
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

590 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 5, OCTOBER 2022

Generalized Superimposed Training for RIS-aided
Cell-free Massive MIMO-OFDM Networks

Hanxiao Ge, Navneet Garg, and Tharmalingam Ratnarajah

Abstract—In this paper, a generalized superimposed training
(GST) is proposed for an uplink cell-free multiple-input multiple-
output orthogonal frequency-division multiplexing (mMIMO-
OFDM) system, which is aided by reconfigurable intelligent
surfaces (RISs) to enhance the spectral efficiency in the system.
For the GST scheme, the pilots and data symbols are transmitted
simultaneously in the coherence time. This scheme is different
from traditional separate transmission methods, such as regular
pilots (RP) transmission. In the OFDM multi-carrier case, a part
of the subcarriers is based on the GST, whereas the other part
of subcarriers is used for data transmission only. The channel
and data estimations are carried out and the normalized mean-
squared error (NMSE), bit error rate (BER), and sum-rate in
different schemes are compared. Different receiver cooperation
levels are analyzed in this case, including fully centralized
processing and local processing. The distributed time processing
and iterative process are also used to improve the performance
of the data estimation in this system.

Index Terms—Cell-free, channel estimation, massive MIMO,
OFDM, RIS.

I. INTRODUCTION

CELL-FREE massive multiple-input multiple-output
(mMIMO) technology has obtained large attention in

the next generation mobile networks [1], which possesses
the advantages of traditional mMIMO systems or cellular
systems, especially in terms of the higher spectral efficiency
and coverage probability [2]. In a cell-free mMIMO system,
we consider multiple access points (APs) to serve multiple
users. There are one or more central processing units (CPUs)
in this system, which can process transmitted signals from
the APs fully or partially [3]. In [1], authors come up
with different levels of receiver cooperation to judge the
signals, including fully centralized and local processing. The
advantages of the cell-free system compared with the cellular
system are discussed in [3]. In the cell-free system, the
number of users is lower than the number of APs, to reduce
the pilot reuse and contamination. Performance analysis of
cell-free mMIMO (or cloud radio access networks) system
is given in [4] and [5]. Authors in [6] have introduced
the resource allocation. Low-resolution analog to digital
converters (ADCs) and zero-forcing (ZF) receivers are used
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in [2]. The total power minimization is carried out in the
cell-free mMIMO system [7].

Reconfigurable intelligent surface (RIS) is also widely used
that are equipped with a large number of reflective elements.
Each element can provide the phase shifts to the signals,
adjusted via the RIS controller. Because of the non-line-of-
sight (nLoS) component in the actual signal transmission, the
spectral and energy efficiencies are decreased. The utilization
of RIS can overcome this fact, as RIS elements can reflect
signals in a suitable direction. In [8] and [9], the basic
properties of RIS are analyzed. RIS is also used in ambient
backscatter systems [10]. Authors in [11] have introduced
semi-blind multiuser detection under the RIS.

Previously, authors in [12] and [13] have investigated the
integration of cell-free mMIMO systems and RIS. In their
systems, pilots and data symbols are transmitted with a single
RIS panel; that is very limited because the systems with
multiple panels can show the performance of the RIS-aided
system effectively. The works in [14] and [15] have discussed
the RIS-aided system with Rayleigh fading channel which
ignores that the line-of-sight (LoS), is often measured. Hence,
the Rician fading channel is more suitable in this case. Authors
in [16] and [17] have discussed the Rician fading channel in
a cell-free system, but not in the RIS-aided system.

Authors in [18]–[21] have combined the cell-free system
mMIMO system with orthogonal frequency-division multi-
plexing (OFDM) to support multiple subcarriers case. Due
to the excessively complex signal equalisation, it is difficult
to process the frequency-selective fading problem in channels
in a single subcarrier system, and therefore cannot sustain
a high data rate [19]. Hence, we need to use the OFDM
to cope with this problem. In a cell-free mMIMO-OFDM
system, frequency selectivity can be eliminated by exploiting
frequency-domain orthogonal pilots [20]. However, the OFDM
is hardly employed in RIS-aided systems.

Note that many previous researches are based on the regu-
lar pilots (RP) transmission. Works [22]–[24] introduced the
principles of RP transmission. In this scheme, pilots and data
symbols are transmitted separately, and the coherence time
T = τp + τd, where τp is the time slot for pilots transmission
and τd is for data transmission. However, when the number
of users increases, pilot reuse will become more severe and
lead to pilot contamination. In [25]–[28], authors use the
superimposed training (ST) scheme to cope with this problem
by reducing the probability of pilot reuse, since T pilots are
available and T > τp. The performance of ST in reducing pilot
contamination is limited because the length of data symbols is
fixed. The standard ST scheme is used in some OFDM-related
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works, such as [29]–[32]. Authors in [3], [33]–[37] use the
generalized superimposed training (GST) scheme to analyze
the performance of mMIMO or cell-free mMIMO systems.
Pilots contamination can be reduced effectively by adjusting
the number of data streams to get better channel and data
estimation performance. However, the GST scheme has not
been used in the RIS-aided cell-free mMIMO-OFDM system.

Only a few of works discuss CPU processing or fully
centralized processing (cooperation level 4 in [1]), and many
of them are based on no-cooperation (signals are processed
at local APs). However, signals processed by the CPU can
reduce the channel estimation normalized mean-squared error
(NMSE), bit error rate (BER), and increase the sum-rate.
Hence, we also use CPU processing in the analysis of the
RIS-aided systems.

A. Contributions

In this paper, we consider a RIS-aided cell-free mMIMO-
OFDM system. The GST scheme is used in this system and
to carry out the channel and data estimation. The receiver
cooperation has four levels [1]. We compare the receiver
cooperation in level 4 (fully centralized processing or CPU
processing) and level 1 (local processing). The phase shifts
coefficient in the RIS panel is also important, because the
optimal phase can help us lower channel estimation NMSE
and improve sum-rate effectively. Hence, we need to carry
out the optimization of the RIS phase coefficient. The main
contributions of our works are as follows.

1) GST scheme in RIS-aided systems: We propose the GST
scheme in the RIS-aided cell-free mMIMO-OFDM system
and then carry out the channel and data estimation. The
distributed time processing and iterative process have been
used to improve the data estimation performance.

2) Comparsion of cooperation levels in RIS-aided system:
We discuss the receiver cooperation levels in our work. Our
results show that fully centralized processing can realize better
estimation performance compared with local processing. These
results show that if signals transmitted by users are fully
processed by the CPU, other than the local AP, pilot reuse
and contamination can be reduced effectively.

3) Simulations and comparison: We compare the perfor-
mance of GST, ST, and RP schemes in channel and data
estimations, show that the GST scheme can reduce the NMSE
and improve the sum-rate. We compare the average NMSE
when we choose the optimal RIS phase, and non-RIS (tradi-
tional cell-free) in the system. We use the OFDM (multiple
subcarriers case) and show the advantages of the GST scheme
in reducing pilot contamination. We also plot the mean-
squared error (MSE) for data estimates versus the number of
iterations and show that the iterative process can improve the
data detection performance.

B. Organization

Section II describes the system model of the RIS-aided
cell-free mMIMO system and the process of OFDM and the
equations of the systems in the multiple subcarriers form.
Section III shows the process of channel estimation and data

Fig. 1. Structure of the RIS-aided cell-free mMIMO system.

detection in local processing, and we derive equations of the
channel estimation NMSE and the signal-to-interference-plus-
noise ratio (SINR). Section IV provides the process of channel
and data estimation in centralized processing, followed by the
analysis of the ST and RP schemes in Section V. In Section
VI, we analyze the process of the time distribution and the
iterative process. We give our simulation results in Section
VII, and the conclusion in VIII.

C. Notations

Scalars, vectors, and matrices can be represented by the
lower case (a), lower case bold face (a), and upper case
bold face (A). The Hermitian can be represented by (.)H

and the transpose can be written as (.)T . The conjugate can
be given as (.)∗. The l2 norm and Frobenious norm can be
represented by ∥.∥ and ∥.∥F respectively. Finally, mod(., .) is
the modulus operation and ⌊.⌋ denotes truncated argument.
D(A) and BD(A1,A2) yield a vector of diagonal entries of
the argument, and the block diagonal matrix.

II. SYSTEM MODEL

In a given geographical region, we consider a RIS-aided
cell-free mMIMO-OFDM system with L APs, which serve K
single antennas users, and each AP has M antennas. Let V as
the number of RIS panels in this region and each panel has
Q elements. For each RIS panel, the direct link connects user
k and AP l. Besides, the indirect link is from user k to AP l
through RIS panel v.

We use the OFDM in this system with Ns subcar-
riers and the coherence time is T in samples, where
T > K. The transmitted signal are denoted by Xk =[
xk(0),xk(1), · · ·,xk(Ns − 1)

]
∈ CT×Ns . The local channel

matrix is Ukl = BD
[
ukl(0),ukl(1), · · ·,ukl(Ns − 1)

]
∈

CMNs×Ns . In order to obtain the OFDM symbol, the trans-
mitted block signals are fed into an inverse discrete Fourier
transform (IDFT). The output of the IDFT is then cycled in
order to reduce intersymbol interference (ISI) and add a guard
interval. After signals have been conveyed across multipath
channels, the guard interval needs to be removed, and the
discrete Fourier transform needs to be performed (DFT) [19],
[38]. We assume that the length of the cyclic prefix (CP) is
larger enough to ignore the timing and frequency offset.
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TABLE I
LIST OF VARIABLES.

Variables Desciption
L(l) Number of APs
M(m) Number of antennas at each AP
K(k, j) Number of users
d Number of data streams
T (t) Number of coherence time slots
τp, τd Time to transmit pilots and symbols

in the RP scheme
b Number of discarded columns from

a T × T orthonormal matrix
Ns Number of subcarriers
Fmax Maximum number of iterations
V (v) Number of RIS panels
Q(q) Number of elements at RIS panels
pk,Sk, sk(n),Zk k-th pilot, data symbol and precoder
Xk,xk(n) k-th transmitted symbol
λ ∈ (0, 1) Power-allocation factor
λ
′

Wavelength
Z,Zk 2-dimensional set and its first projection

for ZH
j pk ,∀j ̸= k

ukl(n),uk(n) Local and centralized channel for
each subcarrier

ûkl(n), ûk(n) Local and centralized estimated channel for
each subcarrier

a Transmitted power per time slot
βkl, Rkl,hkl(n) User-AP path loss, Rician factor, channel,
gkl(n), g̃kl(n) constant and random parts
αkv , ωkv , tkv(n) User-RIS path loss, Rician factor, channel,
mkv(n), m̃kv(n) constant and random parts
ηvl, evl,Evl(n) RIS-AP path loss, Rician factor, channel,
Gvl(n), G̃vl(n) constant and random parts
Φv , ϕvq Diagonal matrix of phase shift ϕvq

aM (θ, ϕ),aQ(θ, ϕ) Steering vectors of antenna arrays
and RIS panels

rm 3-dimensional location of the m-th antenna
C

(u)
kl (n),R

(u)
kl (n), Variance and correlation matrices of

C
(u)
k (n),R

(u)
k (n) ukl(n) and uk(n)

R
(∆)
kl (n),R

(∆)
k (n) Correlation matrices of ∆kl(n) and ∆k(n)

R
(Z)
k,ij(n) Correlation matrix of ZH

k xi(n)x
H
j (n)Zk

Ŝkl, ŝkl(n), Ŝk, ŝk(n) Data estimates for local and centralized
processing

Yl(n),Y(n) Received signal at the local AP and CPU
Nl(n),N(n) Noise at the local AP and CPU
∆kl(n),∆k(n) Channel estimation error for local and

centralized processing
ukl(n), ũkl(n) Constant and random parts of ukl(n)

ûkl(n), ˜̂ukl(n) Constant and random parts of ûkl(n)

A. Operating Processes

In this work, we discuss two levels of receiver coopera-
tion (fully centralized processing and local processing). The
operating processes of them are

1) Local processing: Users transmit signals to local APs,
and APs process the signal directly, without transmitting to
the CPU.

2) Fully centralized processing: APs do not process the
signal at this level, and they transmit signals to the CPU. The
CPU can process the collective signals from all APs.

B. Local Processing

For this cooperation level, users transmit signals to dis-
tributed local APs and local APs process signals directly, rather
than transmit these signals to the central CPU.

In [1], cooperation level 1 means all signals are processed
at the AP, rather than the CPU. In this case, the whole channel
(including direct and indirect links) in the subcarrier n is

ukl(n) = hkl(n) +

V∑
v=1

Evl(n)Φvtkv(n), (1)

where hkl(n) ∈ CM×1 is the direct channel from user k to
AP l; Evl(n) ∈ CM×Q is the channel matrix from the v-th
RIS to the l-th AP; tkv(n) ∈ CQ×1 is the channel vector from
the k-th user to the v-th RIS; Φv = diag(ϕv1, · · ·, ϕvQ) is the
matrix of phase shifts of the v-th RIS; and, ϕvq is the phase
of the q-th element in the v-th RIS and |ϕvq| = 1,∀v, q [36].
Hence, the received signal at the AP l in subcarrier n is

Yl(n) =
√
a

K∑
k=1

ukl(n)x
H
k (n) +Nl(n), (2)

where xk(n) ∈ CT×1 is the transmitted signal in n-th
subcarrier and Nl(n) ∈ CM×T ∼ CN (0, σ2IM ) is the noise
at the l-th AP, where σ is the standard deviation of the noise
amplitude; a is the transmitted power per time slot.

1) Channel model for user to AP (direct link): The mult-
path channel of direct link from user k to AP l can be given
in terms of the Rician fading as

hkl(n) =
√
βkl

√
Rklgkl(n) + g̃kl(n)√

Rkl + 1
, (3)

where βkl are the large-scale fading coefficient for channel
hkl(n) in n-th subcarrier; Rkl being the Rician factor; if
the Rician fading increases, the channel will become more
deterministic. gkl(n) = aM (θg,kl, ϕg,kl) ∈ CM×1 is the LoS
part; (θg,kl, ϕg,kl) are azimuth and elevation angles at the l-th
AP; g̃kl(n) ∼ CN (0, IM ) is the nLoS part.

The steering vector of an M -element antennas planar array
is [39]

aM (θ, ϕ) =
[
e−jrT1 k(θ,ϕ), · · ·, e−jrTMk(θ,ϕ)

]T
, (4)

where the angles θ, ϕ ∈
[
− π

2 ,
π
2

]
; k(θ, ϕ) =

2π
λ′

[
cos(θ)cos(ϕ), cos(θ)sin(ϕ), sin(θ)

]T
; λ

′
is the wavelength.

The vector rm (for each m = 1, · · ·,M ) describes the 3-
dimensional location of the m-th antenna element as

rm =
[
mod(m− 1,MH)d

′

H , 0, ⌊(m− 1)/MH⌋d
′

V

]T
, (5)

where MH and MV are the number of antenna elements in
horizontal and vertical directions; d

′

H and d
′

V are the inter-
element distances in both directions.

2) Channel model for user to RIS: The channel from user
k to RIS v is

tkv(n) =
√
αkv

√
ωkvmkv(n) + m̃kv(n)√

ωkv + 1
, (6)

where αkv is the large scale-fading coefficient; wkv is the
Rician factor; mkv(n) = aQ(θu,kv, ϕu,kv) ∈ CQ×1 is the LoS
component and m̃kv(n) is the nLoS component.



GE et al.: GENERALIZED SUPERIMPOSED TRAINING FOR RIS-AIDED ... 593

3) Channel from RIS to AP: The channel matrix from RIS
panel to AP in n-th subcarrier can be expressed as

Evl(n) =
√
ηvl

√
evlGvl(n) + G̃vl(n)√

evl + 1
, (7)

where ηvl is the large-scale fading coefficient; evl is the
Rician factor; Gvl(n) = [aM (θF,vl, ϕF,vl)a

H
Q (θE,vl, ϕE,vl)] ∈

CM×Q is the LoS and G̃vl(n) is the nLoS component.

C. CPU Processing

For this cooperation level, after distributed local APs receive
signals from users, then APs transmit signals to the CPU. The
CPU processes collective signals from local APs.

In level 4 cooperation, signals are processed at the CPU,
other than the local APs. The collective received signal from
all APs can be expressed as

Y(n) = [YT
1 (n), · · ·,YT

L(n)]
T =
√
a

K∑
k=1

uk(n)x
H
k (n)+N(n),

where n = 0, · · ·, Ns − 1; the centralized noise is N(n) =
[NT

1 (n), · · ·,NT
L(n)]

T ∈ CLM×T ; the centralized channel
uk(n) = [uT

k1(n), · · ·,uT
kL(n)]

T ∈ CLM×1.
In the OFDM transmission, the received signal at the CPU

is Y =
[
YT (0),YT (1), · · ·,YT (Ns − 1)

]T ∈ CLMNs×T ,
and the noise N =

[
NT (0),NT (1), · · ·,NT (Ns − 1)

]T ∈
CLMNs×T [21].

D. GST Symbols

At the k-th user, the transmitted signal for both channel
estimation and data estimation in n-th subcarrier is

xk(n) =

{ √
λpk +

√
1− λZksk(n), ∀n ∈ ξ

Zksk(n), otherwise,
(8)

where ξ is the index set of subcarriers on which both data
symbols and pilots are transmitted; λ ∈ (0, 1) is the pilot
power-allocation factor. pk is the T × 1 pilot vector; Zk is
the T × d orthogonal precoder matrix; b is the number of
discarded columns from a T × T orthonormal matrix, where
d = T − b; sk(n) denote the d × 1 data symbol vector in
n-th subcarrier. The power of the transmitted GST symbols is
E{∥xk(n)∥22} = T . ZH

k pk = 0 and pH
k pk = T , because Zk

and pk are from the same orthogonal matrix. As for ZH
j pk,

it can be written as

ZH
j pk =

{
Te(k,j), (k, j) ∈ Z
0, otherwise,

(9)

where Z = {1, · · ·,K}2; Z = {(k, j) : Zk ̸= pj ,∀j =
1, · · ·, T − b}. ek,j is a vector of zeros and ones, and the no-
tation (k, j) denotes the location of those ones [33]. If k ̸= j,
we can get the precoder matrices product as ZH

k Zj = TF[k,j],
where Fr is the matrix whose rank is s and it has s ones and all
the other elements are zero. The rank rk,j of the matrix F[k,j]

represents the number of matching columns of Zk and Zj . For
k = j, F[k,j] = IT−b, and ZH

k pk = 0, and E{sksHk } = 1
dId.

Algorithm 1 Local sum-rate calculation algorithm

1: Optimize the Φv .
2: for n = 0, · · ·, Ns − 1 do
3: for k = 1, · · ·,K do
4: Get Yl(n) for each subcarrier.
5: Compute and update channel estimation ûkl(n).
6: Update data estimation ŝkl(n).
7: Update Pkl,s(n), Pkl,SI(n), Pkl,CI(n), Pkl,N (n).
8: Calculate SINR ρkl(n) and sum-rate Rkl(n).
9: end for

10: end for

III. SIGNAL PROCESSING AT LOCAL APS

To carry out the useful channel estimation, the number of
equations (MT ) must meet the following condition, that is,

MK +Kd ≤MT, (10)

where MK and Kd means the number of channel and data
variables. If this condition do not meet, there will lead to
severe pilot contamination in the system [34]. For example,
if T = 6 and K = 3, d ≤M( T

K − 1) = M ; for M = K, we
have d ≤ T −K.

A. Channel Estimation

To measure the pilot contamination, we need to carry out
the channel estimation and get the NMSE.

1) Subcarriers in the set ξ: In n-th subcarrier, the esti-
mated channel can be derived by using the least-squares (LS)
criterion as

ûkl(n) =
Yl(n)pk

T
√
aλ

=ukl(n) + ∆kl(n),∀n ∈ ξ

(a)
=ukl(n) +

∑
j∈∁k\{k}

ujl(n)

+

√
1− λ

λ

∑
j∈Zk

ujl(n)s
H
j (n)ek,j +

Nl(n)pk

T
√
aλ

(b)
=ukl(n) + ∆kl(n),

(11)
where ∆kl(n) is the local channel estimation error for each
subcarrier; ∁k\{k} is the sets of users who use the same pilots;
Zk = {j|∥ZH

j pk∥ = T, ∀j ̸= k}. The last three terms of (a)
includes the pilot reuse and the noise. Hence, if these terms
part increases, the channel estimation error will become large.

2) Subcarriers not in the set ξ: If the subcarrier is not in the
set ξ, we could not use the LS method directly because there
is no pilots in the subcarriers. We use the spline interpolation
to get the estimated channel.



594 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 5, OCTOBER 2022

3) NMSE calculation: For n ∈ ξ, the mean of the error in
each subcarrier ∆kl(n) = E{∆kl(n)} =

∑
j∈∁k\{k} ujl(n),

where ujl(n) is the LoS part of the channel ujl(n). The
channel estimation mean-squared error (MSE) is

E{∆H
kl(n)∆kl(n)} =

∑
j,i∈∁k\{k}

E{uH
il (n)ujl(n)}

+
1− λ

λd

×
∑
j∈Zk

∑
i∈Zk

E{uH
il (n)ujl(n)}

+
Mσ2

Taλ

=
∑

j,i∈∁k\{k}

uH
il (n)ujl(n)

+
1− λ

λd

∑
j∈Zk

uH
jl (n)ujl(n)

+
∑

j∈∁k\{k}

C
(u)
jl (n)

+
1− λ

λd

∑
j∈Zk

C
(u)
jl (n) +

Mσ2

Taλ
,

(12)

where C
(u)
jl (n) is the variance of the ujl(n), which is

C
(u)
jl (n) =E{[ujl(n)− ujl(n)]

H [ujl(n)− ujl(n)]}

=
Mβjl

Rjl + 1
+

V∑
v=1

MηvlαjvQ

evl + 1

+

V∑
v=1

ηvlevl
evl + 1

αjv

ωjv + 1
tr[G

H

vl(n)Gvl(n)].

(13)

The trace of the correlation matrix of ujl(n) is

tr[R
(u)
jl (n)] =E{uH

jl (n)ujl(n)}

=uH
jl (n)ujl(n) + C

(u)
jl (n).

(14)

The NMSE is used to describe the performance of the
channel estimation (for all subcarriers) as NMSEkl =∑

n
E{∆H

kl(n)∆kl(n)}
E{uH

kl(n)ukl(n)}
,∀n.

B. Phase Shifts Optimization

We need to choose the optimal RIS phase. RIS panels can
reflect beams to different directions, We assume that Q(n) =

G
H

vl(n)Gvl(n) and K(n) = mkv(n)m
H
kv(n) (G and m are

the LoS parts of Evl(n) and tkv(n) and carry out RIS values
optimization by minimizing the MSE.

Lemma 1: The MSE minimization problem solution is

argmin
|ϕvq|=1,∀v,q

tr(E{∆kl(n)∆
H
kl(n)})

=
Vmin

[
Q(n)⊙K

T
(n)

]
|Vmin

[
Q(n)⊙K

T
(n)

]
|
,∀v,

(15)

where Vmin is the eigenvector of Q(n)⊙KT
(n). The derivation

process is given in the Appendix-A.

C. Data Estimation

After the channel estimation, we carry out the data estima-
tion by using the LS criterion and to analyze the data errors
and calculate the rate.

1) Subcarriers in the set ξ: We use the LS criterion to
calculate the local data estimates as

ŝkl(n) = arg min
sk(n)

∥Yl(n)−
√
a(1− λ)ûkl(n)s

H
k (n)ZH

k ∥2F

(a)
=ZH

k YH
l (n)

ûkl(n)

∥ûkl(n)∥22
1

T
√
a(1− λ)

(16a)

(b)
=

[
T
√
a(1− λ)sk(n)u

H
kl(n) +

√
a
∑
i ̸=k

ZH
k xi(n)u

H
il (n)

+ ZH
k NH

l (n)

]
ûkl(n)

∥ûkl(n)∥22
1

T
√

a(1− λ)
(16b)

(c)
=sk(n) + sk(n)

(
uH
kl(n)ûkl(n)

∥ûkl(n)∥22
− 1

)
︸ ︷︷ ︸

self-interference

+
∑
i ̸=k

ZH
k xi(n)

T
√
1− λ

uH
il (n)ûkl(n)

∥ûkl(n)∥22︸ ︷︷ ︸
cross-interference

(16c)

+
ZH

k NH
l (n)ûkl(n)

T
√
a(1− λ)∥ûkl(n)∥22

. (16d)

The above equation includes the actual data symbol and
the noise and the interference component. We could write
power equations of the transmitted signal, self-interference
(SI), cross-interference (CI) and the local noise by multiplying
∥ûkl(n)∥22 in each term as

Pkl,s(n) = E
∥∥∥∥ûkl(n)∥22sk(n)

∥∥∥2
2
= E∥ûkl(n)∥42 · E∥sk(n)∥22,

(17)

Pkl,SI(n) = E
∥∥∥sk(n)[uH

kl(n)ûkl(n)−ûH
kl(n)ûkl(n)]

∥∥∥2
2
, (18)

Pkl,CI(n) =
1

1− λ
E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
il (n)ûkl(n)

∥∥∥2
2
, (19)

Pkl,N (n) = E
∥∥∥ZH

k NH
l (n)ûkl(n)

T
√
a(1− λ)

∥∥∥2
2
. (20)

2) Subcarriers not in the set ξ: Since xk(n) = Zksk(n),
the estimated data can be given as

ŝkl(n) =sk(n) + sk(n)

(
uH
kl(n)ûkl(n)

∥ûkl(n)∥22
− 1

)
︸ ︷︷ ︸

self-interference

+
∑
i ̸=k

ZH
k xi(n)

T

uH
il (n)ûkl(n)

∥ûkl(n)∥22︸ ︷︷ ︸
cross-interference

+
ZH

k NH
l (n)ûkl(n)

T
√
a∥ûkl(n)∥22

.

(21)

The power of SI and the signal remains unchanged, and the
power equations of CI and the noise can be updated as
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Pkl,CI(n) = E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
il (n)ûkl(n)

∥∥∥2
2
, (22)

Pkl,N (n) = E
∥∥∥ZH

k NH
l (n)ûkl(n)

T
√
a

∥∥∥2
2
. (23)

3) Local sum-rate calculation: The local SINR can be
expressed as

SINRkl(n) =
Pkl,s(n)

Pkl,SI(n) + Pkl,CI(n) + Pkl,N (n)
. (24)

We can use the SINR equation to get the local sum-rate
Rl(n) =

∑
k log2[1 + SINRkl(n)]. The whole process of

calculating the sum-rate is like Algorithm 1. The sum-rate for
all subcarriers can be written as Rl =

∑
nRl(n).

IV. SIGNAL PROCESSING AT THE CPU
For the valid channel and data estimation at the CPU, the

system need meet the essential condition as

MLT ≥ KM +Kd, (25)

where MLT is the number of observations and the KM and
Kd are the number of channel and data estimates of K users.
For example, for T = 10 and K = 5, d ≤ MLT

K − M =
M(2L − 1). Fully centralized processing can increase the
allowable number of data streams per user in the system by a
factor of

LT
K −1
T
K −1

≈ L. If ML = K, d ≤ T − K
L .

A. Channel Estimation
If all the signals are processed at the CPU, the central-

ized estimated channel from all APs in each subcarrier can
be written as ûk(n) = [ûT

k1(n), · · ·, ûT
kL(n)]

T ∈ CLM×1.
The channel estimation mean-squared error (MSE) can be
calculated as E

{
∆H

k (n)∆k(n)
}

=
∑

l E
{
∆H

kl(n)∆kl(n)
}

.
The NMSE at the CPU can be given as NMSEk =∑

n

∑
l E
{
∆H

kl(n)∆kl(n)
}

∑
l E
{
uH

kl(n)ukl(n)
} ,∀n.

B. Data Estimation
Like the local processing, data estimation can be carried out

by using the LS criterion in the centralized processing level
after the channel estimation.

1) Subcarriers in the set ξ: Towards the data detection in
fully centralized processing, the data estimates via LS can be
given as

ŝk(n) =sk(n) + sk(n)

(
uH
k (n)ûk(n)

∥ûk(n)∥22
− 1

)
︸ ︷︷ ︸

self-interference

+
∑
i̸=k

ZH
k xi(n)

T
√
1− λ

uH
i (n)ûk(n)

∥ûk(n)∥22︸ ︷︷ ︸
cross-interference

+
ZH

k NH(n)ûk(n)

T
√
a(1− λ)∥ûk(n)∥22

.

(26)

Theorem 1: Like the previous method, we could also write
power equations in each term in centralized processing as

Pk,s(n) = E
∥∥∥∥ûk(n)∥22sk(n)

∥∥∥2
2
= E∥ûk(n)∥42 · E∥sk(n)∥22,

(27)

Pk,SI(n) = E
∥∥∥sk(n)[uH

k (n)ûk(n)− ûH
k (n)ûk(n)]

∥∥∥2
2
, (28)

Pk,CI(n) =
1

1− λ
E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
i (n)ûk(n)

∥∥∥2
2
, (29)

Pk,N (n) = E
∥∥∥ZH

k NH(n)ûk(n)

T
√
a(1− λ)

∥∥∥2
2
. (30)

2) Subcarriers not in the set ξ: As x(n) = Zksk(n), the
estimated data can be rewritten as

ŝk(n) =sk(n) + sk(n)

(
uH
k (n)ûk(n)

∥ûk(n)∥22
− 1

)
︸ ︷︷ ︸

self-interference

+
∑
i ̸=k

ZH
k xi(n)

T

uH
i (n)ûk(n)

∥ûk(n)∥22︸ ︷︷ ︸
cross-interference

+
ZH

k NH(n)ûk(n)

T
√
a∥ûk(n)∥22

.

(31)

As the signal and the self-interference keep remained, we
can only change the equation of the cross-interference and
noise as

Pk,CI(n) = E
∥∥∥∑

i̸=k

ZH
k xi(n)

T
uH
i (n)ûk(n)

∥∥∥2
2
, (32)

Pk,N (n) = E
∥∥∥ZH

k NH(n)ûk(n)

T
√
a

∥∥∥2
2
. (33)

3) Sum-rate calculation: For all subcarrers (n ∈ ξ or n /∈
ξ), the centralized SINR can be given as

SINRk(n) =
Pk,s(n)

Pk,SI(n) + Pk,CI(n) + Pk,N (n)
. (34)

We can use the SINR equation to get the local sum-rate
Rk(n) =

∑
k log2[1 + SINRk(n)], the sum-rate for all

subcarriers can be given as R =
∑

nRk(n).
As for the centralized processing, we can write the collective

estimated data symbol in terms of the local case as

ŝk(n) =
∑
l

ûH
kl(n)ûkl(n)∑
l û

H
kl(n)ûkl(n)

ŝkl(n). (35)

We write the whole estimated data symbols matrix for all
subcarriers as Ŝk = [ŝk(0), ŝk(1), · · ·, ŝk(Ns − 1)] ∈ Cd×Ns .

V. COMPARISION OF ST AND RP SCHEMES

In this section, we will introduce the standard ST and RP
schemes, and derive equations of transmitted symbols xk(n)
and estimated data symbols ŝk(n) for comparison.
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A. ST Scheme

In the standard ST scheme, we also transmit data symbols
and the pilots at the same time [40]. The differences between
this scheme and the GST scheme is that the ST scheme does
not have a variable data length, and the precoder Fk is a T×T
matrix. The number of data streams d = T . The transmitted
signal can be expressed as

xk(n) =

{ √
λpk +

√
1− λFksk(n), ∀n ∈ ξ

Fksk(n), otherwise,
(36)

where E{sk(n)sHk (n)} = 1
T IT . For the ST scheme, we could

write the channel estimation error equation when n ∈ ξ as

∆kl(n) =
∑

j∈∁k\{k}

ujl(n) +

√
1− λ

λ

∑
j ̸=k

ujl(n)s
H
j (n)Fkpk

+
Nl(n)pk

T
√
aλ

.

(37)
For local processing, we need to meet the essential condition

as MT ≥ KM+KT , and for centralized processing, we need
meet MLT ≥ KM + KT . For n ∈ ξ, the centralized data
estimate can be written as

ŝk(n) =
YH(n)ûk(n)

∥ûk(n)∥22
1

T
√
a(1− λ)

. (38)

Same as the GST scheme, we can rewrite the estimated data
when n /∈ ξ as

ŝk(n) =
YH(n)ûk(n)

∥ûk(n)∥22
1

T
√
a
. (39)

B. RP Scheme

For the RP scheme, we transmit the pilots and the data
symbols separately. We assume that the coherence time T =
τp + τd, where τp and τd are the time to transmit the pilots
and the data symbols [34] and [3]. We need to set τp > K to
prevent the pilot reuse. We can write the transmitted signal as

xk(n) =

{
pk

√
λT
τp

, ∀n ∈ ξ
√
TVksk(n), otherwise,

(40)

where Vk is a τp × d precoding matrix; ∥Vk∥2F = d and
E{sk(n)sHk (n)} = 1

dId; pk is a τp×1 vector in the RP scheme.
When n ∈ ξ, there is no data symbol transmitted in the

system. For n /∈ ξ, we could write the estimated data for the
RP scheme as

ŝk(n) = VH
k YH(n)

ûk(n)

ûH
k (n)ûk(n)

1√
aT

. (41)

C. Comparison of GST with Other Schemes

These schemes can be compared in terms of sum-rate and
NMSE in local and centralized processing. The training time
for the RP scheme is τp and for the GST and ST scheme is
T . Because of T > τp, the pilot contamination effect can be
limited and the NMSE can be reduced.

The number of data streams for the ST scheme is T , and
for the GST and RP schemes is d. Hence, the probability of
generating the data errors in the ST scheme is larger than in
the other schemes because of T ≥ K + d in local processing
and T ≥ K

L + d in centralized processing, which leads the
decrease of the sum-rate in the ST scheme.

D. Comparison with Other Cooperation Levels

1) Level 3: local processing and large-scale fading de-
coding: The data estimates of the centralized processing can
be regarded as the linear summation of the local processing.
Hence, data estimates can be calculated locally and then sent
to the CPU. We do not need to transmit channel estimates
from APs to the CPU and then carry out the data estimation
[1] and [35].

2) Level 2: local processing and centralized decoding: The
requirements of cooperation should be relaxed by averaging
the linear combing. In this cooperation level, each AP transmit
the value ŝkl(n) × ∥ûkl(n)∥2/M , rather than ŝkl(n), which
aggregates at the CPU as

1

M

L∑
l=1

ŝkl(n)∥ûkl(n)∥2 = ŝk(n)×
∥ûkl(n)∥2

M
. (42)

VI. DISTRIBUTED TIME PROCESSING AND ITERATIONS

Distributed time processing is used to reduce computing
complexity at the conclusion of the coherence time block,
allowing the received symbols to be evaluated as they come
in and the final detection to be made once all of the symbols
have been received. We also employ an iterative technique to
boost the effectiveness of data estimate.

A. Distributed Time Processing

In this GST scheme, for the received signal in central-
ized processing Y spans for T slots, let the received signal
Y(n) = [y(n, 1), · · ·,y(n, T )]. For n ∈ ξ, the channel estima-
tion equation at the end of the time T is [34]

ûk(n, T ) =
Y(n)pk

T
√
aλ

=
1

T
√
aλ

T∑
i=1

y(n, i)pk(i), (43)

where pk(i) ∈ C is the i-th entry of the T × 1 pilot vector.
For distributed time processing at the CPU, we can update the
channel estimate as

ûk(n, t+ 1) =
1

T
√
aλ

t+1∑
i=1

y(n, i)pk(i)

=

∑t
i=1 y(n, i)pk(i) + y(n, t+ 1)pk(t+ 1)

T
√
aλ

= ûk(n, t) +
y(n, t+ 1)pk(t+ 1)

T
√
aλ

.

(44)
For the data estimation, we could also write the similar

equation as
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Algorithm 2 Algorithm of distributed time processing and
iterative processing

1: Initialize the estimated channel ûk(n, 0) = 0, and esti-
mated symbols ŝk(n, 0) = 0,∀k.

2: for t = 1, · · ·, T
3: Receive observations y(n, t) from the CPU.
4: for iter= 1, · · ·, Fmax
5: Compute and update ỹk(n, t).
6: Compute and update the channel estimate ûk(n, t),

for n /∈ ξ, use the spline interpolation.
7: Update the data estimate ŝk(n, t).
8: end for
9: end for

ŝk(n, T ) = ZH
k YH(n)

ûk(n, T )

∥ûk(n, T )∥22
1

T
√
a(1− λ)

=

T∑
i=1

zk(i)y
H(n, i)

ûk(n, T )

∥ûk(n, T )∥22
1

T
√
a(1− λ)

,

(45)
where ZH

k = [zHk (1), · · ·zHk (T )]. For n /∈ ξ case, the channel
estimation can be carried out by the spline interpolation.

B. Iterative Estimation Process

From the above equations, we find that the data estimation
performance depends on the channel estimation. We use an
iterative channel and data estimation to decrease the data
estimation MSE. For n ∈ ξ, the channel estimates can be
updated as

ûk(n)←
Ỹk(n)pk

T
√
aλ

, (46)

where the matrix Ỹk(n) = Y(n) −
∑

i ̸=k ûi(n)x̂
H
i (n) =

[ỹk(n, 1), · · ·, ỹk(n, T )]. The update at the slot t can be
expressed as

ûk(n, t)← ûk(n, t− 1) +
ỹk(n, t)pk(t)

T
√
aλ

, (47)

where ỹk(n, t) = y(n, t)−
∑

i ̸=k ûi(n, t)x̂
∗
i (n, t), and x̂i(n, t)

is

x̂i(n, t) =

{ √
λpk(t) +

√
1− λzk(t)ŝk(n), ∀n ∈ ξ

zk(t)ŝk(n), otherwise.
(48)

The estimated data symbol is

ŝk(n, T )← ZH
k ỸH(n)

ûk(n, T )

∥ûk(n, T )∥22
1

T
√
a(1− λ)

. (49)

The procedures of the distributed time processing and
iterative estimation are given in Algorithm 2, where Fmax be
the maximum number of iterations.
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Fig. 2. Channel estimation NMSE versus λ in different training schemes with
the optimal RIS phase (T = 7,K = 5, d = 2, SNR = 5 dB, τp = 2, and
κ = 2).

VII. SIMULATION RESULT

We consider L = 100 APs which has M = 4 antennas
in form of 2 × 2 planar array. There are V = 2 RIS panels
and each panel has Q = 100 elements in form of 10 × 10
planar array. We use the OFDM modulation and the number
of subcarrier is Ns = 64. The large-scale fading coefficient
is 10−U/10

µδ , where µ is the distance between user, RIS and
APs in a 2-dimensional area with uniform distribution. δ is
the path loss exponent; Our chosen channels are based on the
Rician fading and Rician factor is R = 10 for each channel;
We choose U = 26 dB, δ = 2.2 for the direct links, and
U = 28 dB, δ = 3.67 for the indirect links. When we plot the
figures of NMSE, BER and sum-rate, ξ is the index set only
with odd numbers between 0 and Ns − 1. Meanwhile, κ = 2
is the pilots’ interval.

A. Channel Estimation NMSE

In Fig. 2, we plot the NMSE in the RIS-aided cell-free
mMIMO-OFDM system, both in CPU processing and local
processing with the optimal RIS phase. We assume that the
noise is Gaussian distributed and σ2 = 1.

We compare the GST, ST, and RP cases in channel estima-
tion performance, both in centralized processing and local pro-
cessing. We find that GST can reduce the channel estimation
NMSE effectively (almost 50% lower than the ST scheme and
98.3% at most than the RP scheme). This concludes that the
GST scheme can improve the channel estimation performance
obviously. The value of NMSE is possibly larger than one
because of the pilot reuse.

Besides, we compare the effects of RIS panels in the channel
estimation. We choose RIS-aided systems with the optimal
phase and the system without RIS (the traditional cell-free
system), to see the average NMSE in these cases like Fig. 3.
The results show that the RIS-aided system with the optimal
phase can reduce the NMSE effectively. The NMSE increases
when the number of users increases, which means that the
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pilot reuse and contamination will become severe if more users
transmit signals in the system.

For the channel estimation NMSE in different cooperation
levels, we conclude that centralized processing can reduce the
pilot reuse and improve the channel estimation performance
better than local processing at APs.

B. Sum-rate

Sum-rate is also a good parameter to measure the data
estimation. We need to get the power of self-interference,
cross-interference, transmitted signal, and noise.

Fig. 4 shows the concave behavior of the sum-rate with the
optimal RIS phase. For the GST in centralized processing,
we get the highest of the three sum-rate, which means that
the GST scheme is the best scheme to improve the sum-
rate in the system. The ST scheme drops dramatically when
the λ increases, because data streams for the ST scheme are

d = T = 7, for other schemes, d = 2. Hence, the ST scheme
is easy for increasing the data transmission error.

When we increase the number of users, the sum-rate also
increases. However, from Fig. 3, the NMSE and pilot contam-
ination increase when the number of users increases. Hence,
a suitable number of users should be included in the system.
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From Fig. 5, it is clear that when the number of RIS panels
and their elements increases, the sum-rate can be improved.
When more APs are equipped in the system, the sum-rate
increases, but we need to limit the number of antennas in
each AP. The reason is that when we equip more antennas at
a close distance, it leads to high interference and reduces the
sum-rate in the system.

C. Bit Error Rate

Bit error rate is also an essential factor in data estimation.
If the value of BER is low, the performance of data estimation
is better.

In Fig. 6, we compare the value of BER for centralized
processing, and we choose the optimal phase shift. RIS-
aided system panels can reduce the BER compared with the
conventional cell-free system. Our results show that when we
choose the GST scheme in the centralized processing, the
value of the BER is reduced significantly. In this case, the
curve of the BER is convex, and we can get the lowest BER
when we choose a suitable value of λ. Meanwhile, we can
find that the value of the BER becomes the largest when we
choose the ST scheme. Because of d = T , the largest data
stream number leads to more bit errors.

D. Iteration Simulations

We carry out the time distributed processing and the iterative
process like Algorithm 2. In Fig. 7, we plot the MSE of data
estimates versus the number of iterations with the optimal RIS
phase for all subcarriers n ∈ ξ. The results show that when
the number of iterations increases, the MSE of data estimates
decreases. When we choose the larger value of Fmax, we can
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get the MSE convergence, and the value of the MSE of data
estimates is converged.

VIII. CONCLUSION

In this paper, we have proposed a generalized superimposed
training scheme and have used it in the RIS-aided cell-free
mMIMO-OFDM system. We have analyzed the NMSE, BER,
and sum-rate in multiple subcarriers cases. We have also
compared this training scheme with the standard superimposed
scheme and regular pilot scheme both in local and centralized
scenarios. Our results have shown that a RIS-aided system
with an optimal phase in centralized processing could get the
best channel and data estimation performance and reduce pilot
contamination. We have confirmed that the iterative process
can reduce the MSE of data estimates when the number of
iterations increases.

Our future work is to consider the analysis with stochastic
geometry and Poisson point process (PPP) model, because
the APs and users are uniformly distributed in this work and
consider the effects of buildings and other blockages in the
system.

APPENDIX

A. Proof of the Optimal Phase Shift Coefficients

As (15), the MSE minimization problem can be solved by
optimizing the phase shifts of RIS panels as

argmin
|ϕvq|=1,∀v,q

tr(E{∆kl(n)∆
H
kl(n)})

(a)
= argmin

|ϕvq|=1,∀v,q

V∑
v=1

tr[ΦH
v Q(n)ΦvK(n)]

(b)
= argmin

|ϕvq|=1,∀v,q
vH [Q(n)⊙K

T
(n)]v,∀v

(c)
=
Vmin

[
Q(n)⊙K

T
(n)

]
|Vmin

[
Q(n)⊙K

T
(n)

]
|
,∀v,

(50)

where the vector v = [ϕ11, · · · , ϕV Q]
T . From (a) to (b), the

trace identity tr(D(A)HBD(C)D) = AH(B⊙DT )C is used.
In (c), the division is element-wise division of vectors.

B. Local Processing for GST (n∈ ξ)

For the local power of each part, the equations from (17)
to (20) can be further derived as

1) Power of the signal:

Pkl,s(n) =E∥ûkl(n)∥42 · E∥sk(n)∥22 = E∥ûkl(n)∥42,

=E|ûH

kl(n)ûkl(n)|2 + E|˜̂uH

kl(n)ûkl(n)|2

+ E|ûH

kl(n)
˜̂ukl(n)|2 + E|˜̂uH

kl(n)
˜̂ukl(n)|2

+ 2EûH

kl(n)ûkl(n)˜̂uH

kl(n)
˜̂ukl(n)

=|ûH

kl(n)ûkl(n)|2 + 2û
H

kl(n)C
(û)
kl (n)û

H

kl(n)

+ tr[C
(û)
kl (n)]2 + 2û

H

kl(n)ûkl(n)tr[C
(û)
kl (n)]

+ tr{[C(û)
kl (n)]2}

={ûH

kl(n)ûkl(n) + tr[C
(û)
kl (n)]}2

+ 2û
H

kl(n)C
(û)
kl (n)û

H

kl(n) + tr{[C(û)
kl (n)]2}

={ûH

kl(n)ûkl(n) + tr[C
(û)
kl (n)]}2

+ 2trC
(û)
kl (n)[ûkl(n)û

H

kl(n)

+C
(û)
kl (n)]− tr{[C|û|

kl (n)]
2}

=tr[R
|û|
kl (n)]

2 + 2tr[C
(û)
kl (n)R

(û)
kl (n)]

− tr{[C(û)
kl (n)]2},

(51)
where ûkl(n) = ukl(n) + ∆kl(n); the correlation matrix
R

(û)
kl (n) = E{ûkl(n)û

H
kl(n)} = ûkl(n)û

H

kl(n) + C
(û)
kl (n) is

the correlation matrix of û
H

kl(n); the variance matrix of û
H

kl(n)

can be given as C
(û)
kl (n) = E{[ûkl(n) − ûkl(n)][ûkl(n) −

ûkl(n)]
H} = E{|˜̂ukl(n)˜̂uH

kl(n)|2}.
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2) Power of the self-interference:

Pkl,SI(n) =E
∥∥∥sk(n)[uH

kl(n)ûkl(n)− ûH
kl(n)ûkl(n)]

∥∥∥2
2

=E
∥∥∥sk(n)∆H

kl(n)ûkl(n)
∥∥∥

=E
∣∣∣∆H
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∣∣∣
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(∆)
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(52)

where C
(∆)
kl (n) = E{(∆kl−∆kl)(∆kl−∆kl)

H} = (
βjl

Rjl+1 +∑V
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ηvlαjvQ
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H
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(∆)
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H
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3) Power of the cross-interference:

Pkl,CI(n)

=
1

T 2(1− λ)
E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
il (n)ûkl(n)
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where trR

(Z)
k,ij(n) = aλekie

T
kj + a(1−λ)

d F[k,i]F
T
[k,j] is the

correlation matrix of ZH
k xi(n)x
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4) Power of noise:
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(54)
where the local noise matrix can be written as Nl(n) =
[n1(n), · · ·,nT (n)] and the [NH

l (n)Nl(n)]i,j = nH
i (n)nj(n);

∆̇kl(n) is the first three terms of (11a); the process to calculate
the E
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C. Centralized Processing for GST (n ∈ ξ)

For centralized processing, power equations from (27) to
(30) can be further derived as

1) Power of the signal:

Pk,s(n)

= E∥ûk(n)∥42 · E∥sk(n)∥22 = E∥ûk(n)∥42,
= tr[R

(û)
k (n)]2 + 2tr[C
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(56)

2) Power of the self-interference:

Pk,SI(n) =E
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3) Power of the cross-interference:

Pk,CI(n)

=
1

T 2(1− λ)
E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
i (n)ûk(n)
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4) Power of the noise:
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D. Local Processing for GST (n /∈ ξ)

According to the equation (22), the power of the CI can be
rewritten as

Pkl,CI(n)

=
1

T 2
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T
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(60)

For the power of the noise, we use the spline interpolation
process to get the ûkl(n) and then carry out the calculation.

E. Centralized Processing for GST (n /∈ ξ)

As the equation (29), for subcarriers not in ξ, the power of
the CI can be calculated as

Pk,CI(n)

=
1

T 2
E
∥∥∥∑

i ̸=k

ZH
k xi(n)

T
uH
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(û)
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(61)
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