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Behaviors that derive from a po-
tential have huge potential. Their 
potential has the graphical in-

terpretation of an energy landscape. 
The gradient behavior is determined 
by a local update rule that provides 
the best possible descent for the po-
tential. The potential, a scalar-valued 
function or functional, provides a 
complete qualitative characteriza-
tion of the behavior: an infinite set 
of trajectories.

The concept of gradient is stun-
ningly simple yet stunningly rich. 
With the help of a little drawing, most 
first graders will grasp the concept. 
Yet, looking at the history of science 
and engineering, it is hard to find 
a concept with a stronger explana-
tory power when it comes to model 
dynamical behaviors. The gradient 
concept connects first graders and sci-
entific giants.

A gravity potential led Newton to 
formulate the general laws of mechan-
ical behaviors. Smale, Brayton-Moser, 
and Minty modeled electrical circuits 
and networks as gradient systems. 
Hopfield modeled neural networks as 
gradient systems, opening up an en-
tirely novel way to connect artificial 
neural networks to the computational 
neuroscience of learning and memory. 
Entropy potentials rule thermody-
namics and information theory. The 
design of cost functions rules infor-
mation engineering via the design of 
gradient algorithms that minimize 
them. A free energy potential de-
termines Friston’s theory of brain 
and intelligent behavior [1]. Gradient 
flows on probability measures have 

renewed our understanding of par-
tial differential equations [9]. The list 
of successes is much longer, and you 
will add your own example to it.

Gradient systems bridge the 
discrete and the continuous. Most 
physical laws are infinitesimal, but 
algorithmic laws are always incre-
mental. The former must be dis-
cretized to be simulated. The latter 
must be made infinitesimal to be 
analyzed. When a differential equa-
tion is a gradient, it also defines an 
algorithm. Otherwise, it lacks in-
terpretation. When an algorithm is 
a gradient, it approximates a differ-
ential equation. Otherwise, it lacks 
interpretation. Potential theory pro-
vides key insight in discrete opti-
mization problems that otherwise 
remain elusive [2]. Without the bridge 
of a potential, the distance between 
discrete and continuous behaviors 
sometimes looks abyssal.

Gradient systems bridge the deter-
ministic and the stochastic. Stochas-
tic gradient systems turn intractable 

deterministic algorithms into trac-
table implementations. Mean-field 
algorithms turn intractable stochastic 
algorithms into deterministic differ-
ential equations that can be analyzed. 
One of the most brilliant lectures 
I heard in my life was when Yuri 
Nesterov contrasted the “Homo eco-
nomicus” (HE) and “statistical Homo 
economicus” (SHE) models of human 
behavior [3]. Without the bridge of 
a potential, the distance between 
HE and SHE behaviors sometimes 
looks abyssal.

But what is a gradient behavior? In 
particular, what is an open gradient 
system? That is, how do we formalize 
the inescapable concept of a potential 
when modeling a behavior that inter-
acts with its environment? As is often 
in system theory, concepts that seem 
evident when conceived for closed 
dynamical systems become surpris-
ingly shaky when generalized to open 
systems. As is often in the history of 
our field, mathematics invites us to 
choose between two distinct routes. 

The Potential of a Potential
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A schematic to provide an intuition regarding the nature of an energy landscape for the 
more general case of continuously-valued brain states. (From [8].)
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The question of how to bridge the two 
is left to control science.

The route grounded in the tradi-
tion of mechanics uses differential 
geometry. Differential geometry 
provides us with a concept of gra-
dient vector field, which in turn de-
fines the concept of (closed) gradient 
dynamical system. How to extend 
this approach to systems with inputs 
and outputs was originally asked by 
Brockett [4]. It pretty much defined 
the research program of Port–Ham-
i ltonian systems and control. The 
specific question of when a linear 
time-invariant system can be regard-
ed as a gradient system was solved 
by Arjan van der Schaft [5]. It did not 
make the news (yet). The nonlinear 
extension of that result is still a work 
in progress.

The route grounded in the tradi-
tion of electricity uses operator the-
ory. Minty defined the concept of a 
monotone operator to characterize 
nonlinear resistors with positive con-
ductance. Rockafellar then showed 
that a maximal monotone operator 

derives from a potential if and only 
if it is cyclically monotone [6]. An in-
put–output operator can thus be said 
to derive from a potential if it can be 
expressed as a difference of cycli-
cally monotone operators. In recent 
work, we expressed the solutions of 
mixed feedback systems (such as Van 
der Pol oscillators) as zeros of dif-
ference of maximally monotone op-
erators [7]. It is still an open question 
whether such behaviors can also be 
regarded as critical points of a dif-
ference of convex potentials. That 
would make them “open gradient 
behaviors.”

Neural networks are intractable 
if they are not gradient neural net-
works. Learning rules are intractable 
when they are not gradient rules. I am  
sometimes led to think that we will 
not make nonlinear control algorith-
mic until we make nonlinear behav-
iors deriving from a potential.

Please share your feedback at 
r.sepulchre@eng.cam.ac.uk.

Rodolphe Sepulchre
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Unveiling Cybernetics

Besides electrical engineering theory of the transmission of messages, there is a larger field [cybernetics] which 
includes not only the study of language but the study of messages as a means of controlling machinery and 

society, the development of computing machines and other such automata, certain reflections upon psychology and 
the nervous system, and a tentative new theory of scientific method.

—Norbert Wiener

Exploring ChatGPT

I   don’t quite agree with it, but “a calculator for words” is an interesting framing for ChatGPT” 

—Sam Altman
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