fluxes describing the way the drug is absorbed 

in/or excreted from the blood compartment can be represented 

by any nonlinear or linear relationship, like (S7) or (S8). In the 

graphical representation of compartmental models, the acces-

sible compartments from outside are denoted with a dashed line 

with a bullet. The blood compartment of Figure S1 is denoted as 

accessible because of the possibility to measure the drug con-

centration in the blood of the patient. Moreover, if compartment 

i  is controlled from compartment ,j  this action is represented by 

a dashed arrow.

State-Space Representation

Compartmental models can be described with a state-space 

representation where the quantities of material in each com-

partment represent the model states. The state-space repre-

sentation of the model depicted in Figure S1 is
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where ( ) ( ), ( ) ( ),x t Q t x t Q tm m1
1

2
2= =  ( )u t  is the system input 

(oral drug intake), ( )y t  is the system output (drug concen

tration measured in the blood), and V2  is the volume of the 

blood compartment.

Reference
[S1] C. Cobelli and E. Carson, Introduction to Modeling in Physiology 
and Medicine. New York: Academic, 2008.
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Figure S1  An example of a compartmental model with two compartments. The first is the stomach compartment, and the second 
is the blood compartment. The open arrow represents the drug oral intake ( )u t  (system input), the black arrows represent the flow 
rates, and the dashed line represents the samples ( )y t  taken from the blood compartment (system output). The drug quantity in 
the stomach ( )Q tm

1  is transferred in the blood compartment through the flow rate ( ( )).R Q tm21
1  The drug quantity in the blood com-

partment ( )Q tm
2  is finally excreted through the excretion rate ( ( )).R Q tm02

2
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matrix A, a square matrix containing information about the 
relationships among all states. Several simulations have 
shown that the states ( ), ( ),x t x t14 15  and ( )x t16  of (1), which 
are associated with the glucagon system of Figure 1, can be 
neglected in the linear model without affecting the MPC  
performance. Thus, ,A Rn n! #  with n 13=  denoting the 
total number of states of the linear model. Since the MPC 
algorithm running on the controller device is characterized 
by a sampling time ,ts  model (2) is represented in dis-
crete-time form. The average linearized model (2) synthesizes 
a nonindividualized MPC with average glucose-insulin 
dynamics. This control approach, of which a detailed des
cription can be found in [20] and [27], has been utilized in 
several clinical trials performed in both adults [13], [15], 
[26], [28] and children [39].

Customized Linear Models
A nonindividualized MPC based on an average model can 
be substantially penalized by the intersubject variability 
affecting T1D patients. The latter can be handled by model 

customization, thus defining models that synthesize MPC 
to improve the glucose control performance. In this section, 
three model customization techniques are presented, in 
which two identify individualized models that reproduce 
patient-specific glucose-insulin dynamics. All customized 
models are characterized by the same inputs and output of 
the linearized average model (2).

CR-Based Models
The model customization approach described in [40] is 
based on subdividing the entire virtual population in sub-
groups. Each group is defined by considering the insulin-
to-carbohydrate ratio (CR) parameter of each virtual subject. 
CR is a parameter that is part of the conventional ther-
apy of the patient and represents the nominal quantity 
of insulin bolus needed to compensate a meal through 
the relationship

	 ,i k
CR k
d k

B
CR

g

=^ ^
^h h
h � (3)
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Figure 1  A compartmental representation of the glucose-insulin model included in the UVA/Padova simulator [35]. The fluxes of mate-
rial are represented by the solid arrows, the dashed arrows represent control signals between compartments, and the dashed lines 
linked to empty circles represent the accessible compartments.



FEBRUARY 2018 «  IEEE CONTROL SYSTEMS MAGAZINE  93

where ( )i kB
CR  (U) is the nominal insulin bolus that must be 

infused to compensate for the estimated quantity of carbo-
hydrates (CHO) included in the meal ( )d kg  (g), and ( )CR k  
(g/U) is the CR value at time ,k  retrieved by considering 
the daily patient CR pattern. The subdivision presented in 
[40] defines four subgroups of the adult virtual population 
of the UVA/Padova simulator, each of which is composed 
of patients having low, medium-low, medium-high, and 
high IS. The subgroups are defined as

:
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with CR  representing the average value of the daily CR 
pattern and where 12, 15, and 19 are the integer approxima-
tions of the 25th, 50th, and 75th percentiles associated with 
the CR distribution of the adult virtual population (see 
Figure 3). For each subgroup, an average model is com-
puted and then linearized around the basal equilibrium, 
thus obtaining four linear models in the form of (2), which 
can be used to synthesize an MPC. The customization con-
sists of synthesizing the MPC by selecting the most appro-
priate model for a generic patient by considering his/her  

CR  value. This value is used to determine the group to which 
the patient belongs.

Nonparametric Models
The CR-based customization approach defines a set of models 
that can be used to synthesize a customized MPC based on 
the patient’s estimated IS. However, further improvements 
are expected in closed-loop glucose control with MPC based 
on patient-tailored models that incorporate patient-specific, 
glucose-insulin dynamics. The nonparametric (NP) approach 
described in [41] belongs to the class of black-box identifica-
tion and can be used to identify patient-specific glucose-insu-
lin models by relying on historical insulin administrations 
and meal intakes (inputs), and CGM measurements (output). 
Given a set of historical input–output data associated with a 
specific patient, the NP approach identifies a one-step ahead 
predictor that is subsequently converted in a state-space 
model obtained through a minimal realization of a given 
dimension. The identification process is performed through a 
kernel-based regression in which the stable spline kernel 
introduced in [42] is considered. The final result is the identi-
fication of a linear time-invariant model having the form

,y t q k u t k q k d t k w k e t ku
k

p

d
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Figure 2  A virtual population is composed of several “virtual subjects.” Each virtual subject is characterized by a set of key metabolic 
parameters of the glucose-insulin model. A virtual population is thought to span the intersubject variability that can be encountered in a 
population of patients affected by type 1 diabetes.
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where ( )e k  is a white Gaussian noise signal represent-
ing the uncertainties affecting the model and where the 
Z-transforms of ( ), ( ),q k q ku d  and ( )w k  are given by
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with pl  denoting a tunable parameter. The quantities ,g1  
,g2  and f  represent the impulse responses related to 

insulin, meals, and the Gaussian noise and are identified 
through the kernel-based regression process. Thus, the 
individualized MPC is synthesized by relying on the fol-
lowing state-space augmented model achieved through 
minimal realization:

,
,

x k A x k B u k M d k W e k
y k C x k W e k
1NP NP NP NP NP NP

NP NP NP

x

y

+ = + + +

= +

^
^ ^

^ ^
^

^ ^h
h h

h h
h

h h)
� (7)

where xNP  is a vector of maximum dimension pl  contain-
ing the internal states; ,ANP  ,BNP   ,CNP  and MNP  are matri-
ces of proper dimensions; WNPx  is a column vector (with 
maximum dimension pl ); and WNPy  is a scalar value.

Constrained Optimization Models
As a black-box identification technique, the NP approach 
identifies linear models with an unknown internal struc-
ture. Indeed, there is no control on the achievable number of 
internal states, which can only be limited to ,pl  a parameter 
that must be large enough to capture the essential dynamics 
of the patient. Having a linear model with a large number of 
internal states could be an issue for the MPC algorithm 
implementation, which must reside on a standalone device 
with limited computational power and memory. To identify 
a linear model having a fixed parametric structure, the 
gray-box identification approach based on the constrained 
optimization (CO) process described in [41] is considered. 
By considering the linearization of the UVA/Padova model 
(1) around the basal equilibrium point, the parametric 
model structure

	
,

,
x k A x k B u k M d k

y k C x k
1CO CO CO CO CO
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^ ^ ^h
h h
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having the same form of (2) is postulated, where xCO  is a 
vector containing the n 13=  model states, and the mat
rices , , ,A B CR R Rn n n n1 1

CO CO CO! ! !# # #  and M Rn 1
CO !

#  
are identified through the solution of the CO problem 
described in [41]. The identification is performed by relying 
on historical input–output data associated with the patient.

In contrast to the NP approach, the CGM subcutaneous 
glucose measurements (output data) need to be prefiltered 
to be considered for identification. The prefiltering is used 
to reduce the noise component affecting the CGM measure-
ments, which could significantly reduce the identifiability 
of the patient glucose-insulin dynamics. The prefilter-
ing process can be performed with several techniques. 
A simple technique considers the moving average filter

,y k N

k jCGM
j
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0

1

MA
MA

MA

=
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=
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^
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h
h/

where yMA  (mg/dl) is the prefiltered output data used in the 
identification process, ( )kCGM  is the measured subcutane-
ous glucose by the CGM at time ,k  and NMA  is the consid-
ered moving average length. Prefiltering techniques that 
are more specific for CGM measurements can also be con-
sidered, like the retrofitting process described in [43]. 
Despite the need for prefiltering, a substantial advantage of 
the CO approach with respect to the NP is represented by 
the fixed parametric structure of the identified model, 
which results in a fixed implementation complexity of the 
MPC algorithm for any patient. Moreover, it has been 
shown that the CO approach is able to capture the glu-
cose-insulin dynamics of the patient by relying on shorter 

Table 1  State variables associated  
with the state-space system (1).

State Meaning Unit

x1 Stomach first compartment mg 

x2 Stomach second compartment mg 

x3 Intestine mg 

x4 Plasma glucose and insulin-
independent tissues 

mg/kg 

x5 Insulin-dependent tissues mg/kg 

x6 Plasma insulin pmol/kg 

x7 Insulin action pmol/l 

x8 Delay compartment for insulin action 
on glucose production

pmol/l 

x9 Insulin action on glucose production pmol/l 

x10 Insulin in the liver pmol/kg 

x11 First compartment of subcutaneous 
insulin 

pmol/kg 

x12 Second compartment of 
subcutaneous insulin 

pmol/kg 

x13 Subcutaneous glucose mg/kg 

x14 Plasma glucagon ng/dl 

x15 Glucagon action ng/dl 

x16 Delayed static glucagon secretion ng/dl/min
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identification data sets [41], which are more easily realizable 
in a real-life scenario where the patient would be enrolled in 
a clinical study to produce historical input–output data for 
identification purposes.

Closed-loop glucose control
The presented identification approaches identify individual-
ized glucose-insulin models to be included in the MPC algo-
rithm, thus defining an individualized control law for the 
AP system. Preliminary closed-loop results were obtained 
in silico through customized MPC with CR-based models 
[40] and individualized MPC based on NP [44] models. In 
this article, these closed-loop results are refined and com-
pared with the results achieved in closed-loop through the 
individualized MPC based on the CO models.

A schematic AP representation is depicted in Figure 4. 
The MPC algorithm is the core of the AP and must properly 
command the insulin pump on the basis of CGM subcuta-
neous glucose readings. Of particular interest are the meals, 
which are considered substantial disturbances affecting 

the glucose concentration and handled through the meal 
announcement, a feedforward action controlled by the patient 
[20]. The MPC algorithm can also use information contained 
in the conventional therapy, which is adapted to the patient 
and continually updated by the physician.

Conventional Therapy
Diabetic patients can rely on the conventional therapy, 
which is adapted by the physician to the patient. Conven-
tional therapy consists of the basal insulin (the insulin 
needed to maintain the patient glycemia at a target during 
fasting periods) and the insulin bolus (the insulin needed to 
compensate for the increase in glycemia due to a meal). The 
insulin suggested by the conventional therapy is defined as

,i k i k i kB b
U= +^ ^ ^h h h

where ( )i kB  (U) is the insulin bolus associated with the meal 
consumed at time ,k  and ( )i kb

U  (U) is the patient basal insu-
lin, usually represented as a piecewise constant function. 

Table 2  Inputs, output, and key metabolic parameters associated with the state-space system (1).

Symbol Meaning Unit

Model inputs ( )i t  Exogenous insulin infusion rate pmol/kg/min

( )d t  Ingested meal mg/min 

Model output ( )
V
x t

G

13  Subcutaneous glucose concentration mg/dl 

Constant parameters ,kgri  kabs Rate parameters min−1 

,k1  ,k2  ,k ka a1 2

,m1  ,m2  ,m4  p U2

,ki  ,kd  ,ksc  ,kH  nG

VI  Distribution volume of insulin l/kg 

VG  Distribution volume of glucose dl/kg 

Ib  Model basal insulin pmol/l 

Hb  Model basal glucagon ng/dl 

Time-varying parameters ( )k tempt  Gastric emptying coefficient min−1 

( )Ra t  Glucose rate of appearance mg/kg/min 

( )EGP t  Endogenous glucose production mg/kg/min 

( )E t  Renal excretion mg/kg/min 

( )U tii  Insulin-independent utilization mg/kg/min 

( )U tid  Insulin-dependent utilization mg/kg/min 

( )m t3  Linear degradation coefficient min−1 

( )SR tH  Glucagon secretion ng/dl/min 

( )SR tH
s  Delayed static glucagon secretion ng/dl 
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The insulin bolus iB  is strictly correlated to the amount of 
CHO that the patient assumes with the meal and can be rep-
resented as an insulin spike that is significantly higher with 
respect to basal. The insulin bolus calculation is defined as

	 ,i k i k
k

k y
i kCF

BG
B B

hCR CF
IOB= +

-
-^ ^ ^

^ ^h h h
h h � (9)

where the CR-based insulin bolus ( )i kB
CR  defined in (3) is 

refined with the addition of two terms. The first term uses 
one of the parameters included in the conventional therapy 

[the correction factor (CF)] to adjust the insulin bolus on the 
basis of the difference between the blood glucose (BG) and 
a target glucose concentration yCF  (mg/dl). BG is usually 
measured through a fingerstick device, which measures 
the blood glucose concentration in a drop of blood. The 
second term reduces the insulin bolus on the basis of the 
insulin on board (IOB) ( )i kh

IOB  (U), which is the estimated 
residual insulin that still has an effect. IOB is estimated 
through insulin decay curves [45]
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where all the constants are properly chosen on the basis of 
the time of decay .h  The time course of the insulin decay 
curves for different values of decay is depicted in Figure 5. 
In the case of adult patients, the decay curve having h 4 h=   
is usually considered to estimate the IOB.

MPC Algorithm Definition
One of the aspects that makes the design of an AP system 
challenging is the presence of unavoidable delays and inac-
curacies in both subcutaneous glucose sensing and insulin 
delivery. Coping with these issues is particularly difficult 
when a system disturbance like a meal occurs and triggers a 
rapid glucose rise that is substantially faster with respect to 
the time needed in particular for insulin absorption. In the 
presence of inherent delays, any attempt to increase the 
responsiveness of the closed-loop system may result in an 
unstable system behavior and oscillations. A good controller 
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Figure 3  The distribution of the average daily insulin-to-carbo 
ratio patterns ( )CR  associated with the adult virtual population of 
the UVA/Padova simulator. For each virtual subject, a pattern is 
known and used to build the box plot, which is composed of 100 
values. As specified in (4), the integer approximations of the 25th, 
5th, and 75th percentiles are equal to 12, 15, and 19, respectively.
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Figure 4  A schematic representation of an artificial pancreas. 
The circled elements represent the main components of the system, 
which are the continuous glucose monitor (CGM) sensor, the 
model predictive control (MPC) algorithm, and the subcutaneous 
insulin pump. The MPC algorithm relies on the patient’s conven-
tional therapy and the feedforward action associated with the 
meal announcement.
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should consider a relatively slow response; however, a too 
slow control law could not properly attenuate the postpran-
dial glucose peaks. Thus, the AP system must be designed 
with a controller able to address the tradeoff between slow 
and fast regulation [5]. A slow regulation must be consid-
ered during quasi-steady-state conditions, like overnight, 
whereas a fast regulation is useful during postprandial peri-
ods where timely insulin infusions are needed.

An MPC for AP is a model-based control approach that 
uses a model to predict the patient glucose-insulin dynam-
ics. The subcutaneous insulin pump is properly commanded 
with insulin infusions based on the predicted patient glyce-
mia within a predefined prediction horizon. As shown in 
Figure 4, the MPC algorithm is enriched with information 
contained in the patient’s conventional therapy and meal 
announcement, which is a feedforward action activated by 
the patient at meal times. Meal announcement is used to 
“inform” the controller that the glycemia is expected to rise 
rapidly due to a meal, thus requiring prompt insulin deliv-
ery. This information is provided to the controller by the glu-
cose prediction computed through the built-in linear model 
of (2), (7), or (8), which is triggered by the meal announced 
in the meal input d. The presence of a feedforward action 
makes the AP system not fully automated. However, meal 
announcement must be considered as additional knowledge 
that is available to the patient and should be exploited to 
improve the postprandial glucose control. In the case of 
missing a meal announcement, in spite of unavoidable 
decreases in the control performance, the AP must still oper-
ate safely.

Closed-Loop Scheme
The AP closed-loop scheme is shown in Figure 6, where the 
blue blocks represent the MPC and the patient, the yellow 
blocks represent the hardware, and the green block repre-
sents the conventional therapy used to compute the nomi-
nal insulin boluses through (9), which is used in the meal 
announcement. This scheme is defined on top of the con-
ventional therapy in the sense that the MPC suggests insu-
lin variations with respect to the therapy. During fasting 
periods, the MPC suggests insulin variations with respect 
to the patient basal insulin .ib  On the other hand, when a 
meal is announced, the controller receives information 
about the nominal insulin bolus iB  and eventually modifies 
this value based on the estimated state of the patient.

Controller Cost Function and Calibration
The MPC insulin suggestions are driven by the quadratic 
cost function
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Figure 6  A closed-loop scheme implemented in the artificial pancreas system. d m= t  is the estimated quantity of carbohydrates associ-
ated with the meal m and is considered in the feedforward action as a disturbance to be rejected. When a meal is announced, model 
predictive control (MPC) receives the estimation of the nominal insulin bolus iB  through (9), which is included in the conventional therapy 
(CT). ysp  is the glucose setpoint, y  is the noisy subcutaneous glucose measured by the continuous glucose monitor (CGM) device, and 
e y CGMsp= -  is the glucose error sent to the MPC. uMPC  is the suggested insulin variation with respect to the basal insulin ,ib  and up  is 
the insulin that has to be infused by the pump, which infuses the quantized insulin iq  into the patient subcutaneous tissue. MPC is also fed 
with the estimation of the patient state ,xt  which is estimated through the Kalman filter described in [27]. The latter uses the system inputs 
and the noisy output y GCGMl b= - , with Gb  denoting the steady-state glucose concentration during fasting periods (basal glucose).
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where ( )x k kt  is the state estimated through the Kalman 
filter described in [27] at time ,k u0  is the variation of the 
insulin suggested by the conventional therapy with respect 
to the basal insulin ,i yb sp  (mg/dl) is the desired glucose set-
point, N  is the prediction horizon, q 02  is a tunable param-
eter, and P is the unique nonnegative solution of the discrete 
time Riccati equation (S5). The matrices A, B, C, and M 
define the linear glucose-insulin model used to predict the 
patient glycemia within the horizon N. Any linear model 
having the form of (2) can be included in the cost function 
or, alternatively, the identified models (7) or (8) can be con-
sidered, thus defining an individualized controller.

The cost to be minimized includes the glucose setpoint 
and the conventional therapy ysp  and ,u0  respectively. The 
insulin suggestion is calculated by computing the optimal 
tradeoff between the glucose error with respect to the set-
point and the insulin variations with respect to the con-
ventional therapy. The tradeoff is defined through the 
parameter q. Higher q values are associated with a higher 
cost to the glucose variations, thus resulting in a more 
aggressive controller that strives for maintaining the glyce-
mia at the setpoint. On the other hand, lower q values are 

associated with a higher cost to the insulin variations with 
respect to the conventional therapy, resulting in a more 
conservative controller.

The q value must be set on the basis of the estimated IS 
of the patient. Patients who are more insulin sensitive 
require a more conservative controller, whereas patients 
characterized by elevated insulin resistance require more 
aggressive insulin administrations. The tuning of q is han-
dled through a calibration procedure that is performed in 
simulation, by considering a trial and error approach driven 
by the performance index

	 ,logJ q X Y k q kq
C C2 2
1 10 2

2
CVGA CVGA $= + + -^ ^ ^h h h � (12)

where XCV GA  and YCV GA  are the coordinates achieved in 
simulation in the control variability grid analysis (CVGA) 
defined in [20] and [46], and kC1  and kC2  are tunable param-
eters. The CVGA coordinates are obtained by simulating a 
predefined calibration scenario, and the process is repeated 
until the minimum cost Jq  is found. The flow chart repre-
senting the calibration procedure is shown in Figure 7. A 
linear model for control synthesis is used to synthesize the 
MPC that simulates the closed-loop control on a model for 
control testing. At the end of each simulation, the perfor-
mance index (12) is evaluated, and the process is repeated 
until the decrease of the performance index becomes negli-
gible, thus resulting in the calibrated q value

,, ,min argminmaxq J q q qq q l h=t r r^ h" " " , , ,

where qlr  and qhr  are minimum and maximum safety thresh-
olds, respectively.

In the case of individualized models, the model for con-
trol testing is the same model used for control synthesis. 
This procedure is feasible in a real scenario, where the 
identified model would be used for the trial-and-error 
approach, and the real patient would be equipped with the 
controller including the resulting calibrated .qt  In the case 
of MPC based on nonindividualized models, the calibra-
tion procedure is repeated for each virtual subject, which 
is characterized by (1), considered as the model for control 
testing. The regression model ( , )q BW CR e · ·r BW r CR rint1 2= + +t  is 
then used to adapt the q value to each patient on the basis 
of his/her CR and body weight. As described in [27], the 
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Figure 8  A scenario used for closed-loop (CL) simulations. The scenario starts at 6:00 and lasts 34 h, and the loop is closed at 8:00. 
The first breakfast is compensated in open loop (OL) through the conventional therapy, while the remaining meals are compensated in 
CL. The night starts at 23:00 and lasts 8 h. Meal amounts are 50 g of carbohydrates (CHO) for the first breakfast, 80-g CHO for the 
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Figure 7  A flow chart of the calibration procedure used to tune the 
parameter q  in the cost function (11). The model predictive control 
(MPC) is synthesized with the model for control synthesis and 
used in a trial-and-error approach to simulate the closed-loop glu-
cose control on the model for control testing. The process is iter-
ated until the decrease on the performance index Jq , defined in 
(12), becomes negligible.
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Table 3 C losed-loop performance indices achieved by nonindividualized model predictive control (L-MPC), insulin-to-
carbo ratio MPC (CR-MPC), nonparametric MPC (NP-MPC), and constrained optimization MPC (CO-MPC)  in the simulation 
scenario of Figure 8. O is the overall scenario, N is night, and PP are closed-loop postprandial periods. The @  symbol denotes the 
p-values significance.

O N PP 

A (mg/dl) L-MPC 144.85 (126.81, 158.88) 121.75 (113.90, 127.70) 155.83 (29.85) 

CR-MPC 144.10 (126.47, 155.66) @@ 122.07 (113.98, 127.78) @@ 154.13 (26.76) @@  

NP-MPC 133.34 (118.73, 145.23) @@@ 114.57 (108.30, 119.36) @@@ 144.88 (26.17) @@@  

CO-MPC 136.95 (123.97, 148.12) @@@ 116.03 (110.73, 122.56) @@@ 152.24 (26.01) @  

SD (mg/dl) L-MPC 21.41 (17.18, 27.45) 6.68 (4.35, 10.47) 19.95 (15.95, 25.13) 

CR-MPC 21.50 (16.63, 26.77) @@@  6.25 (3.99, 9.04) @@@  19.72 (15.79, 24.69) 

NP-MPC 22.11 (17.96, 27.46) 5.04 (3.09, 7.24) @@@  21.41 (18.52, 25.91) @@@  

CO-MPC 22.66 (18.85, 29.01) @@  5.50 (3.74, 8.06) @@  22.35 (18.54, 26.93) @@@  

CV (mg/dl) L-MPC 0.16 (0.13, 0.19) 0.06 (0.04, 0.08) 0.13 (0.05) 

CR-MPC 0.16 (0.13, 0.18) @@  0.05 (0.03, 0.08) @  0.13 (0.05) 

NP-MPC 0.17 (0.14, 0.21) @@@  0.04 (0.03, 0.06) @@  0.16 (0.05) @@@  

CO-MPC 0.17 (0.14, 0.20) @@@  0.05 (0.03, 0.07) @  0.16 (0.05) @@@  

Tt (%) L-MPC 95.18 (75.66, 100.00) 100.00 (100.00, 100.00) 90.57 (57.86, 100.00) 

CR-MPC 95.65 (81.23, 100.00) @  100.00 (100.00, 100.00) 91.72 (66.61, 100.00) @

NP-MPC 97.37 (87.95, 100.00) @@@  100.00 (100.00, 100.00) 95.16 (78.96, 100.00) @@@

CO-MPC 95.24 (82.25, 100.00) 100.00 (100.00, 100.00) 90.47 (69.11, 100.00) 

Ttt (%) L-MPC 46.17 (24.98) 100.00 (87.89, 100.00) 16.93 (6.61, 66.82) 

CR-MPC 48.70 (24.41) @  100.00 (91.23, 100.00) @  26.51 (8.39, 66.77) @  

NP-MPC 65.17 (21.07) @@@  100.00 (100.00, 100.00) @@@ 45.83 (22.81, 70.42) @@@  

CO-MPC 59.36 (23.68) @@@  100.00 (100.00, 100.00) @ 35.26 (15.36, 62.34) @@  

Ta (%) L-MPC 4.35 (0.00, 24.34) 0.00 (0.00, 0.00) 8.02 (0.00, 42.14) 

CR-MPC 3.67 (0.00, 18.77) @  0.00 (0.00, 0.00) 6.41 (0.00, 33.13) @  

NP-MPC 1.67 (0.00, 12.05) @@@  0.00 (0.00, 0.00) 3.33 (0.00, 20.05) @@@  

CO-MPC 4.35 (0.00, 17.75) 0.00 (0.00, 0.00) 8.70 (0.00, 30.89) 

Tb (%) L-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 

CR-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 

NP-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 

CO-MPC 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 

#ht L-MPC 9 0 9 

CR-MPC 18 0 18 

NP-MPC 18 0 15 

CO-MPC 2 0 2 

Number of  patients 
with ht 

L-MPC 4 0 4 

CR-MPC 4 0 4 

NP-MPC 5 0 5 

CO-MPC 1 0 1 

(continued)
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parameters ,r1  ,r2  and rint  were obtained by relying on 
100 calibrated qt  associated with the entire adult virtual 
population of the UVA/Padova simulator.

Simulation results
The MPC considered in simulation is entirely defined in 
[27]. The MPC is equipped with properly defined insulin 
constraints and driven by the cost function (11). For an esti-
mation of the MPC behavior in a real scenario, the simula-
tions were performed on the 100 nonlinear, time-variant, 
adult virtual subjects of the UVA/Padova simulator [35]. 
Furthermore, to test the controller safety and robustness, 
the IS of each virtual subject was randomly varied by a 
±25% factor, and the controller was blind to these variations.

The simulation scenario is shown in Figure 8 and 
includes five meals, of which the first is compensated in 
open loop (through the conventional therapy), while the 
remaining meals are compensated for through the MPC. 
The simulation scenario starts at 6:00 and lasts 34 h, and 
the loop is closed at 8:00. Note that the loop is closed 
within the postprandial period of the open-loop compen-
sated meal, increasing the variability associated with the 
closed-loop starting conditions. Meal amounts are 50-g 
CHO for the first breakfast, 60-g CHO for the second one, 
60-g CHO for the two lunches, and 80-g CHO for the 
dinner. Postprandial periods are defined as 4-h time 
intervals starting from each meal time. Night period 
starts at 23:00 and lasts 8 h.

The glucose control performance is evaluated through 
standard indices in evaluating AP clinical trials [47]. The 
considered metrics are the following: average glucose (A), 
glucose standard deviation (SD), glucose coefficient of 
variation (CV), time in target or percentage of time spent 
within 70–180 mg/dl (Tt), time in tight target or percentage 
of time spent within 70–140 mg/dl (Ttt), time above target 

or percentage of time spent above 180 mg/dl (Ta), time 
below target or percentage of time spent below 70 mg/dl 
(Tb), number of hypotreatments (#ht), and number of 
patients with at least one hypotreatment (# patients with 
ht). A hypotreatment consists of 16-g CHO that are admin-
istered in case the patient glycemia falls below 65 mg/dl. 
This process is automatically performed in the simulation 
environment with a constraint that imposes a time gap of at 
least 30 min between two consecutive hypotreatments. In 
addition, insulin metrics are also included in terms of daily 
insulin needs (measured in insulin units U) and daily insulin 
needs normalized by the patient weight (U/kg).

Table 3 shows the outcome indices achieved through the 
linearized nonindividualized MPC (L-MPC), custom-
ized MPC based on the CR-based models (CR-MPC), indi-
vidualized MPCs synthesized by considering the NP 
models (NP-MPC), and the models identified through CO 
(CO-MPC). Both NP-MPC and CO-MPC were synthesized 
based on individualized models identified from historical 
input–output data generated in silico by following the 
identification scenarios described in [41]. Each index is 
evaluated during the overall scenario (O), during the night 
(N), and within the closed-loop postprandial periods (PP). 
Nonnormal data are shown as median (25th percentile 
and 75th percentile), whereas normal data are shown as 
mean (standard deviation). Given that all the Tb percen-
tiles of Table 3 are equal to zero, to perform a quantitative 
comparison, Table 4 shows the Tb indices in terms of mean 
(standard deviation). Statistical comparisons are performed 
between L-MPC and the customized MPCs with the fol-
lowing significance levels:

. ,

. ,

. ,
p

p
p
p

0 05
0 01
0 001

value significance levelp
@

@@

@@@

1
1
1

- =^ h *

O N PP 

Daily insulin needs (U) L-MPC 47.35 (39.15, 59.08) 9.35 (8.06, 10.92) 46.29 (35.39, 53.52) 

CR-MPC 49.75 (39.50, 62.90) @@@  9.68 (7.99, 10.91) 48.49 (36.28, 59.36) @@  

NP-MPC 51.18 (41.10, 63.55) @@  10.09 (8.46, 12.10) @@@  44.39 (36.01, 56.77) 

CO-MPC 42.70 (36.63, 51.70) @@@  9.35 (8.01, 11.24) 36.52 (31.07, 45.74) @@@  

Daily insulin needs  
per kg (U/kg)

L-MPC 0.69 (0.59, 0.86) 0.14 (0.12, 0.17) 0.65 (0.53, 0.83) 

CR-MPC 0.76 (0.60, 0.92) @@@  0.14 (0.12, 0.17) 0.70 (0.54, 0.85) @@@  

NP-MPC 0.76 (0.61, 0.95) @@  0.14 (0.12, 0.18) @@@  0.67 (0.52, 0.86) 

CO-MPC 0.62 (0.52, 0.76) @@@  0.14 (0.11, 0.17) 0.53 (0.44, 0.69) @@@  

Table 3 C losed-loop performance indices achieved by nonindividualized model predictive control (L-MPC), insulin-to-carbo 
ratio MPC (CR-MPC), nonparametric MPC (NP-MPC), and constrained optimization MPC (CO-MPC)  in the simulation scenario 
of Figure 8. O is the overall scenario, N is night, and PP are closed-loop postprandial periods. The @  symbol denotes the p-values 
significance. (Continued)
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where p is evaluated with the paired t-test for normally distrib-
uted data and the Wilcoxon signed-rank test otherwise. The 
test of normality is performed through the Lilliefors test.

In this article, CR-MPC, NP-MPC, and CO-MPC are re
ferred to as individualized MPCs. The individualized MPCs 
significantly reduced the average glucose. The reduction is 
more noticeable with NP-MPC and CO-MPC, which are 
synthesized on patient-individualized glucose-insulin 
models. Although the achieved time in target is numerically 
similar to all of the considered controllers, the individual-
ized MPCs significantly increased the time in tight target 
and reduced the time above target without increasing the 
time below target. The reduction of hyperglycemia was also 
significant with the exception of CO-MPC, which used a 
significantly lower amount of insulin with respect to the 
other controllers and encountered only two hypotreatments 
in a single patient within the entire adult virtual popula-
tion. Thus, it is possible to conclude that the individualized 
MPCs are able to better maintain steadier the glucose con-
centration without significantly increasing the risk of hyper- 
or hypoglycemia.

Glucose control is particularly challenging within the 
postprandial periods, where the rapid increase of glucose 
induced by a meal must be promptly compensated for by 
taking into account the risk of induced postprandial hypo-
glycemia. As shown in Figure 9, the postprandial glucose 
compensation is slightly improved with CR-MPC with 
respect to L-MPC, since the glucose peaks are lower and the 

glucose decrease is faster. However, these controllers are 
characterized by a conservative behavior at the end of each 
postprandial period, where the glycemia decrease is system-
atically slowed down before reaching the glucose setpoint 
(120 mg/dl). This conservative compensation was intro-
duced to minimize the risk of postprandial hypoglycemia, 
which is caused by insulin overestimation for meal compen-
sation and would require a hypotreatment to restore the 
proper glucose concentration. Thanks to the availability of 
patient-individualized models, this behavior is no longer 
noticeable in NP-MPC and CO-MPC, which can rely on more 
effective glucose predictions. Thus, both the controllers based 

Table 4 T he mean and standard deviation of the time below 
target achieved in closed loop by nonindividualized model 
predictive control (L-MPC), insulin-to-carbo ratio MPC (CR-
MPC), nonparametric MPC (NP-MPC), and constrained 
optimization MPC (CO-MPC) in the simulation scenario of 
Figure 8. O is the overall scenario, N is night, and PP are 
closed-loop postprandial periods.

O N PP 

Tb (%) L-MPC 0.17 (0.80) 0.00 (0.00) 0.33 (1.61)

CR-MPC 0.27 (1.51) 0.00 (0.00) 0.53 (3.02)

NP-MPC 0.30 (1.35) 0.00 (0.00) 0.41 (2.29)

CO-MPC 0.08 (0.56) 0.00 (0.00) 0.13 (1.06)
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Figure 9  The blood glucose concentration achieved by the linearized nonindividualized model predictive control (L-MPC), customized 
MPC synthesized with the insulin-to-carbo ratio-based (CR-MPC) models, individualized MPC synthesized by considering the nonpara-
metric (NP-MPC), and the constrained optimization (CO-MPC) models in the simulation scenario of Figure 8. Glucose values are shown 
in terms of the median (solid lines) surrounded by colored regions representing the glucose 25th and 75th percentiles.
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on patient-individualized models are able to faster compen-
sate for the postprandial glycemia and reach the glucose set-
point without slowing down the glycemia decrease for 
safety purposes. In particular, CO-MPC is able to quickly 
compensate for the postprandial glycemia without creating 
glucose undershoots before reaching the setpoint. This behav-
ior is evident in Figure 9, where the shadowed region repre-
senting the glucose variability of CO-MPC is narrower with 
respect to NP-MPC.

The faster glucose compensation of NP-MPC and CO-MPC 
significantly increases the postprandial SD and CV, as shown 
in Table 3, consequently increasing the same indices in 
the overall scenario. However, as shown in the CVGA of 
Figure 10, this does not translate into a worsening of the over-
all control performance. Each point in the CVGA represents 
the combination of the minimum and maximum glycemia 
reached by each patient during a simulation. A point is pres-
ent for each patient for each one of the four considered MPCs, 
thus resulting in 400 points. Although the number of points 
in the A region is reduced with NP-MPC and CO-MPC, their 
scatter plots are within the A and B regions, denoting that the 

overall glucose control performance is not compromised. 
Moreover, CO-MPC results in 96 points included in the A 
and B regions and no points in the D region, thus achieving 
the best performance in terms of CVGA.

Conclusion
Despite the continuous efforts devoted to AP development 
in the last decades, an AP system is not yet available on the 
market. One of the major issues involves the intersubject 
variability affecting T1D patients, which makes the defini-
tion of a single controller suitable for any patient practi-
cally impossible. Moreover, a state-of-the-art, noninvasive, 
and portable AP system is composed of subcutaneous 
hardware components, and the control algorithm must be 
properly designed to reside on a standalone device with 
limited battery life and computational power. These char-
acteristics make the design of a safe and effective AP 
system even more challenging, due to the inherent delays 
affecting the subcutaneous insulin delivery route and the 
tradeoff between control performance and computational 
power expenditure.

As a result of the MPC’s ability to address inherent 
delays of the process under control, it is one of the most 
promising control approaches in the context of an AP. How-
ever, the achievable control performance is strictly related to 
the prediction capabilities of the model included in the con-
troller, which,  in general, can be highly nonlinear. The cur-
rently used MPC in clinical experiments relies on a linear 
average glucose-insulin model designed to represent the 
average dynamics of a subject with diabetes. This nonindi-
vidualized MPC is not designed to cope with patient-spe-
cific dynamics but is designed to be noncomputationally 
demanding and robust enough to result in a safe and effec-
tive control law.

The introduction of patient-tailored, glucose-insulin linear 
models opens possibilities for designing individualized 
MPCs capable of significantly improving the achievable 
glucose control performance and enhancing the AP system 
safety and efficacy without increasing the computational 
complexity of the control algorithm. The closed-loop simu-
lations have shown that the individualized MPCs are able to 
address the intersubject variability and are particularly 
effective within the postprandial periods, where the patient 
glycemia is substantially perturbed and the controller needs 
to react promptly to compensate for the glucose rise without 
inducing postprandial hypoglycemia.

The proposed individualization approaches don’t address 
intrasubject variability (which represents the variability 
characterizing a specific patient over time). Future investiga-
tion both in silico and in vivo will need to take this variabil-
ity into account. However, to achieve preliminary clinical 
results on the safety and feasibility of the proposed identifi-
cation approaches, future works will consider the identifica-
tion of individualized glucose-insulin models from clinical 
data of patients with T1D. Clinical studies will have to be 
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linearized nonindividualized model predictive control (L-MPC, 
blue circles), customized MPC synthesized with the insulin-to-
carbo ratio based (CR-MPC, magenta diamonds) models, indi-
vidualized MPC synthesized by considering the nonparametric 
(NP-MPC, brown triangles), and constrained optimization (CO-
MPC, violet squares) models in the simulation scenario of 
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designed to sufficiently achieve perturbed clinical data for 
model identification. As described in [41], one of the major 
issues associated with model individualization is the identi-
fiability of glucose-insulin dynamics. The CO approach is 
preferable with respect to the NP, since it identifies linear 
compartmental models having a fixed structure and requires 
a shorter identification data set that would be more easily 
realizable in a real scenario. Thus, individualized MPCs 
usable in clinical trials will be synthesized, having the 
potential of further improving the clinical results and 
making a significant step toward the design of an AP suit-
able for the market.
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