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Abstract—Autonomous driving relies greatly on deep learning
to comprehend the surroundings and activities of the road
systems. The learning models are traditionally trained off-line
and used during driving. However, recent research on feder-
ated learning has enabled distributed deep learning for model
adaptation with new data inputs from end users. Similarly, the
recent research on continual learning has enabled the upgrading
of the learned model with newer rounds of training, without
losing previously acquired knowledge. For autonomous and/or
connected vehicles, these mean it is possible to take new, maybe
real time, data inputs from various sensors from multiple vehicles
in vicinity, to train and update the preloaded models. The
updated models can improve the safety and reduce human
involvements when driving through unfamiliar situations. This
paper tackles one important issue, namely, the model data
dissemination for enabling such a distributed learning. The model
data dissemination consists of steps of soliciting workers, trans-
mitting model, and collecting the updates. In a mixed autonomous
vehicles and connected vehicles network scenario, communication
overhead and network dynamics are the major challenges. We
present analyses on critical latency issues pertained to the various
aspects of the model data dissemination to gain insights on the
feasibility of federated learning for such a scenario. Also, we
introduce a communication architecture and a publish-subscribe
system for the model data dissemination. Our system is built
with an information-centric networking paradigm via a tiered
edge network architecture. Such a system organizes the steps of
the model data dissemination clearly and manages the dynamics
of the participating vehicles easily. The results show that the
presented system reduces overall communication overhead and
delay. It also provides high resiliency to packet losses in the mixed
wireless connected and autonomous vehicular network.

Index Terms—Autonomous vehicles, connected vehicles, con-
tinual learning distributed learning, federated learning, model
distribution, named data networking, synchronization groups.

I. INTRODUCTION

A vision for autonomous driving has been acknowledged
where in the presence of unfamiliar driving conditions

(the conditions that did not have a sizable training data at
the time of building the AI model), new data from devices
on-the-scene, such as from moving vehicles, can help update
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the AI model and make it available in a timely fashion.
Such a vision faces its challenges, especially with the current
general practice for model training, which uses centralized
computing platforms in the cloud where all the training data
needs to be available upfront. Some challenges also relate
to communication limitations and data privacy. The latter is
strongly scrutinized by the data providers due to the risk of
exposing the sensitive information.

Recent work of federated learning (FL) describes a dis-
tributed training process involving the edge devices [1], which
offers a solution to the aforementioned challenges. With fed-
erated learning, the end devices participate in the training
process with their local data. It therefore brings two advantages
to autonomous driving: Richer dataset from distributed data
sources; and built-in privacy preservation because each dis-
tributed training process uses own set of data and a participat-
ing vehicle’s data never leaves the owner. On the other hand,
with the progresses on several communication technologies
for vehicular communication and networking (e.g.,V2X, 5G),
future transportation systems will include a mix of connected
vehicles (CVs), autonomous vehicles (AVs) and connected
autonomous vehicles (CAVs). All these vehicles are rich in
sensors and sensed data, and are able to communicate. Utiliz-
ing their local data, computing and communication resources,
federated learning can be deployed to bring substantial advan-
tages for model updates and the driving safety of AVs and
CAVs. While a general consideration has been to preserve
the computing capacity on the AVs and CAVs, the CVs, or
even personal devices within the CVs, can be the potential
participants in distributed training with their local sensor data.
Such a paradigm can be realistic if incentives are given [2],
[3].

Although the opportunities provided for autonomous driving
by the connected vehicles and federated learning are tremen-
dous, many research endeavours are required to apprehend
these possibilities. The researches have been addressing chal-
lenges to federated learning relating to heterogeneity of the
end devices, statistical heterogeneity of the data at the end
devices, emerging privacy requirements, etc [4]. However, one
important, yet mostly under-looked issue by these work is
the model data dissemination, i.e., transferring the learning
model to the vehicles that are able to act as workers and then
receiving the updates from them in a dynamic and mobile
edge wireless environment. The scenario presents challenging
issues in managing several communications tasks, addressing
mobility induced network dynamics, and being parsimonious
on bandwidth usage.

To fill the gap and address the challenges, we present a
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network system that synchronizes the model data dissemina-
tion tasks for distributed learning in CAV environment, terms
as Sync4DL in short. It includes a distributed model training
management system and a hybrid edge and fog network
architecture supporting it. The model training management
system uses synchronization groups to manage the four tasks
for the data dissemination. These tasks are (1) model ac-
quisition, (2) model dispatch (including worker solicitation
and model retrieval), (3) update collection, and (4) update
submit. To easily manage the various message exchanges
in the different synchronization groups, the system utilizes
a pub-sub mechanism. The pub-sub mechanism is carefully
designed to simplify various possible modes of communication
in distributed manner required in the groups.

The underlying vehicular communication environment for
such a system can build on matured multihop vehicular ad
hoc network (VANET) and encounter based vehicular delay
tolerant network (VDTN) [5]. But the aforementioned mobility
challenge leads to the dynamics of the worker groups and the
connectivity to the CAVs (which are the users and solicitors),
as well as system resilience concerns. Bandwidth challenge
also exists when corresponding solutions handling mobility
could incur excessive communication overhead. Thus, the
hybrid Edge and Fog network architecture is critical to show
promises in addressing these challenges.

The architecture has three tiers to facilitate organized com-
munications involved in the four tasks, where each tier in-
cludes different networked nodes; and the communications are
between nodes from different tiers. The challenges of mobility
and bandwidth call for an information-centric approach to
reduce the complexity in handling addresses and dynamic
topology, and to the promote information sharing through
caching.

As such, named-data networking (NDN) is used for the pro-
posed architecture [6] and to support the training management
system. We build the pub-sub mechanism for each of the syn-
chronization groups using NDN for the training management
system. The publication topic is carried by the name prefix in
each packet so a packet is able to identify the synchronization
group it represents. Such a pub-sub mechanism, therefore,
doesn’t require a central broker for maintaining the groups.
Further, the sharing nature of NDN communication model
allows effective use of wireless broadcast channel, leading to
lower communication overhead. In addition, the name based
data addressing scheme of NDN eliminates the burden for
learning and managing the addresses of the CAVs and CVs in
the vehicular scenario with constant topology changes and net-
work disruptions [7], [8]. The advantages and enhancements
of NDN over VANET and VDTN are also being discussed in
earlier work [5], [9]–[12].

Our main contributions in this paper are summarized below:
• We introduce the design details relating to architecture,

synchronization groups, naming and implementation use-
ful for model data dissemination.

• We build the synchronization groups on top of
information-centric networking of NDN. Through such
design choice, our system has been able to handle the
mobility induced participants’ dynamics effectively.

• Our system has also been able to substantially reduce the
bandwidth and channel contention by enabling reception
of a single transmission by multiple nodes, and by
enabling in-network caching through NDN.

• We incorporate a tiered system design for our system. By
making such a choice, we have been able to achieve high
resiliency to packet losses in the mixed connected and
autonomous vehicular network.

• We provide extensive evaluations of the system, both
analytically and empirically. Through the analytical eval-
uation, we offer useful insights on the impact of vehi-
cle mobility on the latency in model distribution. Such
evaluation have helped in studying the feasibility of
using FL for model enhancement under certain vehicular
environments.

• Through empirical analysis, we have compared the pro-
posed tiered architecture with a non-tiered architecture.
Our analyses consider the different presence ratios of
CAVs and CVs. Through the analyses, the proposed
system is found to decrease the worker solicitation delay,
improve the model transfer completion probability, and
decrease the update collection delay. Therefore, our pro-
posed system works effectively and efficiently in terms
of the communication overhead and resilience.

• The paper extends our previous work [13] greatly to
include synchronization mechanism for the model distri-
bution, and it includes substantially more analytical and
empirical results.

The paper is organized as follows. Section II presents
related work and a brief background on NDN and NDN-based
pub-sub communication. Section III introduces the design of
the proposed system. Section IV presents numerical analysis,
followed by simulation evaluations in Section V. Section VI
concludes the paper.

II. RELATED WORK AND BACKGROUND

A. Related Work on FL

The distributed deep learning usually uses multiple CPUs
and GPUs in distributed systems centered at cloud environ-
ments [14]. Recently, the use of end devices collectively to
provide the computation and storage needs of the learning
systems at the edge of the network has emerged, such as
federated learning [15]. Federated learning faces performance
issues of the learning process and problems posed by the
wireless communications, especially those related to connec-
tivity. Some works have analyzed the performance of learning
process considering the challenges of wireless network jointly.
Nishio et al. [16] study the selection of subset of workers
considering the workers’ resources and channel condition in
order to minimize the loss function of the learning. Chen
et al. [17], [18] analyze the convergence time for the learning
process by presenting the selection of the subset of the workers
pertaining to the limited bandwidth as the wireless issue.
Similarly, several works [19], [20] study the energy efficiency
of the worker nodes as the wireless issue for obtaining certain
training accuracy. The transmission scheduling policy and the
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inter-cell interference in the cellular network are considered
as the wireless constraints for federated learning convergence
in the works by Yang et al. [21]. The similarities of all these
existing works can be traced in terms of two factors: All of
these are based on one-hop cellular networks and the wireless
issues discussed in these papers are all related to the physical
properties of the communication channel. None of these work
has studied the model distribution and the update collection
process as a challenge in a wireless scenario, nor has studied
the scenario of a hybrid edge and fog architecture for future
transportation system with CAVs and CVs.

B. Named Data Networking

NDN is a network architecture that performs routing and
forwarding based on named data pieces [6]. In NDN, data
pieces can be hierarchically named. The communication starts
when an application, as a customer, expresses an interest (via
an Interest packet) for a named data piece; a producer, having
the name-matched data, responses by returning the data (via
a Data packet). NDN routers forward both types of packets
based on the names of the data, not IP addresses. FIB tables
at NDN routers contain pointers to the producers of the data.
A NDN router can cache the data pieces when receiving them.
This allows a router to return one cached piece of data when its
name matches the one expressed in an Interest packet. Likely, a
single Interest packet can be answered by a closer data source
other than the original one. Such in-network caching provides
not only natural data sharing with reduced network overhead
but also resiliency to network disruptions.

In the environment of connected vehicles and connected
autonomous vehicles, the broadcast nature of the wireless
communications can be explored during the dissemination of
both Interest and Data packets. Typically, an Interest packet
simply floods through the network, yet a returned Data packet
can be cached by the nodes who overhear the transmission
of Data packet. This allows extensive data sharing for the
vehicular networking [7], [22].

C. Publish-subscribe System

Publish-subscribe system has been a popular information
dissemination model for applications where the communica-
tion requirement is beyond point-to-point but involves one-to-
many, many-to-one, or many-to-many. In a pub-sub system,
the communication is facilitated by the means of named
topics [23]. Data creators publish their data to a topic to which
one or many consumers subscribe. Whenever a new data is
published to the topic, the subscribers are notified by the pub-
sub system so that they can fetch the data.

The current implementation of pub-sub model on top of
TCP/IP architecture requires mapping from the topic name
of the data piece to the node’s address through a complex
mapping system involving a central broker node. However,
the named topic and the sharing nature of the pub-sub model
can be better implemented using NDN architecture without
the involvement of the broker [24].

The pub-sub model in NDN is also above network layer as
a middle-ware. Pub-sub model mostly starts with publishing

a new message to a named topic. Given that communication
model in NDN is consumer-driven, i.e., the consumer first
issues an Interest for a named-data piece, publishing a new
message (a data piece) to a topic can not be implemented
directly because there is no Interest for the new Data. Several
work are proposed to address this proactive data issue through
sync protocols [25]–[27]. The concept of long-lived Interest
packets presented in Chronosync [25] and PSync [26] follows
the natural Interest-Data communication behavior, but requires
Interest to be kept for a long while. This causes extra overhead
at the nodes for maintaining the network state. The VectorSync
scheme gets rid of the long-lived Interests by using a leader-
based group system architecture to manage the Interest and
Data. It incurs extra overhead in maintaining the groups, espe-
cially in a dynamic scenario of vehicular networks. The work
described in [24] developed a dataset synchronization (sync)
protocol. It does not use long-lived Interest, but adds a new
sync type of Interest and Data packets. This addition is used
to break one pub-sub messaging pair into two Interest-Data
packets pairs. The paper uses the scheme to collect network
management data. This scheme is the building block for the
proposed system.

III. SYSTEM DESIGN OF SYNC4DL

A. Network Architecture

The edge-fog communication architecture for the envisioned
vehicular environments builds on the underlying network
technologies of vehicular-NDN (V-NDN in short) [9]–[12].
The architecture supporting the training model dissemina-
tion in Sync4DL consists of three tiers, namely, the tier
of edge servers (TES), the tier of connected autonomous
vehicles (TAV), and the tier of connected vehicles (TCV).
The first tier TES includes the edge servers that serve as
distributed distribution centers for the training models. They
host the initial models. They also receive model updates
and forward them back to the cloud for model aggregation.
An edge server connects to backend cloud servers through
internet. The second tier TAV consists of the CAVs. They can
request models from an ES server or a peer CAV according
to their driving needs. These CAVs also act as solicitors for
workers to participate in continual learning. They later collect
the partially updated models and use them to enhance own
driving performance. The third tier TCV consists of the CVs,
some of them will participate in distributed training process of
continual learning using their own sensor data and computing
power. In a more general way, many CAVs can participate
in soliciting more CVs to increase capability of the training
process. Or, many CAVs can directly benefit from the partial
updates sent by the CVs through the broadcast nature of
wireless communications. The CAVs are then responsible for
forwarding the updates to ESes.

With the proposed system, when new driving situation
occurs, a CAV can solicit CVs in proximity to help train a
model using CVs’ new local data about the situation. The CVs,
after receiving the model from the CAV, train the model so that
both the environmental conditions as well as the actions taken
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Fig. 1. Three-tier architecture and synchronization groups.

by the driver in a CV based on these conditions can be fed to
the model. These worker CVs, upon completing the training,
will send the partial updates of the model back to the CAV.
The updated model will help the CAVs navigate through the
new driving condition. Further, the CAV can submit the partial
updates to an edge server. The edge servers are connected via
internet to share the partially updated models and aggregate
multiple of them. The enhanced model will be hosted by the
edge servers for subsequent requests from the CAVs.

To facilitate these communications, synchronization groups
(sync groups) are used. The concept of a sync group is
defined as an abstract group formed by the nodes publishing
or subscribing to the same topic, following [24]. A sync
group, therefore, is an abstract of the pub-sub system on a
common topic associated with the task such that the com-
munication within the sync groups starts with publishing a
new message to a named topic. The pub-sub system organizes
message exchanges among multiple publishers (producers)
and subscribers (consumers) on the task. Under a common
topic, many messages (or data pieces) can be exchanged with
more specific titles or tags as well as the contents. This sync
mechanism using pub-sub system can enable every types of
communication modes: One-to-many, many-to-one as well as
many-to-many or any-to-any in a distributed manner.

In the text below, we discuss the details of the pub-sub
system and the cases such a pub-sub system needs to handle in
Sync4DL. Similarly, we also discuss the design details relating
to the convention to name the topic and subsequent message
contents to reflect the topics of the sync groups.

B. Pub-sub System

Our pub-sub system builds using the dataset synchroniza-
tion (sync) protocol (DSP), operating over a sync group [24].
Two special packet types are used in DSP. A Sync Interest
packet of a topic sent by a publisher to the sync group
announces all the names of the data pieces that have been
published to the group known by this publisher including
his own publishes. This Sync Interest packet serves for two
purposes. First, this Interest packet announces new publica-
tions as well as serves as an acknowledgment (or a negative
acknowledgment) to others’ publications. Upon receiving the
Interest packet, if a new publication is present, a node sends a
general Interest packet to retrieve the new publication. Thus, in

this case, a three-way message exchange occurs. Second, this
packet shows the missed publications at the sender to the other
nodes, therefore, serves the purpose of showing interest in new
data pieces that other nodes have. Thus, if a receiver discovers
this is happening, i.e., it has publications other than the ones
listed in the interest packet, it will respond a Sync Data packet
with the names of the publications that the sender missed.
The original sender can then use regular Interest and Data
pair to retrieve the missing publication. To handle many name
prefixes, the Sync Interest packet typically uses an invertible
bloom lookup table (IBLT) [28] to index the names of the
publications, which allows quick insertion, deletion, access,
and listing of the key-value pair of available publications by
the nodes.

C. Naming Scheme and Synchronization Groups

The naming scheme design is an important aspect of overall
system design to facilitate the communication within the sync
groups. It is the name, reflecting different publication topics
of the published data, that binds a sync group together and
distinguishes one group from other groups. In addition, the
naming scheme will facilitate the routing and forwarding for
all the sync groups.

In Sync4DL’s name scheme, therefore, the sync packets
and the topics of sync groups are of foremost importance
in retrieving information. They will be the first two fields.
Additional information relating to models is also specified in
the name scheme. The details of the name scheme and the
semantics of the elements are described below.

Sync ⟨topic⟩ ⟨model fields⟩ ⟨src id⟩ ⟨seq i⟩

• Sync: This is a keyword. It identifies the special type of
interest and data packets, the Sync Interest and Sync Data
packets, from a regular Interest and Data packets. A Sync
Interest is given higher priority and processed by the pub-
sub system. A Sync Interest might bring back Sync Data
but not always. Transmission of a Sync Interest can be
scheduled in a periodic fashion.

• topic: This field identifies a sync topic of a particular sync
group. The pub-sub system handles the communications
within the sync group based on the given topic.

• model fields: In order to identify multiple models, this
field can contain multiple subfields. Three common sub-
fields are: (i) model id: It is the identifier of the training
model; (ii) model version: A training process involves
multiple rounds/epochs. This field identifies the round
of the model with model id. It can be the incremental
versioning of the trained model; and (iii) part number:
It identifies the part of the model that the packet carries.

• src id: It is an optional identifier of the node looking out
for the data and could include vague geographic location
to help forward the packet.

• seq id: It is the sequence number of this packet when it
was created, serving as version control.

Furthermore, as identified in the text above, there are four
tasks associated with the sync groups such that each sync
group is responsible for one task. These tasks include:
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• Acquiring initial new or updated model.
• Soliciting workers and dispatching the model for training.
• Collecting the updates.
• Submitting the updates to edge servers.

The four sync groups inheriting from the aforemen-
tioned four tasks are Model Acquisition and Update Submit,
two sync groups formed between TES and TAV; and
Model Dispatch and Update Collection, two sync groups
formed between TAV and TCV. The three tiers and the
direction of data dissemination in the four sync groups are
shown in Fig. 1. Each sync group is managed by the pub-sub
mechanism using its publication topic, which is carried in the
name prefix of the Sync Interest and Sync Data packets.

• Model Acquisition Group: The group is for CAVs to
acquire a model or an updated model from ESes. The
group topic is Model Acquisition. ESes are the publishers
and CAVs are the subscribers. Typically, when one ES
publishes a model, multiple CAVs can receive it. This
demonstrates the one-to-many mode of communication.
The Sync and Model Acquisition keywords are used in
Sync Interest generated from this group for the dissemi-
nation of a name list of available models. Normal Interest
and Data packets are used for subsequent retrieval of a
training model by an CAV upon receiving the list.

• Update Submit Group: This group enables the submis-
sion of newly collected partial updates of a model from
CAVs to ESes for further aggregation. The CAVs publish
the updates to the Update Submit topic so that ESes
subscribing to the topic will be able to receive them. Typ-
ically, one ES can receive from multiple CAVs, the many-
to-one mode of communication occurs in this group.
The Sync and Update Submit keywords along with other
model identifying information in the name prefix are used
when an AV publishes the update. An ES will use normal
Interest and Data packets to retrieve the updated model
from the CAV.

• Model Dispatch Group: The topic is for CAVs to solicit
CVs to perform distributed training. Interested CAVs
are the publishers and capable CVs are the subscribers.
Multiple CAVs can publish the same model or dif-
ferent models asking for updates, while multiple CVs
can receive a model they wish to work on. The model
flows from the CAVs to the CVs resembling an any-
to-any mode of communication. The name prefix in
the initial publication (soliciting CVs) consists of Sync
and Model Dispatch keywords. Subsequent dispatching
the model is performed using normal Interest and Data
packets initiated by a CV to retrieve the model from the
CAV.

• Update Collection Group: This group is for CAVs to
collect partial updates when distributed local training are
completed at the CVs. The publishers are the CVs who
publish new partial updates, while subscribers are the
CAVs. The any-to-any mode of communication describes
the information exchange within the group. Similarly, a
CV initiates an interest with Sync and Update Collection
keywords. AVs will use normal Interest and Data packets

AV2

Data y

AV1

Data x

AV31. Sync Interest [List] 1. Sync Interest [List]

3. (Case B)
Sync Data for y

2. (Case A)
Interest for x

Example of Communication Between AVs in Model Acquisition Group:

1.    Sync Interest: Sync/Acq/id_25/v1/p0/AV1/t0/[List]

2. (Case A) Interest: Acq/id_25/v1/p0/AV3/t1/x

3.    (Case B) Sync Data: Sync/Acq/id_25/v1/p0/AV2/t2/y

Fig. 2. Synchronization example in model acquisition.

to retrieve the update.

D. Sync Group Communication Example

Here we use an example of message exchanges relating
to Sync Interest and corresponding responses to illustrate
the two ways that (Sync Interest) serves to synchronize the
communication tasks. The example comes from the model
acquisition task, given in Fig. 2. CAV1 publishes a list of
available models through a Sync Interest to the topic of
Model Acquisition (Acq in short in the figure) with other
related naming fields. In Case A, CAV3 learns that the Data
x in the list is what it needs. CAV3 then follows up with a
normal NDN Interest to the topic Acq to retrieve Data x. In
Case B, CAV2 notices that CAV1 doesn’t have Data y. Thus,
it responds with a Sync Data packet with Data y included to
the topic Acq.

E. System Layering

The Sync4DL system is layered according to the depen-
dence of functionalities. The pub-sub communications is built
on top of NDN network architecture. The pub-sub communica-
tions directly use the network-level Interest and Data packets,
as discussed earlier using Sync special type. Fig. 3 shows the
function blocks building on top of NDN primitives.

• Data Generator: This module handles new data pieces,
when they are generated either as a model received from
the cloud, or a partial update produced after a local
training. The module submits the meta about the data
piece (e.g., version number, model Id, etc.) to the Name
Generator. and obtains a new name to attach to the data
piece. This newly produced piece of named data is ready
for storage and for publish.

• Name Generator: This is the component responsible for
creating the names for the data in consideration. It uses
the name convention when doing so.

• Sync Module: This is the module supporting all the
synchronization groups. The pub-sub topics are handled
by this module. Serving as a middleware, it connects to
primitives in NDN that not only deal with special Sync
packets but also regular NDN packets.

• NDN Interface Module: This is the NDN network that
handles the forwarding and receiving of both Sync and
regular Interest and Data packets.

F. Discussions on Design Considerations

In this section, we discuss two representative challenges
in the training process that are closely-related to our work,
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in hope of inspiring future researches. They are regarding
the usefulness of training updates from slow workers and
the time to stop the training process before the model starts
over-fitting the training data. We also offer possible ways that
the Sync4DL would address the challenges. Other challenges
include the evaluation of minimum CPU and GPU capabilities
within the worker nodes so that a training process can be
completed timely, mechanisms of various hyper-parameter
tuning required for the deep learning process, proper batch size
for the training data, and so on. Researches on these issues are
beyond the scope of this paper. Interested readers can refer to
the seminar paper by Keuper et al. [29].

The first challenge is regarding the usefulness of the training
updates from slow workers. Currently, with most of the deep
learning systems, once the parameters get updated, the new
round of training starts with the updated parameters [14]. In
case of the distributed system presented as the scenario in
this work, cases arise when some workers are late to send
back the updates or are still working with the past version
of the model and the central system has already updated the
parameters such that the faster workers have already started
their training process with the current parameters. In such a
situation, two different questions are important: first, should
the proposed system have a special mechanism such that
the slow workers, who haven’t yet completed their training
process, are notified that their training is lagging behind the
current model version? Second, should the lagging worker stop
its current training round and restart with the newer version of
the parameters? Regarding the first question, Sync4DL already
has notifications built-in. The Sync Interests sending from
CAVs looking for CVs, and the various Data packets sending
updated models, all contain the version number of the current
training model. In addition, NDN in wireless broadcast allows
nodes to process these packets to know of the version updates.
Thus, a separate mechanism is not required. Regarding the
second question, with the recent development in the continual
learning systems [30], we expect even the outdated training
updates being useful for the overall learned model. The details
of such investigations are outside the scope of this paper.

The second challenge is when should the training process
stop or when does the server decide that the learned model is
complete and usable for the end AV devices. Such a challenge
can be evaluated by being focused on the subtlety of continual
learning against the current deep learning systems [31]. With
continual learning, a trained model is deemed useful when
it passes certain test threshold, but the learning process is
lifelong and the model keeps improving with new rounds of
training [31]. This is specially important for the autonomous

driving since new driving conditions and environments keep
emerging and the model needs to be updated for these en-
vironments. The advantage of the global system presented in
this paper lies in this requirement of continuous improvement
of the learned model. Thus, we expect with the maturity of
the continual learning systems, the learned model becomes
useful at a certain point in time after passing the testing
threshold, and becomes more useful with every new round of
training, which implies that the training process will indeed be
a continuous process. More extensive discussion on this issue
is not intended in this paper.

IV. NUMERICAL ANALYSIS

In this section, we will investigate impact of mobility
brought by more challenging vehicular communication sce-
narios. The analyses focus on how well a CV may receive
a solicitation for workers and how well the finished updates
may be received by a CAV.

Our analyses consider an area with N CAVs, M worker
CVs that are willing to participate in the training process, and
other CVs in the connected vehicular environments. CAVs and
CVs can communicate when they are within the transmission
range of one another. The vehicular edge-fog network environ-
ment can occur in a mix of VANET and VDTN. The former
will help Sync4DL distribute a model in a short time period
via multi-hop packet relays. But with the latter, communication
opportunities occur only when CVs or CAVs encounter one
another.

Five major performance aspects are studied in this section:
(1) The latency for workers to receive solicitation interests; (2)
still the latency, but considering the case that the solicitation
messages can expire; (3) the average latency for collecting all
possible updates; (4) the latency to collect the first update
considering the probability that an update is not ready at
a worker; and (5) the number of updates can be received.
The various symbols used in the analysis are summarized in
Table I.

A. Worker Solicitation Delay

In this subsection, we will investigate what aspects would
influence the overall delay of worker solicitation process.
Worker solicitation occurs in model dispatch task when a
CAV publishes a Model Dispatch Interest for workers. A CV
receives the Interest is called a holding vehicle. If the holding
vehicle is a worker CV, it then follows up to retrieve the model.
The solicitation delay is the time needed for a worker CV to
meet one of the holding vehicles. The delay mainly constitutes
the time needed for encountering a holding vehicle, which may
take multiple encounters because only a part of the vehicles
are holding vehicles.

The encounter opportunity of two mobile nodes in the
VDTN scenario is one important mobility property. Earlier
work has shown that the time for any pair of nodes to
meet follows a Poisson distribution and thus the inter-meeting
time of the pair follows an exponential distribution, Robin
et al. [32]. The work shows that such a result applies to the
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TABLE I
LIST OF THE SYMBOLS USED IN THE ANALYSIS.

Notation Description
N Number of CAVs in the scenario
M Number of worker CVs in the scenario
ti,j(n) nth meeting time of vehicles i and j
λ parameter describing vehicles’ meeting in unit time
ρi,j(n) nth inter-meeting time of vehicle i and j
W A single worker CV
R+ 1 Total number of CVs in the scenario
F Absorbing state when W receives the Interest
S State space of Markov chain analysis for worker

solicitation
bi = N + i the number of vehicles having Interest at the state

N + i, i = 0, 1, · · ·, R
di = (R− i) The number of remaining non-worker CVs
X = xi Random variable describing the trajectory involving

transition from state N + i to F
pxi The probability of the trajectory X = xi

Dxi The expected delay along trajectory X = xi

t A time slot in slotted time analysis
p(j, t) The probability that a worker j has a model at time

t.
τ The probability of model expiring due to ageing
q(j, t) The probability that j didn’t receive a model for

training at t
n(i, j, t) The probability that worker j receives a model from

CAV i at time t
m(t) The expected number of workers having the model

up to time t
m∗ The expected number of solicited workers
E(DUC) The expectation of delay of update collections for

m∗ update-ready participating workers
Fy The encounter progression matrix for a CAV y
f(i, j) The progression of y having encountered CV i, then

connecting CV j
K The set of states of every CVs not having updates
Z The set of states of every CVs with updates
R The transition matrix for each CAV
rij The transition probability of transiting from en-

counter of the CV i to the encounter of the CV j
f(i, j) The encounter progression probability from i to j
p(j) The probability of the CV j for having an update
B A diagonal matrix constructed with p(j)

B = I −B The projection onto the orthogonal complement of
subspace of B

w(i, t) The probability of a CAV collecting a new update at
a time instance t

u(j, t) The probability that an update from worker j was
received at the CAVs by the time t

v(j, i, t) The probability that a worker j establishes a connec-
tion with a CAV i to send the update at time t

µt The expected number of participating workers whose
updates were received by the CAVs until the time t

v̂(j, i) The probability of establishing a connection between
a participating worker j and a CAV i

Manhattan mobility, the random waypoint model, or simply
random direction. In addition, various empirical studies on
real-life mobility traces of the vehicles have also shown that
exponential distribution is followed by the inter-meeting times.
Thus, we assume the same for the vehicles in our scenario.
Suppose 0 ≤ ti,j(1) < ti,j(2) < · · · are the series of the time
points when two vehicles i and j(i ̸= j) meet. The processes
{ti,j(n), n ≥ 1}, 1 ≤ i, j ≤ T, i ̸= j, is the independent
Poisson processes with parameter λ. λ describes how many
times can a pair of vehicle meet with each other in unit
time. Further, let ρi,j(n) = ti,j(n + 1) − ti,j(n) be the n-th

N N+1 · · · N+R-1 N+R

F

b0d0λ b1d1λ bR−2dR−2λ bR−1dR−1λ

b0λ

b1λ

bR−1λ

bRλ

Fig. 4. Markov chain for a single worker solicitation.

inter-meeting time of vehicle i and j. The random variables
{ρi,j(n)}i, j, n are independent with each other and follow the
exponential distribution with mean 1/λ. 1/λ is the expected
inter-meeting time before any pair of vehicles meet again with
each other.

A Markov chain model is used in the analysis considering
the case of a single worker CV (named W) receiving the
solicitation Interest in the area with total R + 1 CVs. Let
a state denotes the number of vehicles in the area that have
the Interest. Here we assume N AV nodes initially hold the
Interest, i.e., the initial state being N . Let F be the absorbing
state when W receives the Interest. Let N + i represents the
state that ith non-worker CVs have received the Interest. State
N + i transitions to the next non-absorbing state N + i + 1
when the Interest is transmitted to another non-worker CV.
State N + i transitions to the absorbing state F when the
Interest is transmitted to W. The solicitation process finishes.
Thus, the state space, S of the Markov chain includes R + 1
non-absorbing states and one absorbing state F , denoted as
S = {N,N+1, N+2, · · ·, N+R−2, N+R−1, N+R,F}.

Starting from the initial state N , one CAV encounters one
of the R CVs at the rate Rλ, and thus the aggregate transition
rate from the state N to N+1 is NRλ. On the other hand, if W
receives the solicitation from one of the CAVs, the aggregate
rate from state N to the absorbing state F is Nλ. In general, let
bi = N+i be the number of vehicles having the Interest at the
state N+i, i = 0, 1, · · ·, R, and let di = (R−i) be the number
of remaining non-worker CVs. The aggregate transition rate
from ith state N + i to the (i+1)th state N + i+1 is bidiλ,
and the aggregate rate from state N + i to the absorbing state
F is biλ. These transition rates are shown in Fig. 4.

Let a series of state transitions from N → N +1 → · · · →
N + i → F be a complete trajectory ending at the absorbing
state for W. The random variable X such that X = xi

describes the ith trajectory which transitioning from the last
state N + i to F . Further, let pxi

be the probability of the
trajectory X = xi, i.e., P (X = xi). For example, X = x0

means a transition from the state N to F , and X = x1 refers
to the transitions from the states N to N + 1 then to F .

At state N + i, there are N + i number of holding vehicles,
and R − i non-worker CVs without the solicitation. As seen
from Fig 4, two types of transitions would happen to them.
The first type happens when one of the former meets one of the
latter, hence, transits to state N+i+1. There are (N+i)(R−i)
possible occurrences of this type. The other happens when one
from the former meets the worker W, leading to the absorbing
state. There are N + i possible occurrences. Thus, the total
possible events are (N + i)(R − i) + (N + i). As such, the
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probability for transition from state N + i to N + i + 1 is
(N+i)(R−i)/(N+i)∗(R−i)+(N+i) = (R−i)/(R−i+1),
whereas the probability for transitioning from state N + i to
F is (N + i)/(N + i)(R− i) + (N + i) = 1/(R− i+ 1).

The occurrence of a particular trajectory takes a series of
state transitions. Its probability combines the probabilities of
each horizontal transition in Fig. 4 and the transition to state F .
Specifically, the probability pxi

for trajectory xi is given in (1).

pxi =

i−1∏
j=0

(R− j)

(R− j + 1)

 1

R− i+ 1
(1)

Similarly, the delay along a trajectory xi has to consider a
series of times spending at each state waiting for an encounter
to happen so to transit to the next state until encountering W.
The latter leads to state F . Taking the aggregation factors
at each state into consideration, for transitioning between
horizontal states, the factor at state N+j is 1/(N+j)(R−j);
for transitioning to state F from N+j, the factor is 1/(N+j).
The expected delay along trajectory xi is the summation of
the delays at each horizontal states, denoted as Dxi . Recall
that the expected pair-wise inter-meeting time is 1/λ, Dxi is
given by (2).

E[Dxi ] =

i−1∑
j=0

1

(N + j)(R− j)λ

+
1

(N + i)λ
(2)

Take trajectory X = x0 as an example, the probability
of N CAVs encountering W so transiting to state F , px0 , is
given as N/(RN +N) = 1/(1+R), where the average delay
transitioning from state N to the absorbing state F is 1/(Nλ)
due to the aggregation of N CAVs encountering W. Further,
take trajectory X = x1 as another example. Trajectory x1

transits from state N to state N + 1, then F . The existence
of state N + 1 is based on the event that one of the AVs at
state N has passed the Interest to one of the non-worker CVs.
Thus, the probability is RN/(RN + N) = R/(R + 1). At
state N +1, there are N +1 holding vehicles, and R−1 non-
worker CVs plus the worker W without the Interest. Thus, the
probability that one of the N + 1 vehicles passes the Interest
to W is (N+1)/(R−1)(N+1)+(N+1) = 1/R. Combining
the two probabilities, we have the probability of trajectory x1

be [R/(R+1)] ∗ (1/R) = 1/(R+1). The delay of trajectory
x1 has to count the delays at states N and N + 1, which is
given as 1/(Nλ) + 1/((N + 1)λ).

Now, with (1) and (2), the expectation of the solicitation
delay over all the trajectories is given by (3).

E[D] =

R∑
i=0

E[Dxi
]pxi

(3)

Based on (3), the expectation of the solicitation delay at a
particular value of λ decreases with the increase in number
of nodes having the initial solicitation, N . Also, with the
increasing value of N , the rate of change of average delay
decreases.

To sum up, the most important factor that influence the
Worker solicitation delay is the number of CAVs which

initially hold the computation task waiting to be solicited
to a particular CV. The more CAVs we can have, the less
solicitation delay would that designated CV experience.

B. Worker Solicitation Constrained by Message Lifetime

The next important aspects we would like to explore is how
many worker CVs can finally be solicited given a certain time
constrain. The need for updating a model usually only stays
valid for a certain amount of time. Thus, the knowledge about
the number of workers needed for helping the training within
a time frame is important. This analysis focuses on the number
of participating workers with regards to time. The analysis is
based on the assumption that the time is slotted. The duration
of the time slot is long enough for establishing a connection
and completing the model transmissions. For a time slot t, the
reasons that a worker CV doesn’t have a model can be either
due to the expiration of a received model at time t−1, or due
to the fact that the worker didn’t have a model at time t − 1
and it doesn’t receive a model at time t from any CAV either.

In the analysis, let p(j, t) be the probability that a worker
j has a model at time t. And let τ be the probability that the
model expires due to aging. Further, suppose q(j, t) be the
probability that j didn’t receive a model for training at t; and
n(i, j, t) be the probability that worker j receives a model from
CAV i at time t. Given there are a total of N CAVs, q(j, t)
can be expressed in (4). As such, the problem in question can
be described by (5).

q(j, t) =

N∏
k=1

(1− n(k, j, t)) (4)

1− p(j, t) = τp(j, t− 1) + (1− p(j, t− 1)) q(j, t) (5)

Now, let the expected number of workers having the model
up to time t be m(t), given by (6).

m(t) =

M∑
k=1

p(k, t) (6)

Solve (4) and (5) iteratively. Then assume t be large
enough such that the products approach zero, the limits of
p(j, t) q(j, t) and n(k, j, t) become p(j), q(j) and n(i, j)
respectively. Thus, we obtain the limit p(j) in (7):

p(j) =
1− q(j)

1− q(j) + τ
=

1−
∏N

l=1 (1− n(l, k))

1−
∏N

l=1 (1− n(l, k)) + τ
(7)

Based on (7) and (6) can be replaced by the limit of the
expected number of solicited workers, m∗. It is given in (8).

m∗ =

M∑
k=1

1−
∏N

l=1(1− n(l, k))

1−
∏N

l=1(1− n(l, k)) + τ
(8)

According to (8), if the model doesn’t expire, every worker
will receive the model for training; whereas if the model
expires, the number of workers receiving the model is limited
by the value of m∗. Also, if a connectivity couldn’t be
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Fig. 5. Markov chain for update collection.

established with a CAV within a fixed time limit, a worker
will never receive the model for training.

As the conclusion, the network connectivity have a major
impact on the number of worker CVs that can be solicited
when facing a message lifetime constrain. If the connectivity
is good, more worker CVs can receive the computation tasks
before the message expire.

C. Expected Delay in Update Collection

Delay brought by update collection process is another
factor influence Sync4Dl’s performance. The task of Up-
date Collection starts after the participating workers publish
the names of the available updates after finishing the training.
Here, we derive the latency for overall update collection
assuming all the updates are always available. Given the
collection process starts after the model distribution, we use
the results obtained from the above section, i.e., the limiting
expected number of workers m∗ and the limiting probability
that a worker has a model p(j) from (8) and (7), respectively.

Since the process of update collection is similar to the
process of worker solicitation, a Markov chain model can
be similarly used to calculate the overall update delay. This
Markov chain model for describing the update collection
process is shown in Fig. 5. Here, the state denotes the number
of participating workers who currently have an update which
has not been collected by any CAV yet. For example, that there
are m∗ workers have the updates initially, so the first state is
simply denoted as m∗. Meanwhile, the terminal state T means
all the workers have successfully uploaded their updates to the
CAVs.

The link between two adjacent states describes one of the
participating workers uploads its update to any of the CAVs.
So the transfer rate between the state i and state i − 1 can
be denoted as iNλ. Here, i denotes the number of updates
that has not been collected at state i. N is the number of
CAVs in the system. λ describes how many times can a pair of
vehicle meet with each other in unit time as we have discussed
in Section IV-A. Then the state transfer delay between two
adjacent states can be simply denoted as the reciprocal of the
state transfer rate. For example, the delay of collecting first
update is 1/m∗Nλ and the delay of collecting second update is
1/(m∗−1)Nλ. As the consequence, the overall expectation of
delay of update collections for m∗ update-ready participating
workers E(DUC) is the sum of all the state transfer delay
alone the Markov chain, which can be denoted as:

E(DUC) =

m∗∑
i=1

1

iNλ
(9)

And if the vehicular network is dense, there can be a large
number of participating workers who have updates to be
collected. So m∗ is a large number. E(DUC) can be further
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Fig. 6. An example state transition of two nodes for the update collection and
the respective Markov chain.

approximately equal to (ln(m∗) + γ)/(Nλ). Here, γ is the
Euler-Mascheroni constant, which is approximately 0.57721.

In short, the update collection delay is determined by the
number of CAVs. The more CAVs present in the system, the
quicker the updated model can be collected by them.

D. Delay in Collecting the First Update

It is important to know how soon the first update can be
received by a CAV after the name of the available update is
published. Like in a real situation, in this analysis, we consider
the case that a CV having an update be a random act according
to the encounter history.

To analyze when the first update can be collected by a
CAV, we start with capturing the mobility history that a CAV
may encounter several non-participating worker CVs before
encountering the one with an update, we use an encounter
progression matrix. For a CAV y, let Fy be its encounter
progression matrix. An element (i, j) in the matrix is the
probability f(i, j) that describes the progression of y having
encountered CV i, then connecting CV j. Given there are total
M worker CVs, Fy is an M ×M matrix as shown below 10,
where f(k, k) = 1, k = 1, 2, · · ·,M .

Fy =


f(1, 1) f(1, 2) · · · f(1,M)
f(2, 1) f(2, 2) · · · f(2,M)

· · ·
f(M, 1) f(M, 2) · · · f(M,M)

 (10)

The update collection process can be described similar to
worker solicitation in Section IV-A. A CAV y may encounter
multiple CVs without being able to collect any updates until
the time of meeting the CV i. Now, during the encounter
progression, if the newly connected CV j has an update, we
say the progression yielded an update collection for the AV.

To analyze the encounter progression for y, let’s create a
Markov chain where the state space includes every possible
state for all the CVs in our analysis. Regarding every possible
state for a CV, it can either have the update or not, meaning
these two states completely define the possible states for a CV.
As such let’s create two different sets from every possible state
in our analysis. The first set K = {k1, k2, · · ·, km} contains
the states for not having update of every CV, and the second set
Z = {Z1, Z2, · · ·, Zm} contains the states for having update
of every CV.

With the above definition of every possible states in terms
of two sets, let’s first define the transition matrix R for
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the CAV y based on the entries in the matrix. An entry
(i, j) in R is the transition probability rij for transiting from
encounter of the CV i to the encounter of the CV j, where the
transition probability rij is expressed in terms of the encounter
progression probability f(i, j) and the probability of the CV j
for having an update, p(j), as given by (11). Fig. 6 presents an
example scenario involving two nodes for the transition. For
the two nodes scenario, the AV y could have been initially in
connection with either of the two nodes. Similarly, these two
nodes could have been in either of their own two states (having
updates or not having updates). Now, if the AV y moves such
that there is the change in the connectivity, it either moves
from the connectivity of node 1 to node 2 or from node 2 to
node 1. These new nodes could have been in either of their
states with the respective probability of the states. Based on
this, we construct the Markov chain. One thing that needs to
be noticed in Fig. 6 is that if the node transitions from a state
of already having update to a new state without an update, we
have the transition probability to be 1 since the AV already
has the required update. Similarly, we have the probability of
transition from state of already having update to the new state
of already having update, the transition probability is 0, as we
do not allow such transitions in our scenario (of first update
collection by an AV).

r(i, j) =


f(i, j)(1− p(j)), if State(i) ∈ K,State(j) ∈ K

f(i, j)p(j), if State(i) ∈ K,State(j) ∈ Z

1, if State(i) ∈ Z, State(j) ∈ K

0, otherwise
(11)

Based on the definition of the entries, we then construct the
entire matrix R. For this, we create a separate M×M diagonal
matrix, B, where each diagonal element is the probability,
p(j) for each CV. For example, the diagonal element in third
row and third column has the probability of having update
for the CV 3. Further, we define B = I −B, where I is the
identity matrix. Therefore, using (10) and (11), and matrix B,
the transition matrix R is expressed by (12), where each term
is M ×M matrix.

R =

[
FyB FyB
0 1

]
(12)

Thus, based on (12), we can conclude that the transitions
follow the characteristics of a terminating Markov chain, for
which, the upper triangular part FyB entirely characterizes
the transition matrix. Matrices 0 and 1 are M ×M matrices
with all elements being 0 or 1, respectively. Based on the
terminating Markov chain of the transitions, we next derive
the probability of a CAV collecting a new update at a time
instance t, w(i, t). For such, if B(i, 0) is the initial connectivity
of AV i, based on the phase type distribution, the probability
that an update is collected by an AV i at time t for the first
time, w(i, t) is given by (13).

w(i, t) = B(i, 0)

(
t−1∏
k=1

FiB

)
(FiB) (13)

Then the expectation delay of collecting the first update for
CAV i can then be represented as,

DCAV−Update
i =

∞∑
t=0

t ∗ w(i, t). (14)

Thus, as seen from (14), the latency of the first update
collection decreases with the increase in the probability of
the CVs having model for training.

E. Number of Collected Updates

Lastly, we would also like to study how many update can be
collected within a certain time constrain. In Update Collection
task, each worker produces a unique update for the model.
CAVs will collect as many unique updates from the partici-
pating workers as possible. Our interest is how many updates
can be collected. The question is equivalent to how many
participating workers, those with the updates, a CAV will
meet. Without loss of generality, we assume the training
process takes the same time at the workers. The analysis on
the expected number of unique updates received by CAVs
is similar to Section IV-A. Here, let j be the worker who
currently has an updated model waiting to be uploaded. Let
u(j, t) be the probability that an update from worker j was
received at the CAVs by the time t. Also, let v(j, i, t) be the
probability that a worker j establishes a connection with a
CAV i to send the update at time t. Thus, the probability that
the update from the worker was received at the CAVs by the
time t is given by (15).

u(j, t) = u(j, t−1)+(1− u(j, t− 1)) [1−
N∏

k=1

(1− v(j, k, t))]

(15)
As such, the expected number of participating workers

(mut) whose updates were received by the CAVs until the
time t can be expressed by (16).

µt =

m(t)∑
j=1

u(j, t) (16)

Now, let us assume expected probability of establishing a
connection between a participating worker j and a CAV i be
v̂(j, i). By using the same approach for deriving the (7), we
can expand the (15) and get the following:

u(j, t) = 1− [

N∏
k=1

(1− v̂(j, i))]t. (17)

When t approaches infinity, u(j, t) approaches 1. Thus, the
limiting value of the updates that a CAV receives, µ∞, can
be represented in (18). This means that all the updates will
eventually be received by the CAV if the time limit is optimal.

µ∞ =

m(∞)∑
j=1

1 = m∗ (18)

As what we have shown in (8), m(∞) = m∗ which means
the number of workers receiving the training model when
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giving enough time. In other word, if there is no boundary
of time, the number of updates can be collected by CAVs
purely depends on the the number of worker CVs who can
receive the training model.

V. PERFORMANCE EVALUATION

Sync4DL enhances the performance of managing distributed
learning tasks by adopting V-NDN, and by the three-tier
synchronization architecture. Hence, in this section, we eval-
uate Sync4DL’s performance in terms of the two aspects
respectively. The first aspect will be evaluated by comparing
the network performance when using directly the NDN-based
or the IP-based system in the model dispatch task. We do
not present the plots for the simulation results for these
comparisons but provide useful discussions on them for the
completeness of this work. The interested reader is referred
to our previous conference paper [13] for the plots. Note that
without tiers, the ESs will distribute a model to the worker
CVs, and subsequently collecting updates from the workers.
The second aspect will be evaluated by comparing the network
performance of the direct NDN-based system with Sync4DL
in the model dispatch task. For Sync4DL, model dispatch
is initiated by CAVs. The results will still be comparable
because CAVs are able to acquire a model at a separate time.
The connected vehicle scenario considered in the evaluation
includes both ESs and CVs. They communicate using VANET
protocols, where multi-hop networking occurs between the
vehicles but mobility may cause link break and change the
network topology constantly.

The open source network simulator ndnSIM is used.
ndnSIM implements NDN at the packet-level with full details
based on NS3 [33]. For our simulation, we adopt the CCLF
modification to ndnSIM, which provides a forwarding strategy
called as content connectivity and location-aware forward-
ing (CCLF) for VANET applications [8]. In our simulation,
configurations are made to generate V-NDN scenarios. For
Sync4DL, the 3-tier architecture is logical. Its implementation
is at application layer by configurations where a random subset
of vehicles are CAVs acting at TAV, and another random
subset of vehicles are the worker CVs. Their role in the
communication is determined by the sync group they are in.
For the model dispatch task used in the simulation, a CAV in
TAV publishes a model, and the worker CVs subscribe to the
model published by sending an Interest for the model. Any
CAV in TAV can respond back with the data packet of the
model. The sync Interest for Model Dispatch is implemented
by adding the keyword following the naming scheme. The
vehicle mobility traffic used in the simulations is generated
by the traffic simulator SUMO [34], in our case, an urban
scenario. The mobility traces are then used by ndnSIM for
evaluating the network performance.

A. Simulation Configuration

A few network setups are designed for the simulation. For
evaluating the performance of direct NDN-based system, two
setups are used. The first setup has only one edge server,

while the second setup has four edge servers. Correspondingly,
we have NDN-ES1 and NDN-ES4 for the direct NDN-based
communication. For evaluating the Sync4DL-based communi-
cation, additional setups are made to capture potential different
numbers of CAVs in the network that Sync4DL will use. As
such, we have three setups NDN-CAV0.2, NDN-CAV0.3, and
NDN-CAV0.4. The CAV penetration rates are 0.2, 0.3, and 0.4,
respectively. Such setups allow the simulation to run multiple
times with different overall vehicles. The comparisons will be
made with the setups of NDN-ES1 and NDN-ES4.

A one-square-kilometer area map in urban San Francisco is
imported to SUMO for the vehicle mobility simulation. The
area chosen consists of 9 streets and 7 avenues with some
alleys to better represent general urban scenario. Vehicles are
initially placed at random positions within the area. These ve-
hicles then select their random destinations within the area and
move towards them. The speed of the vehicles is determined
by the actual speed limits of the road sections. When a vehicle
reaches its destination, it picks another random destination and
proceeds until the end of simulation at 100 s. In NDN-CS1,
one edge server is present at the center of the area, whereas in
NDN-CS4, four ESes are placed in the four midpoints of the
four subareas on the map. The transmission range of the edge
servers is limited to 100m in the simulation. Thus, multi-hop
communication between the ESes, the CVs, and the CAVs will
occur in forwarding packets. A random subset of vehicles are
selected as the worker CVs that participate in actual training
process. Another random subset of the vehicles are selected
as the CAVs. These configurations are the same for both the
basic NDN and Sync4DL systems. In all the simulations, only
one model is available for dispatching by the producers in the
case of NDN.

B. Evaluation Metrics
The following metrics are used to evaluate the perfor-

mances.
• Satisfaction ratio (SR): The metric shows how success-

fully a system can deliver messages in a dynamic mobile
network. For NDN-based schemes, SR is the overall
number of satisfied Interests per total Interests initiated
during the simulation. For IP-based schemes, it is the
ratio of overall number of packets received at the server
to the number of request packets sent by vehicles.

• Average delay: It measures how quickly a request brings
back the data packet, i.e., the time after Interest is
issued and until the reception of the Data for NDN-based
systems. The average delay is normalized so it is the
ratio of the sum of all the delays to the count of such
Interests. Equivalently, for IP-based systems, it is all the
delays counting from the time from sending request till
receiving Data normalized to the total number of such
requests.

• Average hop counts: Average hop counts is the average
number of hops travelled by the successfully received
Data packets normalized to the total satisfied Interests for
NDN-based systems. Equivalently, for IP-based systems,
it counts the number of hops travelled by the Data packets
averaged over the total number of Data packets.
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Fig. 7. Server load comparing NDN and Sync4DL with varying total cars. Fig. 8. Load at server comparing NDN and Sync4DL with varying number
of CVs.

Fig. 9. Satisfaction ratio comparing NDN and Sync4DL with varying total
cars.

Fig. 10. Satisfaction ratio comparing NDN and Sync4DL with varying number
of CVs.

• Normalized interest transmissions: It is the overhead
created by the Interest packets in the wireless channel,
defined as the total number of Interests created in the
network throughout the simulation by total number of
satisfied Interests.

• Load at server: This measures the duplicate Interests as
extra load at the edge server(s). It is calculated as the
total number of Interests received at the producers per
each satisfied Interest.

C. Evaluation Results

In this section, we first provide a discussion on the com-
parison between the IP-based communication system and the
NDN-based communication system (figures not included).
Then, we present the results of comparison of direct NDN-
based system to the proposed Sync4DL system.

The average delay measure for the satisfied requests for
both IP-based and direct NDN-based system are similar, due
to only a few requests being satisfied, and the inherent caching
of NDN not being able to provide substantial improvement
in the delay measure. The delay measure,however, shows
better performance for direct NDN-based system in case of
the scenario involving 4 edge servers. This is due to the fact
that with 4 edge servers, more requests get satisfied, and the
inherent caching provided by the NDN network helps in early
satisfaction of later requests.

While the average delay of the satisfied requests between
NDN and IP systems are comparable for single edge server
setup, the average number of hops travelled by such requests
differ more drastically. For various number of cars in the
simulation, the average number of hops travelled by the Data
packets is almost always lower by 1 for NDN-based system
in comparison to that for the IP system. This shows that some
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Fig. 11. Average hops comparing NDN and Sync4DL with varying total cars. Fig. 12. Average hops comparing NDN and Sync4DL with varying number
of CVs.

Fig. 13. Normalized Interest transmissions comparing NDN and Sync4DL
with varying total cars.

Fig. 14. Normalized Interest transmissions comparing NDN and Sync4DL
with varying number of CVs.

of the few satisfied requests for the single edge server setup
were quenched from the nearby cache provided by the NDN
network. Similar differences can be found for the four server
setup as well. The higher number of edge servers provide
nearby data source for both IP system and NDN system for
the four server setup, but the presence of caching in NDN
further improves the hop counts.

The satisfaction ratio for both NDN and IP systems improve
with the presence of more sources in 4 edge server setups.
Similar to the previous metrics, however, the NDN-based
systems have comparatively better satisfaction ratios than IP-
based systems.

Figs. 7 and 8 compare the performance of direct NDN-
based system and the proposed Sync4DL with respect to the
metric of load at server. As seen from Fig. 7, with the proposed
solution, evidenced by the lower three lines, there is substantial
decrease in the load at the edge server(s) since much of the

Interests generated in the scenario are satisfied by the CAVs
in the TES. Furthermore, with higher penetration rates of
CAVs, the load at server decreases more as seen from the
comparison between NDN-CAV0.2, NDNCAV0.3, and NDN-
CAV0.4. Fig. 8 presents the comparison of load at server
against the number of CVs in the simulation scenario. For all
five setups, the load at server decreases with the increase in
the number of CVs. This occurs as the later Interests from the
CVs can be satisfied by the cached contents of the earlier CVs
that have already received them. Similar to Fig. 7, Sync4DL
has better performance than direct NDN, but the difference
gets less significant with the increase of number of CVs. This
is because, with the higher number of CVs in comparison to
the number CAVs, the caches in CVs outsmart those at the
CAVs.

The performance comparison between direct NDN-based
system and Sync4DL for satisfaction ratio is shown in
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Fig. 15. Average delay comparing NDN and Sync4DL with varying total cars. Fig. 16. Average delay comparing NDN and Sync4DL with varying number
of CVs.

Figs. 9 and 10. As seen from Fig. 9, the proposed Sync4DL
system has very good resilience to the packet losses evidenced
with the high satisfaction ratio. Another important observation
from the figure is that the satisfaction ratio for the proposed
system with different CAV penetration rate is almost similar,
meaning even with lower number of CAVs present in the TES,
the system becomes resilient to packet losses which clearly
proves the advantage of the proposed system. Direct NDN-
based system with single ES setup has very low satisfaction
ratio, since it is very susceptible to the packet losses in
the wireless media. Fig. 10 show that the number of CVs
(consumers) in the simulation have minimal impact for the
measure of average satisfaction ratio, as evidenced by almost
flat curves for all the compared systems.

Similarly, as seen from Figs. 11 and 12, the proposed system
has an advantage in terms of number of hops a successful
data packet has to travel. The presence of the CAVs with the
data in the CV’s neighborhood in the proposed system help in
reducing the number of hops. Another important observation
from Fig. 11 is that while the average number of hops for
the direct NDN-based system increases with the increase in
number of cars in the simulation, for Sync4DL with any CAV
penetration ratio, the curves remain flat in spite of the change
in number of cars in the simulation. This indicates that the
CAVs are more reliable sources of the data than the inherent
caching provided by NDN networks. Furthermore, Fig. 12
show that the number of worker CVs (consumers) have no
impact in the average number of hops, as the curves for all
the five systems remain almost flat with increasing number of
CVs for fixed number of total cars in the simulation.

Similarly, the proposed system reduces the wireless trans-
missions overhead in terms of Interest packets significantly as
evidenced from Figs. 13 and 14. The advantage of lower trans-
missions is that the wireless medium is less burdened, which
results in lower collision probabilities and eventually higher
throughput. Similar to the trends in the average hop counts,
while the Interest transmission overhead for direct NDN-based

system increases with the increase of cars in the simulation,
that for the proposed system (with any CAV penetration ratio)
remains almost constant. This further strengthens the claim
of system resiliency and reliability with the tiered solution.
While the number of CVs in the simulation had no impact
in the average number of hops, the Interest transmissions for
direct NDN-based system decrease with the increase in the
number of CVs, especially for the case of NDN-ES1 setup.
This phenomenon occurs because for a very few Interest
satisfied in the NDN-ES1 setup, the later requests from the
CVs get satisfied by the data present in the previous CVs that
have received them. The probability of occurrence of such a
phenomenon increases with the increase in the number of CVs
(consumers).

At the same time, the average delay for the satisfied
Interest is also significantly lower for the proposed system as
evidenced by the Figs. 15 and 16. An important observation
from Fig. 15 is that unlike previous metrics, the average delay
metric is less impacted by the number of cars in the simulation.
Similarly, as seen from Fig. 16, unlike other metrics discussed
before, average delay increases with the increasing number of
CVs (consumers) in the simulation for all the five setups. This
happens because of the contention at the channel with higher
number of consumers.

VI. CONCLUSION

The paper introduced a three-tier architecture and a pub-sub
model for training model distribution. Specifically, multiple
pub-sub channels are used to organize multiple phases in-
volved in the distribution of training model to worker vehicles
as well as to connected autonomous vehicles as users. The
pub-sub model builds on top of NDN platform, which helps to
reduce communication overhead, overall delay, and to simplify
routing in dynamic network topology. Such a system can also
provide high resiliency to packet losses in the mixed wireless
connected and autonomous vehicular networks.
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