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recurring question that all authors of this special 
issue encounter is, “Why not go with models?” 
Two terms need to be clarified: In this context, a 
model is understood as a parametric system rep-
resentation often endowed with an interpretable 

structure, for example, a state-space representation with a 
readily discernible F = m ∙ a equation. Further, the term data-
driven control, as we employ it in this special issue, is not just 
about using data from a black box to inform decision mak-
ing. Researchers are exploring different paradigms, among 
others, model-based control design, where the model and 
uncertainty estimates are learned from data using contem-
porary system identification and uncertainty quantification 
techniques. In classical adaptive control terminology [1], [2], 
this two-stage approach is referred to as indirect. In contrast, 

direct data-driven control bypasses models in the decision 
making; see Figure 1 for a graphical illustration of the two 
paradigms. Hence, the more precise question should be, 
“When should we embrace direct or indirect data-driven 
control?” I will delve into the expected “it depends” answer 
in this “Editorial” column.

The typical answers one encounters often reason with 
the shortcomings of system identification, take the vantage 
point of a specific application, or quote the widely recog-
nized success of reinforcement learning in computer and 
board games.

Let me put good automatic control practice into use, ab-
stract the problem, and see more clearly through the lens of 
mathematics. Since the minimization of a fitting criterion 
is the prevalent formulation in system identification, I will 
take an optimization perspective. Allow me to leave the un-
certainty aspect aside for now. In this idealized setup, 
the indirect paradigm—first identify a model within a 
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prespecified class, then perform model-based control—is 
abstracted as a nested optimization problem:

The indirect approach can be first and foremost de-
scribed as being modular with two well-separated levels. In 
comparison, the direct approach is more lean and seeks a 
decision compatible with the data. Abstractly, it is an end-
to-end monolithic problem:

While the direct versus indirect classification is sim-
ple and useful, the line between both paradigms is often 
blurred. Let me now dive into the relative merits of both 
formulations.

ON MODELS
The distinguishing feature of both approaches is whether 
to use a model for decision making. Compared with raw 
data, models are tidied-up representations, that is, com-
pressed, denoised, and typically also approximate. These 
features are most obvious in subspace system identi-
fication, where they are achieved by singular value 
thresholding of data matrices [3]. Crucially, models are 
interpretable, often structured, and physically intuitive; 
for example, think of the class of port-Hamiltonian sys-
tems [4]. Further, models are amenable to powerful control 
design methods (for example, semidefinite programming 
for optimal control in state space [5]), and they are obvi-

ously useful beyond control, for example, for analysis, 
simulation, or system design. Hence, there will always be 
a place for models and indirect design.

However, there are indeed arguments to be made 
against models. Think about systems with complex phys-
ics (for example, soft robotics), complex disturbances (for 
example, wind farms), or complex sensing modalities (for 
example, perception-based control) or operating in com-
plex environments (for example, autonomous cars). In 
such instances, even if first-principle models were avail-
able, they might be too complex to be useful for control 
design, and one may argue for the direct approach. This 
brings to light that “the main issue in modeling from data 
is approximation” [6]. To take it a step further, rather than 
modeling the possibly complex data-generating mecha-
nism, the data should be used to directly inform the deci-
sion making, as argued in [7], [8], and [9]. Of course, the 
“should” is debated. More concretely, the ultimate objec-
tive is the control policy, and often, it might be easier to 
learn a control policy than to learn a model. This catchy 
statement has often been voiced recently [10], and some 
historic examples include the widely deployed Ziegler–
Nichols PID tuning from a single system response [11] or 
finite-time optimal control design based on a few Mar-
kov parameters [12] or step responses [13]. Further, while 
persistence of excitation is a necessary identifiability 
condition in the indirect approach, unstable systems can 
sometimes be directly stabilized but not identified with 
limited data [14].

I close this point with a famous quote from [9]: “When 
solving a given problem, try to avoid solving a more gen-
eral problem as an intermediate step.” I also provide a 
simple disarming example: Consider asymptotic rejection 
of a constant disturbance. Indirect approaches require es-
timates of the model and the disturbance, whereas a direct 
approach is simply integral control.

LACK OF SEPARATION PRINCIPLE
In general, the indirect approach might be suboptimal since 
there is no separation principle between identification and 
control; that is, the best model fitting the data may not be 
the best model for the ultimate control task. For example, in 

classical frequency domain control, 
the dc gain and closed-loop bandwidth 
are often the two key control specifica-
tions, which should again inform at 
which frequencies to mainly identify 
the system. This lack of a separation 
principle stimulated many approaches 
blending the inner identification and 
outer control objectives, for example, 
dual control [15], [16], identification for 
control [17], [18], or approaches blend-
ing the identification and control objec-
tives [19], [20], [21], [22]. However, in 

indirect data-driven control

minimize control cost (u,y)

subject to trajectory (u,y) compatible with the model

where model e  argmin fitting criterion (ud, yd) 

subject to model belongs to a certain class

direct data-driven control
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FIGURE 1 Direct and indirect paths from input/output data (ud, yd) to deciding upon control 
and output trajectories u and y. In practice, the design is often iterative (that is, the diagram 
contains loops) and involves further processing steps, such as filtering of the raw data.
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some settings, indirect design via system identification is 
optimal, as discussed next.

ON SYSTEM IDENTIFICATION
The inner system identification problem serves two cru-
cial roles. First, system identification filters the data and 
reduces variance. If a parameterization of the data genera-
tion mechanism is known, an indirect approach based on 
maximum-likelihood estimation and certainty-equivalence 
design is optimal in mean square error [18] or regret metrics 
(for online LQR settings) [23]. Second, one can also interpret 
system identification as a projection of the data on a specific 
model class, which is either a priori known or obtained in 
preprocessing. Indeed, this innermost model selection step 
is often hard but injects prior knowledge, structure, and any 
sort of physical bias, such as stability, dissipativity, or posi-
tivity (see, for example, approaches on kernel-based system 
identification [24], [25], [26]).

Model selection is evidently absent in the direct approach, 
which makes it harder to include side information on the 
plant. Conversely, no bias error can be incurred due to an 
erroneously selected model class or inconsistent parameter 
estimates. While this is not a universal statement (for ex-
ample, some noniterative direct model reference approaches 
may also induce an undesired bias), it has been illustrated 
for specific settings in [27], [28], [29], [30]. In a nutshell, di-
rect approaches with imperfect learning can be more robust. 
Especially in adaptive control settings, it is argued that “the 
indirect approach [aiming at model matching] is motivated 
by optimality and the direct approach [aiming at output 
matching] is motivated by stability” [31]. However, obviously, 
no universal conclusions can be drawn for all methods, espe-
cially since the direct versus indirect distinction is blurry to 
begin with. In my opinion, the robustness and bias–vari-
ance tradeoffs of both approaches are still to be fully ex-
plored and quantified.

On a final note, system identification in practice is of-
ten an art and cumbersome and may require readaptation. 
Further, it is argued in [18] and confirmed by the author’s 
experience that the engineering cost due to modeling, iden-
tification, and (re)commissioning is significant. The indus-
trial report [32] bluntly concludes that “about the only place 
the cost of dynamic modeling is ever warranted is during 
MPC implementation.”

ON UNCERTAINTY
Let me quote [33]: “The most outstanding point of [direct] 
approaches is that the twinborn problem of unmodeled 

dynamics and robustness in traditional [model-based] the-
ory do not exist under [the direct] framework.” I illustrate 
this insight with an example: Consider a batch of noisy data, 
fed through nonconvex prediction error identification and 
yielding a nominal model of certain order together with 
a stochastic parametric uncertainty estimate accounting 
for both noise as well as unmodeled (for example, higher-
order) dynamics. In the indirect approach, these are then 
later used for optimal H∞-control subject to an unstruc-
tured worst-case uncertainty. Observe the twinborn prob-
lem of the control design having to be robust due to the 
model being only approximate. Further, in the indirect 
approach, uncertainty on the data needs to be propagated 
through the inner system identification problem, and the 
identification uncertainty estimates may be incompatible 
with the uncertainty quantification preferred for control 
design, as in the above example.

In comparison, direct approaches incorporate uncertain-
ty on the data directly in the control design [34], [35], [36], 
and they do so in a transparent way without propagating 
it through system identification or approximating uncer-
tainty estimates.

COMPLEXITY AND IMPLEMENTATION
There are many other arguments to be brought up. For 
instance, there is generally no winning approach in terms 
of “complexity”; that is, there are instances of both methods 
that are data-efficient (or wasteful), that are analytically (in)
tractable, that have (non)convex problem formulations, that 
can be carried out partially or entirely offline (online), that 
are easier (harder) to code or debug, and that require more 
or less human supervision.

While on the topic of implementation, the indirect ap-
proach is obviously modular with well-understood sub-
tasks, which makes it a reliable and interpretable building 
block in a layered architecture. This is in stark contrast to 
the monolithic nature of the direct approach. Researchers 
in academia, industry, and application domains are argu-
ing about the relative merits. For instance, in robotics, this 
dichotomy is often referred to as end-to-end versus a lay-
ered autonomy stack. Proponents argue in favor of either 
approach when it comes to implementations, suitability 
for complex specifications, and all of the previously listed 
topics. This debate is far from settled; it epitomizes the 
grand challenge of architecture selection [37], and the 
infamous middle road might be the best path forward (as 
shown in many robotics implementations blending both 
paradigms, for example, [38], [39]).

Compared with raw data, models are tidied-up representations, that is, 

compressed, denoised, and typically also approximate.
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THE ARTICLES OF THIS SPECIAL ISSUE
While all articles in this double special issue touch upon 
the direct versus indirect design questions from different 
perspectives, they also address numerous further chal-
lenges and all have their own unique foci. Specifically,  
in the present special issue, the articles focus on the 
informativity of data for different analysis and synthesis 
tasks and sample complexity estimates for identification 
and control, as well as automated tuning of hyperparame-
ters in data-driven control design.

The article by van Waarde et al. [A1] puts informativ-
ity of the data as the central concept. The authors are in-
terested in the setting when the data are not sufficiently 
informative to (uniquely) identify a system. Nevertheless, 
analysis tasks or control design can be carried out for all 
systems sets that are unfalsified by the data. For noise-free 
data, the approach leads to a robust theory for affine sets of 
systems, and for noisy data, the methods draw inspiration 
from classical robust control.

The article by Tsiamis et al. [A2] surveys recent ad-
vances in statistical learning theory relevant to control and 
system identification. The article focuses on nonasymptotic 
sample complexity estimates for linear system identifica-
tion and linear quadratic regulation leveraging modern 
tools from high-dimensional statistics and learning theory. 
The tutorial-style and self-contained presentation makes 
the topic accessible to control engineers. The article also 
outlines fruitful future directions.

Finally, the article by Breschi and Formentin [A3] addresses 
the challenges of automatically optimizing hyperparameters, 
that is, degrees of freedom whose tuning requires significant 
human expertise. The authors focus on direct data-driven 
control methods to showcase the potential and the limitations 
of automatic hyperparameter tuning, namely, virtual refer-
ence feedback tuning and data-driven predictive control. 
They illustrate their strategies with applications from the 
automotive domain.

SYNOPSIS
I hope to have illuminated the unsatisfying “it depends” 
answer to my opening question from sufficiently many 
angles, clarified a few of the paradigms and research gaps, 
and given food for thought for when to implement either 
approach. The articles of this special issue each have their 
own take on this question and develop a rich data-driven 
control theory. 

Let me conclude with a few personal thoughts. Sci-
ence and engineering based on traditional (that is, first- 

principle and parametric) models have brought us far,  
literally, to the moon and back. However, there are notori-
ously challenging problems with the traditional approach, 
and the impact of contemporary data-driven methods will 
be judged (among others) by whether they will overcome 
these challenges. For instance, can they take a stab at 
hard system classes (for example, nonlinear and infinite- 
dimensional), can they be implemented online with 
streaming data, and are there applications with a true 
business case for these methods?
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