
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022 283

Iterative Coding Scheme Satisfying GC Balance
and Run-Length Constraints for DNA Storage

With Robustness to Error Propagation
Seong-Joon Park, Yongwoo Lee, and Jong-Seon No

Abstract—In this paper, we propose a novel iterative encoding
algorithm for DNA storage to satisfy both the GC balance and
run-length constraints using a greedy algorithm. DNA strands
with run-length more than three and the GC balance ratio
far from 50% are known to be prone to errors. The proposed
encoding algorithm stores data with high flexibility of run-length
at most 𝑚 and GC balance between 0.5± 𝛼 for arbitrary 𝑚 and
𝛼. More importantly, we propose a novel mapping method to
reduce the average bit error compared to the randomly generated
mapping method. By using the proposed method, the average
bit error caused by the one base error is 2.3455 bits, which
is reduced by 20.5%, compared to the randomized mapping.
Also, it is robust to error propagation since the input sequence
is partitioned into small blocks during the mapping step. The
proposed algorithm is implemented through iterative encoding,
consisting of three main steps: randomization, M-ary mapping,
and verification. It has an information density of 1.833 bits/nt in
the case of 𝑚 = 3 and 𝛼 = 0.05.

Index Terms—Bioinformatics, constrained coding, DNA stor-
age, error propagation, greedy algorithm, iterative algorithm.

I. INTRODUCTION

RCENTLY, there is a massive amount of data being
produced every day. In 2025, nearly 175 zettabytes of

data are expected to be created [1]. To handle and store all
this information, the need for a new archival storage system
has arisen. There are three main important aspects of new
archival systems: density, durability, and energy cost. However,
current storage such as magnetic tape, hard disk drive (HDD),
and solid-state drive (SSD) cannot store exponentially growing
data. Therefore, new archival storages that satisfy these con-
straints and store a huge amount of data have been researched.

Among several candidates, deoxyribonucleic acid (DNA)
emerges as a suitable medium for a new storage system [2],
which is called DNA storage. The main idea is to map the
data to four nucleotides of DNA, adenine, cytosine, guanine,
and thymine, denoted by ‘A’, ‘C’, ‘G’, and ‘T’, respectively.
Since the size of nucleotides is extremely small, DNA storage
can theoretically store up to one exabyte of data per cubic
millimeter. It is already proved by the experiment that in one
gram of DNA, nearly 215 petabytes of data can be stored [3].
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Also, data can be stored for more than centuries in DNA
storage, and also has low energy costs for storing the data.
These are the reasons why DNA storage is more suitable for
future archival storage compared to other devices, such as
flash memory, HDD, and magnetic tape [4]. Because of these
reasons, DNA storage is currently an active area of research
in storage systems.

Despite these many advantages, DNA storage has several
shortcomings that should be overcome. DNA storage has
a relatively high synthesis cost. This problem requires an
efficient encoding algorithm to store a large amount of data
in less number of nucleotides. Also, the error rate of DNA
storage is greatly influenced by the biochemical structure of
DNA. The following two biochemical constraints should be
met because these can cause a high error rate in both the
synthesizing and sequencing processes.

• GC balance ratio: GC balance ratio is defined by the
ratio of the number of G and C nucleotides to the whole
sequence. This ratio needs to be near 0.5 because high
or low GC balance ratio causes high drop out rates and
polymerase chain reaction (PCR) errors [3], [5], [6].
Balancing this ratio leads to a lower error rate during
both synthesis and sequencing processes.

• Maximum run-length: Maximum run-length is the maxi-
mum number of consecutive identical nucleotides in the
DNA strand. It is known that substitution and deletion
error rates increase if the maximum run-length is longer
than six [5]-[6]. This would also cause a high error rate
during the DNA storage processes.

Therefore, these two biochemical constraints should be met
to have better performance in DNA storage.

There are many studies to preserve these two constraints.
Goldman et al. [7] compressed the raw data using Huffman
coding and preserved the maximum run-length limit. However,
they did not preserve the GC balance ratio. Xue et al. [8]
did not preserve the maximum run-length limit, but made
GC balance ratio exactly 0.5 with deletion/insertion/mutation
error correction. Some other researches preserved both the GC
balance ratio and the maximum run-length limit. Erlich and
Zielinski [3] used Luby transform and screening method to
preserve these two constraints and proposed DNA Fountain
code which stores the data with high physical density. Lu
et al. [9] also applied DNA Fountain encoding scheme to
preserve both constraints and proposed a new log-likelihood
ratio calculation for low-density parity-check codes. Yazdi et
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al. [10] preserved the GC balance ratio by partitioning data
into eight bases and using specialized constrained coding.
Also, they limited the maximum run-length by using ho-
mopolymer check codes. Mishra et al. [11] used the minimum
Huffman variance tree and its complementary tree to compress
the data and limit run-length at most 1. Also, they limited the
GC balance ratio to nearly 0.5. Immink and Cai [12], [16]
proposed mathematical DNA coding that preserves both the
GC balance ratio and maximum run-length limit. Wang et
al. [17] proposed DNA coding with high information den-
sity of 1.92 bit/nt, which converts 23 bits into 11 nt DNA
sequence. They preserved both the GC balance ratio between
40% to 60% and the maximum run-length at most three by
using a finite state transition diagram. Also, they conducted
a practical DNA storage experiment using their constrained
coding method [19]. Deng et al. [20] proposed a hybrid
coding architecture consists of modified variable-length run-
length limited constrained codes and protograph low-density
parity-check code. Nguyen et al. proposed a [18] proposed
constrained coding with information density of 1.92 bit/nt
in error-free channel. They used run-length limited code to
preserve the maximum run-length at most three and Knuth’s
balancing technique to preserve the GC balance ratio between
40% to 60%. Also, they applied error-correcting code to handle
a single substitution/insertion/deletion error.

In this paper, we propose a new iterative DNA coding
algorithm that satisfies two constraints mentioned above with
high information density. The proposed method guarantees
high flexibility for various constraints. The DNA strand with
the GC balance ratio between 0.5±𝛼 and maximum run-length
of 𝑚 can be obtained. One can flexibly set the desired values 𝛼
and 𝑚 for the proposed iterative encoding algorithm. Not only
these two constraints but also other desired constraints such
as avoiding specific patterns (for example, primers) of DNA
can be set. There are two main contributions in this paper: i)
reduction in the number of average bit errors, ii) robustness
to error propagation. By using the proposed mapping table,
the number of average bit errors is reduced compared to
the randomly generated mapping table. The average bit error
caused by one base error is 2.3455 bits, which is reduced
by 20.5%, compared to the randomized mapping method.
Also, the proposed work uses a 6nt-long DNA sequence,
which is very short and makes robustness to error propagation.
Although the length of the encoded sequence is very short,
it has a high information density. These two features show
that the proposed method is robust to error propagation. The
proposed method is implemented through iterative encoding,
which consists of three steps: randomization, 𝑀-ary mapping,
and verification. Since the GC balance ratio and maximum
run-length limit are two main constraints for DNA storage,
this paper mostly focuses on preserving these two constraints,
especially for the typical DNA data storage of 𝑚 = 3 and
𝛼 = 0.05 [3], [6].

This paper is organized as follows. Section II contains
definitions and preliminaries to understand concepts in DNA
storage. In Section III, we describe the proposed iterative
coding algorithm consisting of three steps that compress the
raw data with two constraints. In Section IV, we calculate the
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Fig. 1. Randomization algorithm.

information density by using well-known raw data files and
compare them with existing works. Section V concludes the
paper.

II. DEFINITIONS AND PRELIMINARIES

In this paper, we define four types of nucleotides as quater-
nary numbers: 𝐴 = 0, 𝐶 = 1, 𝐺 = 2, and 𝑇 = 3.

Definition 1. Let v = (𝑣1, · · ·, 𝑣𝑛), 𝑣𝑖 ∈ {0, 1, 2, 3}, denote a
DNA strand of length 𝑛 with quaternary elements. Define the
number of ‘1’ and ‘2’ in v as 𝜂(𝐺,𝐶). Then GC balance ratio
is defined as

𝑟𝐺𝐶 =
𝜂(𝐺,𝐶)

𝑛
.

In this paper, we say that DNA strand is balanced if 0.5−𝛼 ≤
𝑟𝐺𝐶 ≤ 0.5 + 𝛼 for small 𝛼.

Definition 2. Let 𝑚 be the maximum number of consecutively
repeated identical nucleotides in the DNA strand, and we call
it maximum run-length. In this paper, we say that the DNA
strand satisfies the maximum run-length limit 𝑚.

III. PROPOSED ITERATIVE ENCODING ALGORITHM

In this section, we propose a new encoding algorithm of
DNA coding with two constraints in detail. It is implemented
through iterative encoding, which consists of three steps: ran-
domization, 𝑀-ary mapping, and verification. DNA sequences
created by the proposed encoding algorithm satisfy given con-
straints, the GC balance ratio, and the maximum run-length. It
is worth noting that, depending on the application, any efficient
source coding can be applied before the proposed encoding
algorithm. Since raw data files are used in our experiment,
we apply the source coding step before the proposed encoding
algorithm. Here, we perform binary source coding, considering
each divided block of length 𝑘 as a source symbol. Then the
compressed output 𝐹comp, as a binary form, is obtained.

A. Randomization

After obtaining the compressed output 𝐹comp, we perform
randomization to make the GC balance ratio between 0.5±𝛼.
In the coding theory, there is a scheme called guided scram-
bling [15], which is similar to the randomization step. It is
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TABLE I
COMPARISON OF SUBSTITUTION ERRORS ACROSS DIFFERENT BASES AND AVERAGE BIT ERROR.

Base to base G to A G to T C to A C to T T to C A to G T to A A to T T to G G to C A to C C to G
Sub. error prob.(%) 14.133 13.773 8.894 7.842 7.142 7.067 7.050 7.046 6.948 6.889 6.826 6.387
Average bit error 2 2.357 2.214 2.357 2.357 2 2.5 2.5 2.357 2.857 2.214 2.857

applied with the verification step to satisfy the GC balance
ratio. Fig. 1 is the randomization process. In this process, the
input value 𝑟 is used to generate a randomized sequence using
a random number generator function such as a hash function
to obtain the output ℎ(𝑟). After that, we perform bitwise
XOR operation of 𝐹comp and ℎ(𝑟) to obtain 𝐹rand, which is
randomized binary data of 𝐹comp. Generally, the length of
𝐹comp is longer than ℎ(𝑟), and thus 𝐹comp is partitioned into
the block of the same length as ℎ(𝑟). Since ℎ(𝑟) is randomized
sequence, it also guarantees that 𝐹rand is randomized. Also, the
randomization step is performed iteratively, and it is explained
more specifically in Section III-C.

B. 𝑀-ary Mapping
The next step is to map the binary sequence to the DNA

sequence. In this step, the binary sequence is converted into
𝑀-ary symbols (𝑀 = 3 · 4𝑚−1) and mapped to the DNA
sequence by using the mapping table to satisfy the maximum
run-length 𝑚. There are two important features in this step.
The first feature is that we propose the mapping table to
reduce the average bit error when one base error in the DNA
sequence occurs. The mapping table is constructed using a
greedy algorithm according to the substitution error probability
between bases based on our experiment. The next feature is
that the proposed method is robust to error propagation. While
mapping the binary sequence to the DNA sequence, the binary
sequence is partitioned into blocks of 11 bits. Then 11 bits are
converted to a decimal number and a decimal number to two-
digit 48-ary symbols in the case of 𝑚 = 3. Since the binary
sequence is partitioned into small blocks, the proposed method
is robust to error propagation.

1) The Mapping Method Using a Greedy Algorithm: In
the proposed method, the binary sequence is converted into
𝑀-ary symbols and mapped to the DNA sequence using a
mapping table. To ensure that the maximum run-length 𝑚 is
satisfied after the mapping step, we should have 𝑀 = 4𝑚−1 ·3.
Therefore, in the typical DNA data storage of 𝑚 = 3, 48-ary
mapping table is required in the mapping step.

Lemma 1. Let x be the vector of length 𝑚 and X𝑖 be the set
of vectors defined as

X𝑖 = {x = (𝑥1, · · ·, 𝑥𝑚) ∈ {0, 1, 2, 3}𝑚 | 𝑥𝑖 ≠ 𝑥𝑖+1},
for an integer 𝑖.

For example, X2 = {(0, 0, 1), (0, 0, 2), · · ·, (3, 3, 1), (3, 3, 2)},
where 𝑚 = 3 and 𝑖 = 2 and then, 𝑥2 ≠ 𝑥3 for all
x = (𝑥1, 𝑥2, 𝑥3) ∈ X2. If any vectors in X𝑖 are appended
together, they have run-length less than or equal to 𝑚.

Proof. Let u, v ∈ X𝑖 , that is, 𝑢𝑖 ≠ 𝑢𝑖+1 and 𝑣𝑖 ≠ 𝑣𝑖+1. Then
there are two cases to be considered.

TABLE II
GRAY CODE OF 48-ARY SYMBOLS.

Binary Symbol Binary Symbol Binary Symbol
000000 0 011011 27 101000 40
000001 1 011010 26 101010 42
000011 3 011110 30 101011 43
000010 2 011111 31 101001 41
000110 6 011101 29 101101 45
000111 7 011100 28 101111 47
000101 5 010100 20 101110 46
000100 4 010101 21 101100 44
001100 12 010111 23 100100 36
001101 13 010110 22 100101 37
001111 15 010010 18 100111 39
001110 14 010011 19 100110 38
001010 10 010001 17 100010 34
001011 11 010000 16 100011 35
001001 9 011000 24 100001 33
011001 25 001000 8 100000 32

(i) When 𝑢𝑖+1 ≠ 𝑣𝑖 , the maximum run-length is 𝑚 − 1 when
u and v are appended together as (u | v).

(ii) When 𝑢𝑖+1 = 𝑣𝑖 , the maximum run-length is 𝑚 when u
and v are appended together as (u | v).

For both cases, appending vectors in a different way such
as (v | u), also has the same result. Therefore, vectors formed
by appending any vectors in X𝑖 have run-length less than or
equal to 𝑚. □

Theorem 1. Let V be the set of vectors consist of v =

(𝑣1, · · ·, 𝑣𝑚), 𝑣𝑖 ∈ {0, 1, 2, 3}. In V, there exist at least 3 ·4𝑚−1

vectors, whose combination of any of these elements have run-
length at most 𝑚.

Proof. It is easy to check that in Lemma 1, the vector set X𝑖

has 3 · 4𝑚−1 different vectors. Vectors formed by appending
any vectors in X𝑖 have the run-length at most 𝑚. Therefore,
this ensures that in vector set V, there are at least 3 · 4𝑚−1

of vectors, in which combination of any of these vectors have
maximum run-length 𝑚. □

According to Theorem 1, there are 3 ·4𝑚−1 different vectors
in V, and each vector can be mapped to 3 · 4𝑚−1-ary symbols.
Let 𝑀 = 3 · 4𝑚−1. In the typical DNA storage of 𝑚 = 3, we
should have 𝑀 = 48 and the binary sequence is converted into
48-ary symbol. After that, each 48-ary symbol is mapped to
a 3nt-long DNA sequence using 48-ary mapping table. Rather
than forming the randomized mapping table, we propose the
mapping table to reduce the average bit error when one base



286 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 3, JUNE 2022

TABLE III
EXAMPLE OF 48-ARY MAPPING TABLE FOR 𝑚 = 3 USING A GREEDY

ALGORITHM.

DNA Symbol DNA Symbol DNA Symbol
AAC 0 TCT 27 GTG 40
AAT 1 CCT 26 ATG 42
GAT 3 CCA 30 TTG 43
TAT 2 CCG 31 CTG 41
TGT 6 CAG 29 CTA 45
CGT 7 CAT 28 CGA 47
AGT 5 CAC 20 AGA 46
AGC 4 TAC 21 GGA 44
ATC 12 TGC 23 TGA 36
ATA 13 TTC 22 CGC 37
GTA 15 TTA 18 CTC 39
GCA 14 TCA 19 GTC 38
ACA 10 TCG 17 GAC 34
ACG 11 TAG 16 GGC 35
ACT 9 AAG 24 GGT 33
GCT 25 GAG 8 GCG 32

DNA sequence error occurs. Here, the mapping table is con-
structed using a greedy algorithm according to the substitution
error probability between bases. We have an experimental
result and obtain the substitution error probability between
bases [13]. A more detailed explanation for the experiment
is mentioned in Section IV-A. Table I shows the comparison
of substitution errors across different bases according to our
experiment. A substitution error from G to A has the highest
probability, and a substitution error from C to G has the lowest
probability.

We apply a greedy algorithm to form the mapping table
according to Table I. Starting from (A, A, C), we find the
sequence that is most likely to be changed when one base error
occurs among 47 candidates, excluding (A, A, C). Table I is
used to find the next DNA sequence. When the DNA sequence,
which is most likely to be changed when one base error occurs,
is chosen, we find the next DNA sequence from the chosen
DNA sequence, eliminating the chosen DNA sequence from
candidates. In this way, we find the next DNA sequence until
all 48 DNA sequences are used. For example, (A, A, C) is
most likely to change to (A, A, A) since the substitution error
from C to A has the highest probability. However, (A, A, A)
is not one of the candidates of 47 sequences since the last two
bases are the same. Therefore, the next highest probability is
the substitution from C to T, and it is one of the candidates
of 47 sequences. Therefore, the next DNA sequence would be
(A, A, T). If there is no remaining candidate that differs only
one base, the DNA sequence with two nt differences with the
highest probability is chosen for the next DNA sequence.

Now all 48 different DNA sequences should be mapped
to all 48-ary symbols, respectively. Here, 48-ary symbols,
from 0 to 47, can be expressed in 6 bits, from 000000 to
101111. We can reduce the average bit error by constructing
the mapping table using a greedy algorithm. In this step,
the mapping table can be constructed to have only a one-bit

difference for adjacent symbols, such as Gray code. Table II
is the Gray code of 48-ary symbols in the binary form, and
adjacent symbols have only one-bit difference. By mapping
DNA sequences to 48-ary symbols in the order of Table II,
less number of bit errors would occur when one base error
occurs in the DNA sequence. Table III is the example of 48-
ary mapping table for 𝑚 = 3. The greedy algorithm is applied
in DNA sequences and DNA sequences are mapped with a
Gray code of 48-ary symbols. This mapping method would
decrease the average bit error by 20.5%, compared to the one
in the randomly generated mapping table.The more detailed
explanation is given in Section IV-A.

2) The Mapping Method With Robustness to Error Prop-
agation: The proposed mapping method converts the 11 bit-
long binary sequence to a 6nt-long DNA sequence. The binary
sequence is converted to the DNA sequence as follows. The
first step is to partition the binary sequence into blocks of
length 11 bits. Then, 11 bits are converted to the decimal
number 𝐷, which is in 0 ≤ 𝐷 ≤ 2047. Since 0×481+0×480 ≤
𝐷 ≤ 42×481+31×480, 𝐷 can be expressed as two-digit 48-ary
symbols. Finally, each 48-ary symbol is converted to a 3nt-
long DNA sequence by using the proposed mapping table in
Table III. Therefore, every 11 bits are converted to a 6nt-long
DNA sequence.

Since the binary sequence is partitioned into small blocks, it
is robust to error propagation. Therefore, when an error occurs
in the sequence, only the block with the error is corrupted.
Also, the proposed mapping method has a complexity 𝑂 (𝑛),
where 𝑛 is the length of the DNA sequence. In the proposed
method, the binary sequence is partitioned and converted to
the DNA sequence by using the mapping table. Since the size
of the mapping table is related to the maximum homopolymer
run, it has no relation to 𝑛. Therefore, it would be efficient to
implement the proposed mapping method in the DNA storage
channel because of its low complexity and robustness to error
propagation. The comparison of the complexity with recent
works is shown in Section IV-B, Table VI.

In the proposed method, the binary input data is randomized
in the randomization step, which means the occurrence from 0
to 2047 for 11 bits is equally likely. However, when 11 bits are
converted into two-digit 48-ary symbols from (0,0) to (42,31),
each 48-ary symbol does not occur equally likely. However,
when the mapping step is combined with the verification and
iterative encoding, which is the next step of the proposed
encoding algorithm, it is ensured that the GC balance ratio is
satisfied. A more detailed explanation and the proof are given
in Section III-C. In the proposed method, 48-ary symbols are
mapped to DNA sequences according to Table III. Finally, the
information density of this case is 11/6 = 1.8333 bits/nt.

C. Verification and Iterative Encoding

After the mapping step, we partition the data into 𝑛-nt
long DNA sequences and check whether the constraint is
satisfied or not. Since the cost of synthesizing a long DNA
sequence is very high, a DNA sequence should be partitioned
into shorter sequences, about 150 nt to 300 nt, in the DNA
storage [3], [18]. We call the last step of the proposed
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coding algorithm, verification: to find DNA sequences until
the desired constraints are satisfied. This method is not defined
in the field of DNA storage, and thus we define the term
verification as follows.

Definition 3. For a given DNA sequence and set of constraints
that the DNA sequence should meet, the verification is defined
by the process of checking whether all constraints are satisfied.

Algorithm 1 Iterative Encoding
Input: input data 𝑋 , desired constraint 𝑈
Output: valid DNA sequence 𝐹𝑑𝑛𝑎.
Initialization: 𝑟 ← 0

1: 𝐹comp ← SOURCECODING(𝑋)
2: while true do
3: 𝐹rand ← RANDOMIZATION(𝐹comp, 𝑟)
4: 𝐹mapping ← M-ARYMAPPING(𝐹rand)
5: 𝐹partitioned ← PARTITIONING(𝐹mapping)
6: if VERIFICATION

(
𝑈, (𝐹partitioned |𝑟)

)
succeeds then

7: return 𝐹dna ← (𝐹partitioned |𝑟)
8: end if
9: 𝑟 ← 𝑟 + 1

10: end while

The iterative encoding in Algorithm 1 is an algorithm to
obtain the DNA sequence which satisfies the desired con-
straints. When the constraints are not satisfied, we go back
to the randomization step and encode the data again until the
constraints are satisfied.

As we mentioned in Section III-B2, the binary sequence is
randomized after the randomization step. Thus the occurrences
of each 48-ary symbol are equally likely. However, since 11
bits are converted into the 6nt-long DNA sequence in the
mapping step, the iterative encoding needs to be applied to
satisfy the GC balance ratio. In the following theorem, we
derive the GC balance ratio 0.5 ± 𝛼 in terms of the DNA
sequence length 𝑛, for the case of 𝑚 = 3, within four times
of iterations. In the case of 𝑚 = 3, let v = (𝑣1, · · ·, 𝑣𝑛),
𝑣𝑖 ∈ {0, 1, 2, 3}, denote a DNA sequence of length 𝑛 with
quaternary elements. Let 𝑝𝐺𝐶 be the probability of vector v
to satisfy the GC balance ratio between 0.5 ± 𝛼 within the
required number of iterations, 𝐼, defined by

𝑝𝐺𝐶 = 1 − {1 − 𝑃(0.5 − 𝛼 ≤ 𝑟𝐺𝐶 ≤ 0.5 + 𝛼)}𝐼 ≥ 1 − 𝜖, (1)

where 𝑟𝐺𝐶 denotes the GC balance ratio of v. Let
X𝑞 be the random variable representing the number
of occurrences of G or C in the 𝑞th six tuple
(𝑣6𝑞+1, 𝑣6𝑞+2, 𝑣6𝑞+3, 𝑣6𝑞+4, 𝑣6𝑞+5, 𝑣6𝑞+6), for 0 ≤ 𝑞 ≤ 𝑛

6 − 1.
We assume that X𝑞’s are statistically independent. Let 𝑝𝑙 be
the probability of X𝑞= 𝑙, 0 ≤ 𝑙 ≤ 6. Then, we have

(𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 + · · · + 𝑝6𝑥

6) 𝑛6 =

𝑛∑︁
𝑗=0

𝑎 𝑗𝑥
𝑗 , (2)

where 𝑎 𝑗 denotes the probability of the number of occurrences
of G or C being 𝑗 and let

𝑝(𝛼, 𝑛) =
∑︁

(0.5−𝛼)𝑛≤ 𝑗≤(0.5+𝛼)𝑛
𝑎 𝑗 , (3)

TABLE IV
THE MINIMUM VALUE OF 𝛼 FOR 𝐼 = 4, 8 AND VARIOUS 𝑛 WITH 𝜖 = 10−4 .

𝐼
𝑛 (nt)

100 150 200 250 300
4 0.07 0.06 0.05 0.048 0.044
8 0.04 0.04 0.03 0.028 0.027

which means 𝑃(0.5 − 𝛼 ≤ 𝑟𝐺𝐶 ≤ 0.5 + 𝛼) in (1).

Theorem 2. Let the GC balance ratio between 0.5 ± 𝛼 is
satisfied in the proposed iterative encoding algorithm, for 𝑚 =

3. Then, for 𝑛 = 200 and 𝐼 = 4, 𝛼 ≥ 0.05 is achieved.

Proof. Let 𝑌 be a random variable representing the number
of the base 𝐺 and 𝐶 in a vector v. Since every 11 bits are
converted into six-nt DNA sequence, X𝑞 , for 0 ≤ 𝑞 ≤ 𝑛

6 − 1,
are independent and each X𝑞 has the same 𝑝0, . . . , 𝑝6 in (2).
Therefore, the probability of 𝑌 = 𝑗 in v can be expressed as 𝑎 𝑗

as in (2). In other words, 𝑎 𝑗 = 𝑃[𝑌 = 𝑗]. To satisfy balancing
constraint for 𝐼 = 4 iterations, (1) can be rewritten as

𝑝𝐺𝐶 = 1 − {1 − 𝑝(𝛼, 𝑛)}4 ≥ 1 − 𝜖 .

Since, 𝑝(𝛼, 𝑛) is a probability, 𝑝(𝛼, 𝑛) can be written as

1 ≥ 𝑝(𝛼, 𝑛) ≥ 1 − 𝜖 1
4 .

Therefore, for 𝜖 = 10−4, we say the probability 𝑝𝐺𝐶 approxi-
mates to 1 and for 𝑛 = 200 and 𝐼 = 4,∑︁

200(0.5−𝛼) ≤ 𝑗≤200(0.5+𝛼)
𝑎 𝑗 ≥ 1 − 𝜖 1

4 . (4)

In the typical DNA storage with 𝑚 = 3, when 11 bits are
converted into 6nt-long DNA sequence using 48-ary mapping
in Table III, we can express (2) as

( 16
2048

+ 148
2048

𝑥 + 487
2048

𝑥2 + 724
2048

𝑥3 + 505
2048

𝑥4

+ 152
2048

𝑥5 + 16
2048

𝑥6) 𝑛6 =

𝑛∑︁
𝑗=0

𝑎 𝑗𝑥
𝑗 ,

where 𝑎 𝑗 and 𝑝(𝛼, 𝑛) can be obtained. Therefore, for 𝑛 = 200
and 𝐼 = 4, 𝛼 ≥ 0.05 can be achieved according to 4. □

Table IV shows the minimum value of 𝛼 for 𝐼 = 4, 8 and
various 𝑛, using Theorem 2 for 𝜖 = 10−4. For the longer length
and larger iteration number, the tighter GC balance ratio can
be satisfied. Therefore, for the longer DNA sequences, the
proposed iterative encoding algorithm can satisfy the tighter
GC balance ratio for the fixed iteration number of 𝐼 = 4. In
addition, since the maximum DNA synthesis length becomes
longer recently, the tighter GC balance ratio can be achieved
in the proposed iterative encoding algorithm.

We chose 𝐼 = 4 in Theorem 2 due to the following reasons:
it is good to use a multiple-of-four 𝐼 because 𝐼 should be
converted into quaternary DNA symbols, and in practice, 𝐼 = 4
is enough to satisfy the GC balance ratio in the proposed
iterative encoding algorithm. Since randomization input value
𝑟 must be stored to obtain randomized output ℎ(𝑟) in the
decoding procedure, the iteration number at most four can be
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expressed as one quaternary symbol. Therefore, a multiple-of-
four 𝐼 is adequate for the iteration number, but only 𝐼 = 4 is
enough to satisfy the GC balance ratio in the proposed iterative
encoding algorithm. Starting from 𝑟 = 0, as iteration number
increases, 𝑟 increases together until the GC balance ratio is
satisfied. In other words, 𝑟 = 𝐼 +1. The input value 𝑟 from 0 to
3 can be expressed as one quaternary symbol: 0→ 𝐴, 1→ 𝐶,
2→ 𝐺, 3→ 𝑇 . Therefore, only one redundancy is appended
on the front of the partitioned DNA sequence of 𝐹mapping,
which is 𝐹partitioned, for satisfying the desired constraints. If
the constraint is satisfied after appending the input value 𝑟, we
obtain the final DNA sequence 𝐹𝑑𝑛𝑎. According to Theorem
2 and Table IV, the GC balance ratio between 0.5 ± 0.05 can
be satisfied for 𝑛 = 200 within four times of iterations. Also,
since only one-nt long DNA sequence is required for 𝑟, this
occupies a very small part compared to the data.

Another important feature of the proposed encoding al-
gorithm is flexibility. The desired constraints could be not
only GC balance ratio but also other specific constraints. For
example, avoiding particular patterns in the DNA strand could
be possible. In future DNA storage, one pool might contain
multiple files. Also, each file needs a primer, which is a pattern
of DNA that is used for the polymerase chain reaction (PCR)
or sequencing process, and different files have a different
pattern of primer [14]. To not be confused with primer and
payload, each file should avoid the primers of other files’
patterns in its payload. We can set undesired patterns and
encode them iteratively using verification until that pattern
does not appear in the payload.

In addition to flexibility, as mentioned in Section III-B2,
the proposed algorithm is robust to error propagation. In
the proposed mapping method, by using the error proba-
bility obtained from the DNA storage experiment [13], we
reduced the average bit error when one base error occurs
during the mapping step. As a result, the average bit error
for the proposed encoding algorithm is reduced by 20.5%
compared to the randomly generated mapping table. Also,
as mentioned in Section III-B2, the binary sequence is con-
verted into the DNA sequence by partitioning it into blocks.
These two features make the proposed encoding algorithm
robust to error propagation. It is very important because, like
other channels, the DNA storage channel also has several
types of errors, such as substitution, insertion, and deletion
errors. Therefore, in practical DNA storage, both constrained
coding and channel coding should be applied. There are
many works that apply error-correcting code in the DNA
storage [3], [8], [10], [13], [14], [18]. However, there is a
possibility that errors may occur even after the channel error
correction. In this case, since the proposed method is robust to
errors, only 11 bits in which the error occurred are replaced,
and the rest of the data can be maintained. This is a strong
point of the proposed method.

D. Decoding Algorithm

The decoding algorithm is performed through the inverse
operation of the encoding algorithm. The decoding of the DNA
strand is done by the following step:

1) Separate the value 𝑟 from 𝐹𝑑𝑛𝑎.
2) Map 𝐹mapping to 𝑀-ary symbols and obtain 𝐹𝑀-𝑎𝑟𝑦 .
3) Obtain 𝐹rand by converting 𝐹𝑀-𝑎𝑟𝑦 into binary sequence.
4) XOR ℎ(𝑟) with 𝐹rand to obtain 𝐹comp.
5) Obtain the raw input data 𝐹 by source decoding if source

coding is applied.

By using this algorithm, 𝐹𝑑𝑛𝑎 can be uniquely decoded, and
the raw data input file 𝐹 would be obtained.

IV. RESULTS AND ANALYSIS

In this section, we show two performance results of the
proposed encoding algorithm through the simulation. First,
we show a reduction of the average bit error rate when
one base error occurs in the DNA sequence, compared to
the randomly generated mapping table. Second, results for
information density and iteration numbers are obtained when
the proposed encoding algorithm is applied in raw data files.
Here, we use the proposed encoding algorithm for one text
file and two image files.

A. The Comparison of the Average Bit Error Rate

As we mentioned in Section III-B1, before creating a map-
ping table, we obtain the substitution error probability between
bases by conducting experiments [13]. In this experiment,
18000 oligo sequences of length 152 nt with 300 nanogram
DNA oligo pools are synthesized by Twist Bioscience. We use
the Illumina Miseq Reagent v3 kit (600 cycles) for sequencing
and obtain 151 nt run for both forward and reverse reads.
In this experiment, the substitution error probability across
different bases are obtained as in Table I.

Using these error probabilities, we create the mapping table,
Table III, and find the average bit error for each substitution
error probability between bases. Table I shows the average bit
error for each case of substitution errors when one base error
occurs in the DNA sequence. Therefore, the average number
of bit errors when one base error occurs is 2.3455 bits in
the proposed encoding algorithm. Every 48-ary symbol could
be changed to any other 48-ary symbol except itself when
one base error occurs in the randomly generated mapping
table. Therefore, the average number of bit errors can be
obtained by considering all cases of converting one symbol
into the other, from 0 to 1, 0 to 2, · · ·, 47 to 48, and we
calculate the average bit errors caused by all cases. Then, the
average number of bit errors is 2.9504 bits. In other words,
the proposed mapping method could reduce the bit error by
0.6049 bits, which corresponds to 20.5% reduction, compared
to the randomly generating mapping method. Therefore, in
this step, the proposed mapping method reduces the bit error
20.5% in the DNA sequence while satisfying the maximum
run-length at most three. In constrained coding, even one base
error could cause a high bit error rate because of its high
error propagation. However, the proposed algorithm prevents
a single DNA error from causing a large number of bit errors.
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TABLE V
COMPARISON OF INFORMATION DENSITY (BITS/NT) WITH SOURCE CODING.

Method

Mishra (𝑘 = 16)
[11]

Proposed method (𝑘 = 16)

Text file of 3920 bits
Image files

in pixels Text file of 3920 bits
Image files

in pixels
256 × 256 512 × 512 256 × 256 512 × 512

Information
density

2.41 2.09 2.31 4.39 2.63 2.37

TABLE VI
COMPARISON OF INFORMATION DENSITY (BITS/NT) AND COMPLEXITY

WITHOUT SOURCE CODING.

Method Proposed method [16] [17]

Information
density

1.833
1.834

(𝑛 = 6)
1.625

(𝑛 = 8)
1.900

(𝑛 = 10)
1.917

(𝑛 = 12)
Complexity 𝑂 (𝑛) 𝑂 (4𝑛) 𝑂 (𝑛)

B. Simulation Results for Information Density and Iteration
Numbers

In our simulation, to compare with the recent work [11],
we used the same text file, and two image files as in [11].
The text file is a poem Where the Mind is Without Fear by
Rabindranath Tagore, which consists of 3,920 bits with 490
characters. The second file is a grayscale image of an airplane
with a size of 256 × 256, where each pixel consists of 8 bits.
The last file is a grayscale image of ’Lena’ with a size of
512×512, where each pixel consists of 8 bits. Each image file
consists of 2,097,512 bits, 524,288 bits, respectively.

The experiment is held in the case of typical DNA storage,
whose output has 𝑚 = 3 and 0.45 ≤ 𝑟𝐺𝐶 ≤ 0.55. In the
case of source coding, any efficient scheme can be applied
flexibly, but to compare with the work in [11], the minimum
variance Huffman tree code has been used. Here, we define
a block of length 𝑘 as one symbol and we used the value
𝑘 = 16 for the comparison with [11]. Obtaining compressed
data 𝐹comp, we use the SHA-3 algorithm for randomization to
balance the data. We initialize 𝑟 = 0 and the output length of
ℎ(𝑟) is 512 bits. Then we perform XOR of 𝐹comp and ℎ(𝑟).
Next, we use a 48-ary converting table to obtain the DNA
sequence 𝐹mapping since we allow up to three runs. Finally,
we first partitioned 𝐹mapping into 200 nt long DNA sequences.
Then in the verification step, we check whether the final output
is balanced or not, and for the balanced DNA sequences, we
append the input value 𝑟 in the form of DNA. If the DNA
sequence that does not satisfy the constraint remains, we start
again from the randomization step increasing the value 𝑟 by
1. Repeat this process until all DNA sequences are balanced.
As mentioned in Section III-C, the iteration number of 𝐼 = 4
is enough for satisfying the GC balance ratio for all text and
image files in our simulation. A more detailed explanation is
in the last paragraph of this section.

For the text file, 3920 bits are compressed to 1618 bits

TABLE VII
THE NUMBER OF DNA SEQUENCES WITH 𝑛 = 200 THAT SATISFY THE GC

BALANCE RATIO BETWEEN [0.45, 0.55] AT EACH ITERATION.

𝐼 Text file of 3920 bits
Image files in pixels

256 × 256 512 × 512
1 4 899 3921
2 0 85 429
3 0 6 42
4 0 0 4

success rate 100% 100% 100%

using Huffman code (𝑘 = 16), whose compression rate is
2.4227. Then we randomize the binary text file and convert
the binary sequence into 48-ary symbols. In this step, 1618
bits are converted into 296 48-ary symbols. Then, each 48-
ary symbol is converted into 3nt-long DNA sequence using
Table III, which has the information density of 1.833 bits/nt.
Finally, we append 𝑟 by converting it into the DNA sequence
using Table III, and then 3920 bits are converted into 888 nt
DNA sequence. Table V shows that the proposed encoding
algorithm has improved the information density compared to
the recent work [11], for all files. As shown in Table V, the
final information density using the proposed mapping method
is 4.39 bits/nt, which means one DNA nucleotide contains
4.39 bits. For image files of sizes 256 × 256 and 512 × 512,
information density is 2.63 bits/nt and 2.37 bits/nt, for 𝑘 = 16,
respectively.

Also, Table VI shows the comparison of information density
and complexity with recent works [16], [17]. An information
density of recent works [2] and [3] has a high information
density of 1.900 bits/nt and 1.917 bits/nt. However, the length
of the encoded sequence is 10nt and 12nt, which have a higher
error propagation compared to the proposed method. In other
words, when a channel error occurs, an error propagates to
the whole 10nt and 12nt-long DNA sequence. Also, for the
similar encoded length of the DNA sequence, the proposed
method has an information density of 1.833 bits/nt, which is
similar to [16] and higher than [17]. In terms of the complexity,
the proposed method and the method in [17] have the same
complexity of 𝑂 (𝑛). However, the complexity of the method
in [16] is 𝑂 (4𝑛), which is higher than the proposed work.
Therefore, according to Table VI, the proposed work is robust
to error propagation with high information density and low
complexity.

For another experiment, we find the number of DNA
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sequences of length 200 nt that satisfy the GC balance ratio
between [0.45, 0.55] at each iteration. According to Theorem
2 and Table IV, the GC balance ratio between [0.45, 0.55]
can be satisfied within four times of iterations. Table VII
shows the experimental results for Theorem 2 and Table IV.
As shown in Table VII, All DNA sequences satisfy the desired
constraint within four times of iterations, and therefore only
one redundancy is appended for each DNA sequence.

V. CONCLUSION

In the proposed DNA encoding algorithm, we use the
iterative encoding algorithm for constrained coding to satisfy
the desired GC balance ratio of 0.5 ± 𝛼 and the maximum
run-length of 𝑚. There are two main contributions to the
proposed method. The first contribution is in the reduction of
the number of average bit errors during constrained coding.
By using the proposed mapping table, there is 20.5% of
the average bit error reduction compared to the randomly
generated mapping method. The second contribution is the
robustness to error propagation. In the proposed method, each
short binary sequence is converted into the DNA sequence
with a high information density and low complexity of 𝑂 (𝑛).
These two features show that the proposed encoding algorithm
is efficient and robust to error propagation As a result, the
proposed encoding algorithm could reduce the synthesizing
cost and error that could be occurred in the DNA storage
processes.
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