
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS 463

qMon: A Method to Monitor Queueing Delay in
OpenFlow Networks

Sandhya Rathee, Shubham Tiwari, K Haribabu, and Ashutosh Bhatia

Abstract—In software-defined networking (SDN), the decou-
pled architecture provides opportunities for efficiently measuring
critical quality of service (QoS) parameters, such as delay.
Existing approaches, to dynamically obtain delay, are based
around calculating the transit time of a probe packet that travels
through the data links. These approaches are not efficient as the
probe packet injected into the data plane incurs considerable
overhead. Additionally, a separate probe packet is required to
measure the delay of each queue if more than one queue is
present on the egress port of a switch. Thus, these approaches
are not scalable. In this paper, we propose an efficient passive
delay estimation method, queueing delay monitoring (qMon),
to monitor queueing delay in SDN networks. qMon leverages
the OpenFlow protocol to obtain queue statistics from switches
at regular intervals, which are further employed to estimate
the mean queueing delay for each interval. Thus, the proposed
approach differs from the existing approaches as no packet is
injected into the data plane to measure delay. The results show
that for Poisson traffic and for bursty traffic with large ON
intervals, round trip time (RTT) values estimated using qMon
and ping utility demonstrate high correlation when the measured
RTT value is considered as time-series data.

Index Terms—OpenFlow, passive delay monitoring, queueing
delay, software defined network.

I. INTRODUCTION

OPENFLOW enables the separation of control plane and
data plane in software-defined networking (SDN) by

providing an interface to programmatically modify or retrieve
the switch configuration. As such, it provides a holistic view of
the network topology at the controller and enables fine-grained
monitoring of the network links. A more precise view of the
network provides opportunities for improving the efficiency of
the quality of service (QoS) routing algorithms.

In recent years, many organisations have been encouraging
their employees to use real-time applications such as remote
access, voice and video conferencing to make the work en-
vironment flexible and increase the work output. This is also
fueled by natural disasters such as a pandemic, due to which
employees prefer working from home. With the rapid increase
in usage of real-time applications, demands for meeting QoS
agreements have increased proportionally [1]. IP networks
provide best-effort service, i.e., all efforts are made to deliver
data but with no guarantee of successful delivery. Real-time

Manuscript received October 10, 2021; revised March 23, 2022; approved
for publication by Sangheon Pack, Division 2 Editor, May 29, 2022.

S. Rathee, S. Tiwari, K Haribabu, and A. Bhatia are with Birla Institute
of Technology and Science, CSIS Department, Pilani, Rajasthan. email:
{p2015007, f2016935, khari, ashutosh.bhatia}@pilani.bits-pilani.ac.in.

S. Rathee is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2022.000023

applications need a guarantee of timely arrival of data, which
must be provided by the routers and not just the network edges
(or the hosts) [2]. Therefore, it is necessary to implement
QoS strategies at the network routers to ensure better user
experience. In SDN, this is made possible by taking the QoS
decisions at the controller, and enforcing the QoS policies
at the switches using OpenFlow. To make efficient routing
decisions, the delay should be monitored continuously.

In SDN, there are various approaches to measure delay [3]–
[8]. Most of them are active measurement methods, i.e., they
construct a specialized control packet (probe packet) and use
OpenFlow protocol to inject the probe packet into the data
plane. The probe packet physically travels the network links
in the datapath and is forwarded back to the controller by a
switch at the end of the path. The time taken by the packet
to travel the path is used to calculate the delay. This approach
suffer from: 1) Data plane footprint, due to injection of probe
packets into the data plane, 2) monitoring overhead, due to the
processing required at the controller to create probe packets
and receive them, and 3) scalability issues, due to increase
in the number of probe packets required with the number of
switches, links and queues at the egress path. Details about the
current approaches for delay measurement and their issues are
discussed in Section II.

By studying network traces, authors in [9] have shown that
queueing delay can be significant in todays networks. With this
motivation, we propose a queueing delay monitoring (qMon)
mechanism in OpenFlow based SDN. Many researchers as
well as the Open vSwitch developers are working together to
add features to Open vSwitch [5], [10] and enhance its capa-
bilities. Therefore we take the liberty of slightly modifying the
OpenFlow message to collect queue statistics. Queue statistics
from Open vSwitch [11] are polled at regular intervals and
queueing theory is applied at the controller to the aggregated
queue statistics to obtain the estimated average waiting time
of packets in the queue over a given time interval. Under the
assumptions (discussed in Section IV), the estimated queueing
delay can then be used to further estimate the link latency.
This approach addresses most of the issues related to the
active delay measurement techniques discussed earlier. The
proposed approach relies on the queue statistics message, and
no packets are injected into the data plane. Further, qMon
can be integrated with existing traffic monitoring modules that
poll for queue statistics to estimate traffic load. The proposed
approach is scalable, as it requires sending only a single queue
statistics request message for estimating link latency at each
switch, irrespective of the number of transmit (TX) ports and
queues at the TX ports at each switch. Thus, qMon is scalable

1229-2370/22/$10.00 © 2022 KICS

464 JOURNAL OF COMMUNICATIONS AND NETWORKS

with respect to the size of the network. A detailed discussion
on the issues related to the probe packet based methods, and
how qMon addresses these issues are given in Section II.

Rest of the paper is organised as follows: Section II dis-
cusses the existing work on delay measurement and their
issues. In Section IV, we formulate the problem of finding
queueing delay as a single-queue single-server queueing prob-
lem and discuss how Little’s law can be applied to estimate the
queueing delay in an Open vSwitch datapath. It also discusses
the batch means method of finding confidence intervals for
the queueing delay. qMon is prototyped in Section V. In Sec-
tion VI, we discuss the experimental setup used for evaluation
of the proposed method. Section VII compares the delay trends
between qMon and ping RTTs and evaluates the accuracy of
the proposed method. Section VIII concludes the work.

II. ISSUES AND RELATED WORK

Delay measurements can be categorized into active and
passive types [12]. Active delay measurement involves con-
structing a special timestamped control packet (called a probe
packet) and injecting it into the datapath. At the end of the
path, the receiving node estimates the path delay by calculating
the transit time of the probe packet through the path. There
are several issues associated with the active delay measurement
methods in SDN:

1) Data plane footprint: The probe packets injected into the
data plane consume the bandwidth of the links involved
in the path. The bandwidth consumption increases with
an increase in packet injection frequency, leading to a
decrease in the available bandwidth and the possibility
of change in the traffic behavior [13].

2) Monitoring overhead and scalability: Active delay mea-
surement methods require creation of probe packets,
injecting them into the data plane, and processing the
probe packets at the switches on receiving them. Current
active probing methods do not consider the possibility
of multiple TC (traffic control) queues at the switch’s
egress ports. For measuring link delay for each of the
TC queues, it would be required to send a separate probe
packet through each of the queues. With the increase
in the number of TC queues at the egress ports and
the number of switches, the number of probe packets
required increases multiple-folds, which in turn increases
the processing overhead on the controller. When mea-
suring end-to-end delay, the number of probe packets
increases with an increase in the number of flows. In both
the cases, probe packets might be queued at the controller
on arrival [14], waiting to be processed. The waiting time
of the probe packets at the controller leads to inaccurate
link delay measurements.

Passive delay measurements revolve around 1) analyti-
cal/statistical methods to model the flow of traffic to estimate
delay, or 2) time stamping the existing traffic in the data-
path [12]. Limitations of passive methods are inaccuracies
in estimating delay. This is due to the assumptions made
while employing statistical methods to model the traffic, as

6ZLWFK
6�

6ZLWFK
6�

&RQWUROOHU

���3UREH?//'3

SDFNHW�,Q

���3UREH?//'3

SDFNHW�EDFN

���3UREH?//'3

SDFNHW�IRUZDUGLQJ

Fig. 1. Active delay monitoring in SDN networks.

it is challenging to have a single model that holds for all
traffic distributions. Use of existing traffic in the data plane
to measure delay is infeasible in OpenFlow enabled SDN,
as it requires time stamping packets in the data plane and
comparing their transit times across two end-points.

Next, we discuss the existing works on measuring the delay
in SDN using active and passive measurement methods.

A. Active Delay Monitoring Methods
Authors in [3]–[8] have proposed active delay monitoring

schemes in SDN. The method proposed in OFMon [3] uses
OpenFlow to send a time-stamped ethernet frame through
a link (say, S1 − S2, where S1 and S2 are switches), and
back to the controller, as shown in Fig. 1. The link delay
is calculated by subtracting the summation of link delays
between controller to switch S1 and S2, and a small processing
offset introduced by the controller, from the total transit
time of the probe packet. The link delay between controller
and switches can be estimated by measuring the RTT of
statistics request and statistics reply messages. Whereas, the
processing offset is calculated for the underlying hardware
by measuring the latency on an unused link. Although the
size of the probe packet used (24 bytes) is less as compared
to ICMP (196 bytes, request/reply 98 bytes each [3]), the
number of packets injected into the data plane increases with
the frequency of measurement, leading to an increase in data
plane footprint. The method being an active probe method also
suffers from active measurement issues such as monitoring
overhead and scalability.

In [4], [5], authors use timestamped LLDP (link layer
discovery protocol) packets (which are used for topology
discovery by the SDN controllers) to measure the link delay.
The method to calculate the link delay is mostly similar to
the method described in OFMon [3]. LLDP-looping [5] is
an extension of LLDP [4], which modifies Open vSwitch
to enable looping of LLDP packets between source and
destination to measure link RTT with high accuracy. While
the methods reuse LLDP packets to reduce the data plane
footprint, but since the LLDP packet generation is coupled
to the controller’s topology discovery module, thus their
measurement frequency is limited. With an increase in the
packet injection frequency, the method is similar to OFMon [3]
and has the same limitations.

RATHEE et al.: QMON: A METHOD TO MONITOR QUEUEING DELAY IN ... 465

Fig. 2. Number of switches vs Number of probe/control packet.

OpenNetMon [6] is based on similar principles as OF-
Mon [3], LLDP [4], and injects probe packets to measure the
one-way end-to-end delay of a flow. GRAMI [7] inserts probe
packets from selected nodes in the network to measure RTT
for a single link or between any two switches in the network.
It is resource efficient as it does not require involvement of the
controller for online RTT monitoring and requires only four
flow entries to be installed at every switch. TTL-Looping [8]
actively measures end-to-end one-way delay with microsecond
precision for flow by multiple iterations of the probe packet
along the flow path. This is made possible by storing the
required number of iterations in the probe packet’s counter
field. The flow entries along the path decrease the value of the
counter and forward the packet to the next-hop switch. The
last switch in the path reverses the direction of the packet. This
continues until the counter value becomes zero and the packet
matches the flow entry that sends it to the controller. The
transit time of the packet is divided by the number of iterations
to calculate the RTT. The RTT is then used to compute a one-
way delay using the traffic proportion in each direction.

The method proposed in [15] uses OpenFlow to send a
PACKET IN packet (instead of a LLDP packet) through a
link connecting the switches, and back to the controller,
as shown in Fig. 1. The link delay is calculated by sub-
tracting the summation of link delays between controller
to source switch and destination switch w.r.t the link from
the total transit time of the PACKET IN packet. The link
delay between controller and switches is estimated using by
ECHO REQUEST and ECHO RESPONSE messages. Laten-
cySmasher [16] estimates per link latency using time series
model and compares the results with default controller delay
measurements. It reduces the monitoring overhead but the
results are not overlapping with the true delay. In [17], the
authors proposed a mathematical solution to measure the
transmission and propagation delay. They put a threshold on
the bandwidth and assumed no queueing delay in the system.
Whereas in a real network the queueing delay varies depending
on the network traffic.

B. Passive Delay Monitoring Methods

To the best of our knowledge, not much work has been
done on passive delay measurements in SDN. Authors in [18]
propose a queueing model for measuring average queueing
delay of TCP flows in SDN. The parameters required as

input to the method, such as - packet length, buffer size, and
link bandwidth, can be computed by querying the switches
through OpenFlow. With a growing demand for streaming
services, which use UDP as the underlying protocol, the
network traffic might contain a high percentage of UDP
flows or a heterogeneous mix of multiple flows. Method
proposed in [18], however, works only for multiple TCP
flows. Approaches like [19] assume that the inter-arrival time
of the packets is exponentially distributed, and propose a
queueing model for estimating end-to-end delay. However, this
method focuses on modeling network nodes for computing the
required parameters for network design and planning, and does
not propose a method for real-time delay monitoring. In SDN
networks default configuration for communication is without
QoS support, thus it can affect the end-to-end performance of
network services and applications [20], [21].

In this paper, we propose a passive method to measure
link delay in SDN networks, without making any assumptions
about the traffic distribution. The proposed method solves the
issues stated earlier. It depends entirely on the queue statistics
messages from the switches and, as a result, has zero data-
plane footprints. Monitoring overhead is reduced considerably
as estimation of queueing delay only requires an application
of the Little’s formula over the queue statistics received.
Delay calculation can, therefore, be implemented inline with
other QoS related modules, and does not require a dedicated
controller module. The controller is now exempt from creating
probe packets and receiving them, thus considerably reducing
the processing overhead. Queue statistics message received
from a switch includes the queueing information for all the
queues at each of the ports. Therefore, queueing delay for each
of the queues can be computed with the information from a
single queue statistics message. Thus, the proposed method
is scalable, as it requires sending of a single queue-statistics
request message to each of the switches to monitor queueing
delay at all the links in the network. This is in contrast to
the existing active probe packet based methods which require
sending a probe packet to each of the output port queues in
all the switches to measure the queueing delay. Fig. 2 shows
the number of probe packets injected by active probe based
methods versus the number of control packets required in
qMon to measure the queueing delay at all the output ports
for a given number of switches in the network.

III. BACKGROUND

We apply queueing theory to model the flow of packets
through Open vSwitch [11] on a linux datapath1.

The linux TC consists of various queueing disci-
plines (qdiscs) which fall under two categories: Classless and
classful. The default queueing discipline in the traffic control
is pfifo fast [22], which can be changed through userspace
TC utility. Classful qdiscs are flexible, that is, classful or
classless child qdiscs can be attached to them, and can share
bandwidth with other classful qdiscs, when possible. Leaf

1To evaluate proposed method, we have used Linux OVS tree datapath,
provided by Open vSwitch v2.11.1.

466 JOURNAL OF COMMUNICATIONS AND NETWORKS

classes have a classless qdisc attached to them. The queues
managed by the classless qdiscs (attached to classful qdiscs)
are where the packets finally get enqueued or dequeued, by
the algorithm corresponding to that class. Examples of classful
qdiscs are HTB (hierarchical token bucket) and CBQ (class
based queueing) [23]. Classless qdiscs are elementary qdiscs
and are rigid in the sense that they cannot have children, nor
can they share bandwidth with other classes. They maintain
a queue, from which the packets get enqueued or dequeued
by the algorithm corresponding to the qdisc. Examples of
classless queueing disciplines are: pfifo, bfifo, TBF, SFQ,
pfifo fast (default used by linux TC) [23].

Linux-htb (from now on referred to as HTB) [24] is a
classful queueing discipline, which means child qdiscs can
be attached to it, which forms a tree like structure. Each HTB
class has a token bucket associated with it, which is filled with
tokens at a rate which is determined by the rate assigned to the
class. To dequeue a packet, HTB charges certain amount of
tokens proportional to the size of the packet from the bucket
associated with the class. If there are not enough tokens, then
the class tries to borrow tokens from the sibling classes. If
enough tokens are not available, the packet has to wait until
the bucket has enough tokens. Thus, bandwidth is limited by
throttling the packets, which is also known as shaping.

When a packet originating from a child class is dequeued
from its parent class, a number of tokens depending on the size
of the packet is charged from the bucket of the parent class.
These tokens then will not be available for packets originating
from other child classes. This ensures that child classes can
not have a rate more than their parent class. While enqueue-
ing and dequeueing, the kernel interacts only with the root
qdisc. To enqueue a packet, kernel calls htb→enqueue()
located in /net/sched/sch_htb.c, which further calls
htb→htb_classify() to classify the packet into one of
the child HTB classes. It walks the tree and enqueues to a
classless qdisc attached to one of the leaf nodes. To dequeue a
packet, the kernel calls dequeue() on the root qdisc, which
calls dequeue function of the child classes, and so on, until
a packet is dequeued from the leaf class, and is passed on
to the parent classes, charging tokens from the buckets in the
process, until it is dequeued from the root qdisc. The dequeued
packet is then placed onto the driver queue for transmission.
Open vSwitch does not support multiple levels of hierarchy in
classful queueing disciplines. It is therefore only possible to
configure multiple HTB queues at the first level. Borrowing
of tokens can still take place among the queues at the first
level. By default, the leaf nodes have a pfifo qdisc attached
to them, with a queue length of txqeueuelen, which is a
parameter associated with each interface. It has a default value
of 1000 packets, which can be changed with the iproute2
userspace utility. The queue length plays a significant role
during burst traffic, i.e., when there is a large amount of traffic
in a short period of time, this can lead to queues getting filled
up in a very short span of time. If a queue gets filled up beyond
its maximum size then the incoming packets are dropped.

IV. SYSTEM MODEL

We consider an SDN network with Open vSwitches.
Fig. 3(a) provides the internal details of the switch and
controller configuration. Every switch has multiple ports each
connected to host, switch or controller and every egress port
supports multiple queues (maximum number of queues per
port depends on the vendors) as shown in Fig. 3(b). We
consider an out-of-band controller configuration, the controller
is directly connected to every switch in the network. Open
vSwitch supports multiple forwarding tables and each for-
warding table consists of multiple flow entries. In SDN, the
first packet of a flow may not match any of the flow entries
and as a result the packet is sent to the controller. Now the
controller estimates the type of flow and establishes a path
for the flow through the network by installing flow entries
on all the switches in the path. It also specifies the flow to
output queue mapping in the action field of the flow entry. The
proposed solution needs only per queue statistics to measure
the delay. Controller can poll the per queue statistics using
QueueStatsRequest and can measure the queueing delay for
each queue. The solution is not dependent on the number of
the queues configured on the egress port.

We define link delay as the time required to transmit a
packet in its egress path, which is the sum of processing,
queueing, transmission and propagation delay. Throughout
this paper, we assume, that processing, transmission, and
propagation delays remain constant. Most of the modern
routers are capable of processing the packets at almost the
line rate. In SDN networks, a packet may not match any flow
entry and is consequently sent to the controller (slow path).
Although such packets experience larger processing delays
than usual, they are usually the first packet of a flow and help
the controller in establishing flow entries on the switches in
the flow path. Therefore delay experienced by such packets is
not representative of the delays experienced by majority of the
packets that match the flow entries and are forwarded through
the fast path. It is therefore assumed that each packet takes
almost the same amount of time to get processed. Transmission
delay is the time required to inject all the bits of a packet so
that it can be transmitted over the physical medium, and is a
function of the packet length. Assuming that the packet length
remains constant on an average, transmission delay can also
be assumed to be constant. Propagation delay is a function of
the path length, which remains constant for a given system
configuration.

Queueing delay is the time for which a packet is enqueued
in a queue before it is transmitted. Fig. 4 illustrates the ingress
and egress path of a packet through Open vSwitch on a
linux datapath: Packets are queued at the network interface
card (NIC) ring buffer on receive (RX) path, ingress queue of
the RX interface, egress queue of the transmit (TX) interface
and the NIC ring buffer on the TX path. The NIC ring buffer
is also known as the driver queue or the direct memory access
(DMA) ring buffer and is a part of the NIC. The ingress
and egress queues are a part of the TC subsystem of the
linux kernel [25], [26]. TC allows traffic shaping at the egress
queues, while only traffic policing is possible at the ingress

RATHEE et al.: QMON: A METHOD TO MONITOR QUEUEING DELAY IN ... 467

(a)

(b)

Fig. 3. (a) Open vSwitch (b) detailed diagram of two switches directly connected to each other.

5;�ULQJ�EXIIHU 7;�ULQJ�EXIIHU

3DFNHW�SURFHVVLQJ

SLSHOLQH

SILIR

/LQX[�7UDIILF�&RQWURO

KWE

1,& 1,&

,QJUHVV�TXHXH

,QJUHVV�SDWK (JUHVV�SDWK

/LQX[�7UDIILF�&RQWURO

Fig. 4. Queues in the ingress and egress path of the packet.

queues. It is assumed that for most of the time, the CPU is
capable of processing the packets at the input port so that
there is no buffering at the ingress queue. It is also assumed
that the TC egress queues are configured so that the total
bandwidth allocated to them does not exceed the line-rate of
the underlying physical layer. Under this assumption, packets
are buffered at the TC queues and no buffering takes place at
the egress driver queue. Link latency due to buffering at the TC
queues is a function of the traffic distribution arriving at the
queues. The next section summarises the queueing of packets
in linux traffic control and the linux-htb queueing discipline
to illustrate the same.

A. Queueing Model

Queueing delay is a function of the packet arrival and
service rate distributions. Due to the nature of the packet
scheduler (HTB), the service rate distribution is a function
of the packet size. Internet traffic, however, is dynamic in
nature which makes it tough to categorize the traffic into a
known distribution [27]. Therefore, our objective is to model
the TC queues as a single queue and a single server queueing

SILIR

� �

TOHQ

Fig. 5. A TC queue.

problem, and solve it for a general packet arrival and service
rate distribution using Little’s law,

L = λW, (1)

where L is the average number of packets in the queue, λ is
the average arrival rate, and W is the average waiting time.

Fig. 5 shows a TC queue modelled as a single queue, single
server queueing system. To meet end-to-end QoS requirements
of latency-sensitive applications, it becomes necessary to es-
timate delay at short intervals of time. So that the routing
decisions can be taken to adapt the current load conditions
and QoS requirements. Let the polling interval for the queue-
statistics be t. Let t1 and t2 be two consecutive polling epochs.

468 JOURNAL OF COMMUNICATIONS AND NETWORKS

Our objective is to obtain the average waiting time of packets
in the finite time interval [t1,t2], where t2 − t1 = t.

Given λav as the average rate of arrival of packets in the
queueing system, average queue length (Len) as the average
number of packets in the system over infinitely large time,
and assuming that Lenav is less than the queue size (i.e., no
packet loss due to filling of queue), the average waiting time
for packets in the queue can be obtained by using Little’s law
as W = Lenav/λav. The equality however does not necessarily
hold true over finite time intervals due to interval edge
effects [28]. Let Len(t1, t2) be the mean queue length, λ (t1, t2)
be the mean arrival rate of the packets, and W (t1, t2) be the
mean waiting time of a packet in the queue in the interval
[t1, t2]. Authors in [28] regard Len(t1, t2)/λ (t1, t2) = W (t1, t2)
as an estimator of the underlying true average. They also
suggest taking a statistical approach to estimate the waiting
times, and using the method of batch means to apply the esti-
mator W (t1, t2) to estimate a confidence interval for W (t1, t2).
Section IV-C discusses how to apply batch means method.

B. Estimator for W (t1, t2)

Our estimation of waiting time relies on queue statistics
obtained by sending an OpenFlow queue-stats request message
from controller to the switches. OpenFlow v1.3 queue-
stats reply message has a counter of the number of transmitted
packets (tx packets) through the queue. Let t1 and t2 be two
consecutive times at which the controller receives the queue
statistics. For a stable system, λ (t1, t2) is equal to the mean
throughput over the interval [t1, t2], and can be estimated using
(2).

λ (t1, t2) = (tx packetst2 − tx packetst1)/(t2 − t1). (2)

Queue statistics reply message however does not contain
any field with the queue length information. We observed
that the current length of each queue is maintained in the TC
subsystem of the kernel. By modifying netdev-linux.c
in Open vSwitch 2.11, queue statistics reply message can
be modified to include queue length. As such, the queue
statistics message reply after modification contains the follow-
ing fields: ⟨queue id, tx bytes, tx packets,qlen,errors, time⟩.
Len(t1, t2) can then be obtained in the following way:

Len(t1, t2) = (Lent1 +Lent2)/2. (3)

Estimator for W , in the interval [t1, t2] can then be obtained
by Little’s law as:

W (t1, t2) = Len(t1, t2)/λ (t1, t2). (4)

C. Confidence Intervals for W (t1, t2)

Consider m consecutive estimation intervals
[t0, t1], [t1, t2], · · ·, [tm−1, tm]. Let the estimated waiting times in
the intervals be W (t0, t1), W (t1, t2), · · ·,W (tm−1, tm). Confidence
intervals for the mean waiting time over the union of the
intervals [t0, t1] ∪ [t1, t2] ∪ ·· · ∪ [tm−1, tm] = [t0, tm], W (t0, tm)
can be calculated by applying the formulas given by [28].
We consider batches of size m = 5, by taking m consecutive
intervals. The 90% confidence interval can then be calculated

by formulas (24) in [28]. The corresponding formulas for
the current use case is given by (5) below. It is based on
Student’s t-distribution. For t0.025,m−1 = t0.025,4 = 2.132.

W (t0, tm) =
1
m

m

∑
k=1

W (tk−1, tk)

S(m)(t0, tm) =
1

m−1

m

∑
k=1

(W (tk−1, tk)−W (t0, tm))2, (5)

[
W (t0, tm) −

t0.025,m−1Sm(t0, tm)√
m

,

W (t0, tm)+
t0.025,m−1Sm(t0, tm)√

m

]
.

D. Calculation of Calibration Constant and Delay

Assuming that packet’s length and the system configuration
remain constant; processing delay, transmission delay and
propagation delay remain constant and can be calculated as
constants by sending probe packets through the empty link.
Let D(t1, t2) be the estimator for the mean link delay D(t1, t2)
in the interval [t1, t2]. D(t1, t2) is given by (6).

D(t1, t2) =W (t1, t2)+C, (6)

where C is the calibration constant. The confidence interval for
W (t1, t2) and hence, D(t1,t2) can be found out by batch interval
method as discussed.

For demonstration purpose, consider Fig. 1. To measure
calibration constant, C, for the link S1 − S2 a probe packet
is sent from controller (C0) to switch S1. Flow entry at switch
S1 sends the probe packet on the link S1 − S2. From switch
S2 the packet is sent back to the controller. The total time
taken by the probe packet to traverse C0 − S1 − S2 −C0 is
calculated by subtracting the arrival and the departure time of
the packet at the controller. To obtain the calibration constant
for the link S1−S2 the control link delays, C0−S1 and C0−S2,
are subtracted from the total transit time of the probe packet.
Control link delay between the controller and a switch is
calculated by sending a statistics request message from the
controller to the switch. The time elapsed between sending of
the stat request message and receiving the corresponding reply
at the controller is halved (assuming symmetric delays) to get
the one way delay on control link. The control link delays,
C0 − S1 and S2 −C0, are subtracted from the total time to
traverse C0 − S1 − S2 −C0 to get the delay on link S1 − S2.
The calibration constant is obtained by averaging over the
delays obtained from several iterations of the method discussed
above. Similar procedure is used to obtain the calibration
constant for the experimental topology.

V. PROTOTYPING

The proposed queueing delay monitoring approach,
qMon, requires a slight modification of Open vSwitch
v2.11.1 and Ryu running on Ubuntu 18.04 LTS as the
underlying operating system. Open vSwitch leverages
RTNETLINK to communicate with the TC subsystem

RATHEE et al.: QMON: A METHOD TO MONITOR QUEUEING DELAY IN ... 469

Fig. 9. 90% confidence interval for qMon RTT for Poisson traffic, ps = packet size, λ = mean packet arrival rate.

470 JOURNAL OF COMMUNICATIONS AND NETWORKS

TABLE I
PEARSON CO-EFFICIENT FOR ALL THE EXPERIMENTS.

Experiment name Correlation coefficient
pois-1 .99
pois-2 .99
B-2000-500 .97
B-1000-500 .87
B-200-200 .84
B-500-1000 .60
B-500-2000 .74
B-100-1000 .32

of the Linux kernel to add/remove or get a queueing
discipline [29]. To get queue-statistics, ovs switch makes
a RTNETLINK request message (RTM_GETQDISC).
The corresponding RTNETLINK reply received from the
kernel is parsed into struct gnet_stats_basic
and struct gnet_stats_queue defined in
linux/gen_stats.h. The struct netdev queue stats
defined in ovs/lib/netdev.h represents queue-stats
reply. OpenFlow 1.3 queue-stats reply does not have a field
for queue length. Open vSwitch v2.11.1 therefore does not
include a field for queue length in struct netdev queue stats.
We observed that for experimental purposes, we can add
a queue length field (‘uint64_t qlen’) to struct
netdev_queue_stats. The field qlen is populated with
queue length received in the struct gnet_stats_queue
and is propagated up to the controller as the queue-statistics
reply.

The implementation of qMon does not require any modi-
fication in the packet processing pipeline of Open vSwitch.
Enterprise and academicians often like to customize SDN to
suit their specialised requirements for QoS and security. If
the target switches are hardware switches, it only requires
changes to the software/firmware of the switches to support
qMon. Enterprise infrastructure administrators/engineers can
specify their specific customization to to the manufacturers
and request them to customize the software/firmware of the
switches to meet their needs for QoS optimizations.

Since the queue-stats reply is modified to include queue
length, minor modifications are made to Ryu controller, so
that it can recognize the new field as queue length. The delay
monitoring module in the controller makes queue-statistics
request messages to all the switches in the network at fixed
intervals. We fixed the time interval to 500 ms. For the time
interval [t1, t2], (where t2 − t1 = 500 ms) the module uses
the queue statistics received at time t1 and t2 to estimate the
mean queueing delay for the interval [t1, t2]. The module can
optionally store the estimated mean queueing delay for the last
m intervals to calculate a 90% confidence interval for the union
of these intervals. In [28] the authors suggest the value of m
be equal to 5, which is the value considered in the evaluation
section.

VI. EXPERIMENTAL SETUP AND EVALUATION CRITERIA

We evaluate the performance of qMon on a testbed consist-
ing of three systems installed with the patched version of Open
vSwitch connected in a linear topology. A host is connected to
each edge switch, and all the switches are directly connected
to the controller. The topology for the testbed is shown in
Fig. 6. The link bandwidth is set to 10 Mbps on link S1–S2
and 9.9 Mbps on link S2–S3. Bandwidth for link S2–S3 is less
than link S1–S2 to ensure buffering of packets on link S2–S3.
Each of the systems has the following capabilities - Processor:
Intel(R) Core(TM) i5-4590 CPU @3.30GHz, RAM: 32 GiB
(8 GiBx4), OS: Ubuntu 18.04 LTS (Linux 4.15.0-91-generic),
NIC: 1 Gbits/sec between two switches or hosts, 100 Mbits/sec
between controller and switches.

We use D-ITG [30], to generate traffic from host h1 to host
h2. For each experiment, the traffic rate is set at a value to
enable moderate buffering at TC queues. The evaluation is
performed over two kinds of traffic distributions: bursty with
exponential ON/OFF periods and Poisson with exponentially
distributed packet length. For bursty traffic, packet length
is set to 512 bytes with varying ON/OFF ratio in different
experiments. The experiments are named as B−X −Y , where
B means bursty traffic, X is ON time, and Y is OFF time in ms.
For Poisson traffic, mean packet length is set to 930 bytes and
512 bytes for experiments pois-1 and pois-2 respectively.
However, since RTT measurements are running parallelly, the
observed mean packet size and arrival rates are 936 and
1362, 525, and 2362 for pois-1, and pois-2 experiments
respectively.

The delay per link is estimated using qMon. The round
trip time is estimated by adding the estimated link latencies
at the links S1–S2, S2–S3, S3–S2, S2–S1. The delay trends
obtained from the qMon RTT are compared with ping RTT
measurements. Ping has been used as a standard tool for
RTT measurements in IP networks. It is therefore a reliable
measure of RTT. Although ping measurements are active RTT
measurements, it will not change the traffic behavior in the
current setup, since a traffic generator is being used to generate
traffic of a fixed distribution.

It is complicated to compare two-time series data due to
the high frequency of variations in measurements. It is, there-
fore, desirable to visualize and compare the low-frequency
component of the delay variations. We consider the delay
measurements as discrete signals and apply a low pass filter
to the delay signals. This will help us to compare the low-
frequency components of qMon and ping RTT signals. We use
windowed-sinc as our low pass filter [31]. For constructing
the filter, two parameters are required: Cut-off frequency(fc)
as a fraction of the sampling rate and transition band (b) as
a fraction of the sampling rate. The length of the filter N can
be determined by the formula given in (7).

N = 4/b. (7)

The low frequency signals are obtained by convulsing the
sinc function(c0(n)) with the delay signal. The sinc function
is constructed as shown in (8), (9), and (10).

c1(n) = sinc(2∗ fc ∗ (n− (N −1)/2)), (8)

RATHEE et al.: QMON: A METHOD TO MONITOR QUEUEING DELAY IN ... 471

Fig. 10. Low pass delay signals for qMon versus ping RTT for bursty traffic.

window(n) =0.42−0.5∗ cos(2∗ pi∗n/(N −1))
+0.08∗ cos(4∗ pi∗n/(N −1)), (9)

c0(n) = c1(n)∗window(n). (10)

We set the cut-off frequency (fc) at 1% of the sampling rate
and the transition bandwidth (b) at 8% of the sampling rate.

Quantitative evaluation of the trend match between qMon
and ping RTTs has been done by comparing Pearson’s correla-
tion coefficient between the low-pass delay signals. Pearson’s
correlation coefficient measures the linear synchrony between
two signals. Values between −1 and 0 indicate a negative
correlation, 0 and +1 indicate a positive correlation. In the
current use case, it is already known that there is no implicit
co-relation between qMon and ping RTT signals. However,
the correlation values are an indication of the similarity
between the signals. Figs. 7(a) and 7(b) compare the average
queue length and average link bandwidth utilization for the
experiments conducted.

VII. RESULTS

A. Poisson Traffic

It can be observed from Figs. 8(a) and 8(b) that low
frequency qMon and ping RTT signals in traffics pois-1
and pois-2 closely coincide. The ping RTT signals in Fig. 8
have been offset by +70 ms for better visibility of qMon and
ping RTT signals. Table I shows that the correlation values
for pois-1 and pois-2 traffics are quite high (≥ .99).
The trend match can be attributed to the fact that queueing
system is in steady state. Since the input traffic rate is Poisson
distributed and packet sizes are exponentially distributed,
the queueing system can be approximated as M/M/1/K with
K (buffer capacity) = 1000 packets. The queueing system
therefore reaches a steady state with Poisson distributed traffic.
Smaller value of 90% confidence intervals in Figs. 9(a) and
9(b) also indicate that average waiting time estimations are
fairly accurate in case of Poisson traffic.

B. Bursty Traffic

It can be observed from Figs. 10(a) and 10(b) that low
frequency qMon and ping RTT signals in B-2000-500

472 JOURNAL OF COMMUNICATIONS AND NETWORKS

(a) (b)

(c) (d)

(e) (f)

Fig. 11. 90% confidence interval for qMon RTT for bursty traffic.

and B-1000-500 closely coincide. Table I shows that the
correlation values for B-2000-500 and B-1000-500 are
quite high. For B-200-200, B-500-1000, B-500-2000
and B-100-1000, the correlation values decrease with a
decrease in the ratio of ON/OFF periods, with the exception
of B-500-2000. High correlation values for B-2000-500
and B-1000-500 can be attributed to the steady state of the
queueing system due to generation of traffic at a constant rate
during ON periods. Since the ON periods are of larger duration
than OFF periods for B-2000-500 and B-1000-500, the
queue is in a steady state for a larger duration leading to accu-
rate waiting time estimations. As the ratio of ON/OFF period
decreases, the duration for which the queue is in a steady
state decreases (Table I), with the exception of B-500-2000.
Higher correlation value of B-500-2000 than B-500-1000
may be a result of (1) same length of ON periods and
measurement interval (500 ms), which might lead to syn-
chronization of OFF periods and the measurement epochs.
Probability of this happening is less because ON/OFF periods

are exponentially distributed, and (2) Longer mean OFF period
(2000 ms) in B-500-2000 than in B-500-1000 (1000 ms).
Longer OFF periods lead to steadiness in the system, leading
to higher correlation between estimated and measured RTT.
Low correlation value in B-100-1000 is expected as the ON
period (100 ms) is very less as compared to the measurement
interval (500 ms), because (1) even though the ON/OFF
periods are exponentially distributed, because of very low
mean ON period (100 ms) there is a high probability of
measurement epochs synchronizing with the OFF periods. (2)
Even when the measurement intervals are synchronized with
the ON periods, the burst of traffic happens only for 100 ms,
but the average of all burst packets is taken over a time
interval of 500 ms, leading to a inaccurate and numerically low
estimated TX rate. The numerically low estimated TX rate
leads to very high estimated values of waiting time by Little’s
law. This is apparent on observing Fig. 10(f). Figs. 11(a)–
11(f) show the 90% confidence interval plots for experiments
with bursty input. Confidence interval plots indicate a similar

RATHEE et al.: QMON: A METHOD TO MONITOR QUEUEING DELAY IN ... 473

trend. B-2000-500 and B-1000-500 have narrow confi-
dence intervals on an average as compared to B-200-200,
B-500-1000, B-500-2000 and B-100-1000.

VIII. CONCLUSION

We proposed qMon, a scalable and low overhead queueing
delay monitoring method. However, the method does not work
well for the bursty traffic with burst interval smaller than the
current polling interval. To obviate this issue, the approach can
be extended to maintain a < queuelength, timestamp > vector
in the switch itself which is updated at very short intervals of
time. The controller can then poll for queue length vector at
larger intervals and still construct a more accurate view of the
queueing delay experienced by the packets. The idea although
promising, requires a rigorous experimental evaluation, and we
defer it for future work. Although we have demonstrated qMon
on an OpenFlow based network, the technique can be applied
in any network architecture which is capable of polling queue
length information from switches/routers to a central location
capable of processing the information.

REFERENCES

[1] M. Karakus and A. Durresi, “Quality of service (qos) in software defined
networking (sdn): A survey,” J. Netw. Comput. Applicats, vol. 80, pp.
200–218, 2017.

[2] L. L. Peterson and B. S. Davie, Computer networks: A systems approach.
Elsevier, 2007.

[3] K. Phemius and M. Bouet, “Monitoring latency with OpenFlow,” in
Proc. IEEE CNSM, 2013.

[4] L. Liao and V. C. Leung, “LLDP based link latency monitoring in
software defined networks,” in Proc. IEEE CNSM, 2016.

[5] L. Liao, V. C. M. Leung, and M. Chen, “An efficient and accurate link
latency monitoring method for low-latency software-defined networks,”
IEEE Trans. Instrum. Meas., vol. 68, no. 2, pp. 377–391, 2019.

[6] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow software-defined networks,” in Proc.
IEEE NOMS, 2014.

[7] A. Atary and A. Bremler-Barr, “Efficient round-trip time monitoring in
OpenFlow networks,” in Proc. IEEE INFOCOM, 2016.

[8] V. Altukhov and E. Chemeritskiy, “On real-time delay monitoring in
software-defined networks,” in Proc. IEEE MoNeTeC, 2014.

[9] A. Csoma, L. Toka, and A. Gulyás, “On Lower Estimating Internet
Queuing Delay,” in Proc. IEEE TSP, 2015.

[10] B. Pfaff et al., “The design and implementation of open vswitch,” in
Proc. USENIX NSDI, 2015.

[11] B. Pfaff et al., “The Design and Implementation of Open vSwitch,” in
Proc. USENIX NSDI, 2015.

[12] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE
Instrum. Meas. Mag., vol. 18, no. 2, pp. 42–50, 2015.

[13] S. Zander, G. Armitage, T. Nguyen, M. Lutz, and B. Tyo, “Minimally
intrusive round trip time measurements using synthetic packet-pairs,”
Tech. Rep. 060707 A, Centre for Advanced Internet Architectures,
Swinburne University of Technology, 2006.

[14] “Ryu SDN framework using OpenFlow 1.3,” [Online] Available: https:
//osrg.github.io/ryu-book/en/Ryubook.pdf.

[15] P. Sossalla, J. Rischke, and F. H. Fitzek, “Enhanced one-way delay
monitoring with openflow,” in Proc. IEEE ICOIN, 2022.

[16] M. Rahouti, K. Xiong, Y. Xin, and N. Ghani, “Latencysmasher: A
software-defined networking-based framework for end-to-end latency
optimization,” in Proc. IEEE LCN, 2019.

[17] K. Venkatesh, L. Srinivas, M. M. Krishnan, and A. Shanthini, “QoS
improvisation of delay sensitive communication using SDN based multi-
path routing for medical applications,” Future Generation Comput. Syst.,
vol. 93, pp. 256–265, 2019.

[18] M. Haiyan, Y. Jinyao, P. Georgopoulos, and B. Plattner, “Towards
SDN based queuing delay estimation,” China Commun., vol. 13, no. 3,
pp. 27–36, 2016.

[19] W. Li, J. Yang, and D. Zhang, “A method to calculate queuing delay
for real-time services in IP networks,” pp. 1–4, 2010.

[20] T. Chin, M. Rahouti, and K. Xiong, “Applying software-defined net-
working to minimize the end-to-end delay of network services,” ACM
SIGAPP Appl. Comput. Review, vol. 18, no. 1, pp. 30–40, 2018.

[21] M. Rahouti, K. Xiong, T. Chin, and P. Hu, “SDN-ers: A timely software
defined networking framework for emergency response systems,” in
Proc. IEEE SCOPE-GCTC, 2018.

[22] [Online] Available: https://lartc.org/manpages/tc-pfifo\ fast.pdf.
[23] “Linux advanced routing & traffic control HOWTO,” [Online] Available:

https://www.lartc.org/lartc.html.
[24] [Online] Available: https://lartc.org/manpages/tc-htb.pdf.
[25] L. Angrisani, G. Ventre, L. Peluso, and A. Tedesco, “Measurement of

processing and queuing delays introduced by an open-source router in
a single-hop network,” IEEE Trans. Instrum. Meas., vol. 55, no. 4, pp.
1065–1076, 2006.

[26] W. Almesberger et al., “Linux network traffic control—implementation
overview,” 1999, [Online] Available: http://marco.uminho.pt/disciplinas/
ST/traffic\ control\ on\ linux.pdf.

[27] S. Floyd and V. Paxson, “Difficulties in simulating the Internet,”
IEEE/ACM Trans. Netw., vol. 9, no. 4, pp. 392–403, 2001.

[28] S.-H. Kim and W. Whitt, “Statistical analysis with Little’s law,” Oper-
ations Research, vol. 61, no. 4, pp. 1030–1045, 2013.

[29] “Linux Programmer’s Manual,” [Online] Available: http://man7.org/
linux/man-pages/man7/rtnetlink.7.html.

[30] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation of
realistic network workload for emerging networking scenarios,” Comput.
Netw., vol. 56, no. 15, pp. 3531–3547, 2012.

[31] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. USA: California Technical Publishing, 1997.

Sandhya Rathee completed her doctorate from Birla
Institute of Technology and Science, Pilani in 2021
under the supervision of Dr. K Haribabu and Dr.
Ashutosh Bhatia. She got CSIR - International travel
grant for a conference in Japan. Also, she had been
selected for Indo German Challenge for Sustainable
Production - an innovative program between BITS,
Pilani, India and Technical University (TU), Braun-
schweig, Germany. She is an active reviewer of
Computer Networks, Elsevier. Her research interests
lie at the intersection of computer networks and

software defined networking.

Shubham Tiwari graduated with a B.E. Computer
Science and M.Sc. Mathematics from Birla Institute
of Technology and Science, Pilani in 2021. His
interests are systems and networking.

474 JOURNAL OF COMMUNICATIONS AND NETWORKS

Haribabu K (Senior Member, IEEE) received the
PhD degree in computer science from Birla Institute
of Technology & Science, Pilani, Rajasthan, India in
2013. He is currently working as Assistant Profes-
sor at BITS Pilani. He has actively participated in
institutional development activities at BITS Pilani
by leading several projects to modernize its IT
related activities as well as automate its several
academic activities. His research interests include
SDN, programmable networks, IoT, edge and cloud
computing.

Ashutosh Bhatia is an Assistant Professor in the
Department of Computer Science and Information
Systems, Birla Institute of Technology and Science
Pilani. He completed his PhD and postgraduate
degree from Indian Institute of Science (IISc), Ban-
galore and B.E. degree from Barkatullah Univer-
sity, Bhopal. Earlier, he also worked as scientist
in Defence Research and Development Organization
(DRDO), India for nearly five years and worked
as research engineer in Samsung India. During his
stay in Samsung, he was also the member of MAC

core committee of IEEE 802.15.6 standardization group, and also, patented a
couple of methods related to the MAC protocol of wireless body area network
(WBAN). His research interests include building new designs, protocols,
algorithms and theories that improve the security, performance and robustness
of various networks and systems.

