
326 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL, 23, NO, 5, OCTOBER 2021

Optimization of Resource-Constrained Policies for
COVID-19 Testing and Quarantining

In memoriam of Benny Chor: A scientist, teacher, and mensch
Konstantin Berestizshevsky, Koffi-Emmanuel Sadzi, Guy Even, and Moni Shahar

Abstract-We address the problem of controlling the COVID­
19 contagion with a limited number of PCR-tests. We developed
a tool that can assist policy makers in decisions as well as in
justifying these decisions. Our tool consists of: A stochastic dis­
ease model, a compressed representation of interactions between
people via a graph that scales well to large populations, policies
for selecting PCR-testees per day, and a simulator that simulates
the spread of the COVID-19 while taking into account the testing
and quarantine decisions of the chosen policy.

The graph model includes features that help determine the
infection risk of individuals. We consider both external infection
(inflicted by people outside the studied community) as well as
internal infection. The graph model and known infections induce
weights to people. These weights are used to select the testees
per day in a greedy algorithm and in a linear-programming
optimization algorithm.

Our simulations indicate a reduction in total morbidity of
30 - 50% using the optimization algorithm compared to random
sampling. A reduction of up to 40% in peak morbidity is achieved
compared to random sampling. We also studied the efficiency of
quarantining in various policies.

Index Terms-Disease model, optimization, simulation

I. INTRODUCTION

B EFORE he introduction of vaccines, the rapid contagion
of the COVID-19 pandemic has been counter-measured

by PCR-testing, quarantining, and lock-downs. Each counter­
measure bears a cost, incurs discomfort, and disrupts life.
Policy decision makers must cope with the dilemma of how
to control the contagion effectively and how to justify the
decisions so that public trust is not eroded.

This research was initiated when we were approached
by the managers of a chain of assisted living facilities in
Israel. Each facility houses about two hundred people and
employs roughly two hundred people (administration, main­
tenance, kitchen workers, caregivers, etc.). Residents, most
of them in their eighties, are highly vulnerable to spread of
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the pandemic and protecting them became a national goal.
Epidemic investigations in the facilities revealed that infection
was mostly introduced by employees. The initial goal was to
detect COVID-positive individuals as soon as possible (upon
discovery of an outbreak, the whole house was tested and
quarantined for 14 days). However, the number of allocated
PCR-tests were insufficient, raising the need to develop a
sampling policy for the efficient allocation of PCR-tests. We,
therefore, developed a sampling policy that is based not only
on a person's probability of getting infected, but also on the
potential to infect others. This potential captures the patterns
and strength of the interaction between people.

Building on this experience, we propose an approach that
takes into account the exposure patterns between individuals.
This approach is designed to apply to organizations consisting
of several hundreds of people, and scales well to much larger
communities (e.g., school systems, towns, as well as states).

We developed a tool that can aid policy makers, help justify
decisions, rnn what-if scenarios, and find desirable trade-offs
between controlling the contagion and preserving daily life
and the economy. This tool consists of four main parts:

1) Disease model that specifies the disease stages and time
per stage.

2) A graph for modeling the interactions between people
(i.e., community graph).

3) A simulator that simulates the contagion.
4) A policy for testing the people, as well as quarantining

and releasing them from the quarantine (in the literature,
such policies are often referred to as "interventions" [1]).

One can view our tools as an application of methods from
the area of networks. The disease model is a stochastic model
that is based on interactions between people. Our graph model
is a compressed representation of interactions between people
that scales well to large populations. Our simulator provides
a platform for simulation the contagion, incorporating the
decisions of the policy (i.e., who to test? who to quarantine?),
and logging the state of each person in every day. Below, we
elaborate on each part.

A. Disease Model
The disease model for COVID-19 (per individual x) is

depicted in Fig. 1. The model is based on a state diagram
consisting of 7 states: "Susceptible" (i.e., healthy and un­
infected to date), "infected" (but not detectable yet in a
PCR-test), "detectable" (infected and will return a positive
result if tested), "contagious pre-symptomatic", "contagious
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Fig. 2. Example of community graph with the set of people containing 14
people (9 students, 3 teachers a manager and a secretary) and 3 groups (Class
I, Class 2, and Management). Each person can belong to 0 or more groups.
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Fig. 1. COVID-19 disease model of an individual x. The model consists of
7 states with stochastic transitions between the states. The label Ti in a state
is a random variable that specifies the number of days that x stays in the
state. Transition probabilities appear as edge labels. The states colored red
are states in which the individual is contagious. We consider an individual to
be positive if the state is "infected", "detectable", or in one of the contagious
states.

asymptomatic", "contagious symptomatic", "recovered". The
duration (measured in days) per state is a random variable,
denoted by Ti and its distribution is further described in
Section 11-B. After the duration of a state ends, a transition
to the next state takes place. Transition probabilities appear
next to the edges. For example, a person x in the "contagious
pre-symptomiatic" state stays in this state for T4 days. After
T4 days, with probability Psymp (x) the state transitions to
"contagious symptomatic", and with probability 1 - Psymp(x)
the state transitions to "contagious asymptomatic". We note
that for the states "susceptible" and "recovered", To = 1,
and every day, a stochastic transition to the "infected" state
takes place. One advantage of this state machine is that it
models one of the main challenges in coping with the COVID­
19 pandemic, namely, the high occurrence of contagious
asymptomatic people that spread the disease unconsciously
(especially among young people). We note that the transition
probabilities depend on the features of individual x.

B. Community Graph
The community graph is a hypergraph G = (X, D), where

X denotes the set of people, and D is a family of subsets of
people. Each group models a subset of people that meet (e.g.,
pupils in the same class, teachers sharing a teachers' room).
We refer to two people x and y as colleagues if there exists
a group d E D such that both x and y belong to d. We attach
attributes, called risk factors to people and groups. Attributes
of individuals are classified as either external or internal.
External attributes include, for example: family size, usage
of public transportation, mobility. Internal attributes quantify
the individual risk within a group. For example, a kindergarten
teacher is more likely to be infected than the children. Group
attributes quantify the density/proximity/duration of interac-

tion caused by factors such as ventilation, joint eating, inability
to adhere to social distancing. See Fig. 2 for an example of a
community graph.

The main advantage in the community graph is that it offers
a compressed representation of the interactions between peo­
ple. The more common approach is to represent interactions by
a graph over people (i.e. people-graph) in which edges model
the interaction between pairs of people. A people-graph can
have a quadratic number of edges, rendering the simulation of
large communities impractical. For example, in the extreme
case that the people-graph is a complete graph, the community
graph is linear and contains one vertex per person and a single
group that contains all the people.

C. Simulator
The simulator performs a day-by-day simulation of the

disease spread among the people as well as of the progress
of the disease in each of the people infected. The simulator
deals with two sources of infection: internal and external. An
external infection is the event that person x E X is infected
by person y tf- X (namely, y is outside the set of the people X
that the model focuses on). An internal infection is the event
that person x E X is infected by colleague y (i.e., y E X and
{x, y} c d E D). Each step of the simulator corresponds to a
day. Let X (x, t) denote the event that person x is externally
infected on day t. The probability of X(x, t) is derived from
the external risk factors of the individual. We treat the events
X(x, t) as independent for all people x that are COVIDI9­
negative before day t. Internal infection of a person x takes
into account all the positive colleagues of x. The probability of
infection of x within a group d is influenced by the the group's
risk and the internal risk of x. A quarantined individual is
excluded from the simulation and cannot infect others.

D. Policies
As interventions, we consider five policies:

1) No policy (i.e., no quarantining at all).
2) Symptom based (quarantine only people in the state

"contagious symptomatic".



328 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO.5, OCTOBER 2021

3) Random testing (RAND) (symptom-based plus random
sampling and quarantining of positive people).

4) Risk-Factor-Greedy (RFG) (symptom-based plus greedy
sampling and quarantining of positive people).

5) Optimization based (OPTIMIZATION) (symptom-based
plus sampling based on optimization and quarantining of
positive people).

Testing is applied in the policies RAND, RFG and OPTIMIZA­
TION, and is subject to a budget of B tests per day. Note that
RFG and OPTIMIZATION rely on the community-graph and
the risk factors of people and groups. A detailed explanation
of these policies is given in Section III.

An important issue is when to release a person from
quarantine. A person is quarantined if symptomatic or found
positive by a test. There are a few options for deciding when
a quarantine should end (if symptoms disappear). One option,
chosen in Israel, is to quarantine for a fixed amount of time
(e.g., 14 days later reduced to 10). We chose the following
option: start testing every two days starting from the fourth day
of quarantine (provided that symptoms have disappeared) until
a negative test is obtained. The rational is to avoid unnecessary
quarantines (since a day of quarantine costs more than a test).
We note that the testing of quarantined people is not counted
in the budget of tests. A discussion regarding the choice of
the release from quarantine appears in Section III-B.

We note that one can view epidemiological investiga­
tions [2] as a greedy approach. Namely, people exposed to
COYID-positive individuals are considered to be in high risk
and are either quarantined or tested. One method that assisted
epidemiological investigations is based on tracing interactions
with the help of a mobile-app based [3].

E. Contribution

We provide a framework for assessing the effectiveness
of various testing and quarantining policies in controlling
the COYID-19 contagion. Our framework introduces novel
quarantine efficiency metrics and enables one to measure
peak and total morbidity as well as justifiable application of
quarantines as a function of the number of tests per day. Our
framework is applicable to communities of various scales (e.g.,
single school, town, or even states). The source code of our
framework is publicly available. 1

Our disease model differs from previous approaches mainly
in the distinction between symptomatic and asymptomatic
contagious people. Partial observability, of whether a person
is asymptomatic yet contagious without testing, is a major
challenge in combating the COYID-19 pandemic (as rates
of asymptomatic yet contagious illness are especially high in
youngsters [4]). In addition, we model the short time (about a
day) between detectability and contagiousness. The duration of
disease states and transition probabilities are based on recent
data adding to the realistic aspects of the disease model.

We consider two policies for testing with limited budgets:
a greedy approach and a linear-programming based approach.
These approaches rely on risk factors of individuals as well

1https:llgithub.comlkostyanooblEpidemic-Simulator

as groups. We evaluate and compare these policies with
random sampling over realistic disease spread dynamics. In
addition, we demonstrate that an optimized approach reduces
the sensitivity to PCR test errors and explore the impact of
approaches to release people from quarantine.

Our simulator differentiates between external and internal
infection. Indeed, external infections are inflicted by people
that do not belong to the investigated population (and do not
appear in the community graph). Moreover, epidemic investi­
gations have shown that external infection occurs continuously
over time and introduces new variants and creates new regions
of high morbidity.

F Related Work

The SEIR model in epidemiology considers four states:
"susceptible", "exposed" (i.e., latent yet not contagious), "in­
fectious" (i.e., contagious), and "recovered" [1], [5]. The
SEIR is designed to model a period of incubation in which
an individual is infected yet does not spread the disease.
The SEIR model is considered inadequate for modeling the
COYID-19 pandemic [6]. The SEIR model and its variants
(such as the SIR and the SIS models [7]) are accompanied
by differential equations that model the dynamics but do not
address the nonuniform specific interaction patterns between
people.

There is a significant line of work that focused on a
population-level disease spread modeling, rather than on an
individual-level disease spread modelling we use in the cur­
rent work. Such works include the study of Carcione et at.
[8] based on an SEIR model where the propagation of the
disease is modeled using differential equations. The works of
Silva [9] and the work of Stevens [10] developed a "billiard
ball" simulation that model interactions between people using
collisions between billiard balls with random velocities. A
different family of simulations consider a graph of interactions
that is usually a two-dimensional grid [11], [12].

The work by Newman [13] described a solution of a disease
spread model in a network of individuals. However, the net­
works discussed in the paper of Newman were random graphs,
such as graphs generated from a power-law distribution. In
our paper we deal with structured community networks that
are modelled by hypergraphs where the vertices are people
and the hyper-edges are groups. Infection takes place only if
these two individuals share a common group. This structure
of a network is common in various real-world communities
such as daycare centers, schools, assisted living facilities and
workplaces in general. We hope that our model of disease
spread will be found useful in real-world scenarios. We also
note that hypergraph-based disease spread models have been
gaining interest recently [14]-[16].

Optimization-based approaches were applied in the field of
epidemic control by Deng et at. [17]. In their study, they
used a bipartite-graph-based community structure of people
and places they visit, analogous to our hypergraph-based com­
munity structure. Deng et at. employed a linear programming
approach to sample a subset of people to be vaccinated. Our
work differs from the work of Deng et at. mainly by the
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TABLE I
SUMMARY OF SYMBOLS. THE PARAMETERS A(X), ,5;(X), J(x) ARE

DYNAMIC AND DEPEND ON TIME.

329

TABLE II
SUMMARY OF STATIC FEATURES (OF PEOPLE AND WEIGHTS OF

FEATURES).

5(x) £ spread(x)· ctg(x) . (1 - quarantined(x)). (1)

Let tree (x) denote the number of days that have elapsed
since x entered the "recovered" state (if the state of x has never
reached "recovered" yet, then tree (x) = 00). Let fpos (t) : N ---7
[0, 1] denote a function that quantifies the susceptibility of a

C. Transition Probabilities

There are three states with out-degree 2 (i.e., forks): "Sus­
ceptible", "recovered", and "contagious pre-symptomatic".
The choice of the next state (once the duration of the current
state expires) is stochastic and is specified by the probabilities
P(x infected) and Psymp(x).

We use the following notation. Let x E X denote a person.
Let ctg(x) E {O, I} denote a predicate that indicates whether
x is in one of the a contagious state (either contagious pre­
contagious, contagious asymptomatic, or contagious symp­
tomatic). Let quarantined(x) E {O,I} denote a predicate
that indicates whether x is quarantined. Let spread(x) denote
a random variable that determines the spreading degree of x.
Let 5(x) denote the contagiousness of person x, defined by:

duration, that describes the number of days that a person
remains in a state before a transition to the next state takes
place. The state durations are random variables with the
following distributions.

1) To = 1. Every day, person x may transition from the
states "susceptible" or "recovered" to the state "infected".

2) T 1 ~ N(I, 0.2).
3) T 2 ~ N(2, 0.3).
4) T3 ~ N(8, 1).
5) T4 ~ 2 + Exp(0.5).
6) Ts ~ N(8, 1).
For T1, the average number of days before detection is 1.

This is based on the work of Levine-Tiefenbrun et at. [20] that
connects the viral load and the error rate. The duration of T1+
T2 is commonly referred to as the latent period of the disease,
and the duration of T1+T2 +T4 is referred to as the incubation
period. For COVID-I9, the mean latent period was estimated
as 3.3 days, and the mean incubation period was estimated to
be 6.8 days [21]. Therefore, we tuned the parameters of T2 and
T4 random variables to fit these reports, by having mean values
of 2 and 4, respectively. For the variance of both T1 and T2
we chose numbers much smaller than 1, so that, for a day-by­
day simulation, the duration of these stages can be viewed as
deterministic. For T3 and Ts we based the distribution on the
quarantine period [22]. For T4 we based the numbers published
on the official World Health Organization website [23].

Symbol Domain Description
X Set of all !be people in !be organization
'D Power Set of all !be groups in !be organization

set (X)
The risk of a person x to get infected from the outsideriskext(x) [0,1]
of the organization.

riskint(X) [0,1] The risk of a person x to get infected from the inside
of the organization due to personal susceptibility (not
membership in groups)

riskint(d) [0,1] Risk of infection due to membership to group d
.\(x) [0,1] Discount factor (influenced by time since recovery or

quarantine)
5-(x) [0,1] Discount factor used by !be policy (influenced by time

since known recovery, time since negative test, or quar-
antine)

b(x) [0,1] Contagiousness of person x
B N Daily budget of PCR-tests

fact that we deal with testing and quarantining, rather than
with vaccination. Additionally, we examine the quarantine
efficiency (namely, the overlap between the quarantine period
and illness period).

Machine-Learning based approaches learn the infection
probabilities of individuals based on their features and reported
interactions [18], [19]. Testees are chosen by combining graph
neural networks and reinforcement learning.

II. DISEASE MODEL

This section describes the disease model we developed
(Fig. 1 for a depiction of the state diagram of the model).
The model employs individual parameters per person. In the
subsections that follow, we describe the personal and group
features (i.e., attributes) that affect susceptibility as well as
infectiousness.

A. Personal and Group Features
The community graph is a hypergraph G = (X, D), where

X denotes people and D denotes subsets of people that meet.
We attach static features (i.e., attributes) per individual and
per group. Individual features are partitioned to external and
internal features. External features describe risks associated
with the individual's life style. In our implementation, we
used the following external features: Number of working
places, usage of public transportation, mobility (e.g., number
of home visits per month in a boarding school), attendance of
special events (e.g., weddings). Internal features describe risks
associated with the individual's role in the organization (not
captured by membership in groups). In our implementation,
we used the following internal features: Degree of interaction
with people in the organization (e.g., caregiver vs. neighbor)
and duration of interactions. Group features describe the risk
associated with belonging to the group. In our implementation,
we used the following group features: Quality of ventilation,
density, and duration of interaction.

B. Duration per State
Transitions in the state diagram are stochastic. We attach a

random variable Ti per state and per individual, called state

Symbol
spread x)

a
(3
"Y

Description
A random variable that determines the spreading degree of x (this value
is unknown to !be policies)
Vector of attribute weights related to !be internal risk
Vector of attribute weights related to !be external risk
Vector of attribute weights related to group risks
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(2)

person to an infection as a function of the time from recovery
(i.e., fpos (t) is a non-decreasing function that quantifies the
"memory" of the immune system). In our implementation, we
ruled out reinfection by defining:

()~ {o if t < (X)f as t =
p 1 otherwise.

One could easily modify the definition to account for the
limited memory of the immune system or new variants that
might cause reinfection. The fpos function can be also used
to quantify the reduced susceptibility due to a vaccination,
however we do not address the effect of vaccination in this
study. Let A(X) E [0,1] denote a personal susceptibility
discount factor on the risk of person x.

The probability that x is infected internally is given by

P( x infected internally)

= 1 - II (1 - P(y infects x)). (10)
yEA

Since x may be infected internally or externally, we have:

P(x infected) = 1 - (1 - P(x infected internally))
x (1 - P(x infected externally)). (11)

The transitIOn of person x from the state "contagious
pre-symptomatic" to "contagious-symptomatic" occurs with
probability Psymp (x). Based on studies in the literature of the
rate of symptomatic people (Oran et at. [24] report 40%-45%,
and AI-Qahtani et at. [25] report 30%-50%), we chose to fix

and the probability of person x infecting person y in group d
is:

P(x infects y) = 1 - II (1 - Pd(x, y)). (9)
dED

(8)
Note that 5(x) > 0 implies that x is contagious and not
quarantined. We assume that infection events by the same
individual are independent. Namely, the event that y infects
x is independent of the event that y infects Xl if x # Xl.

In addition, we assume that the events of non-infection of x
by y in different groups are independent. Namely, if x and
y jointly belong to more than one group, then the events of
non-infection in each group are independent. The probability
that x infects y is therefore given by

A(X) = fpos(trec(x)) . (1 - quarantined(x)) (3)

In other words, A(x) = 0 if x has already been infected
or is quarantined, else it is 1. Person x may be infected by
a person outside X, in which case we say that x is infected
externally, or by a person in X, in which case we say that x
is infected internally.

The probability that a person x is infected externally is
defined as follows. Let z(x) denote the vector of external
features of x. Let f3 denote a vector of weights related to
external risks. Define

(12)Psymp(x) £ 40% .

for every person x EX.
Intuitively, higher values of the probability Psymp makes the

problem easier because symptomatic people are quarantined
and do not further spread the contagion. Conversely, lower
values of the probability Psymp (while all other parameters
remain fixed) decreases severe cases and mortality. We, there­
fore, focus on the reported value of Psymp .

III. TESTING AND QUARANTINE POLICIES

The policies are characterized by combinations of the fol­
lowing rules:

1) Quarantining of symptomatic people (SQ). Rule SQ
dictates that every symptomatic person is immediately
quarantined. A quarantined person cannot infect others.

2) Daily test samples (Test = (B, X). Rule Test =

(B, X) means that, every day, a sample of B people
is tested among the un-quarantined people. The sam­
pling algorithm X is one of three sampling algorithms:
Rand, RFG, and Optimization. The Rand algorithm
simply selects a random sample. The RFG algorithm

D. Tests
PCR-testing is employed to detect infected people [26].

PCR-tests are subject to errors (both false-positive and false­
negative). According to Wu et at. [27], false-positive rates are
12.16% for recovered people (i.e., state "recovered"). Cohen et
at. [28] report a false-positive rate of 3.2% for susceptible
people (i.e., state "susceptible"). Our simulator adopts these
false-positive rates.

False-negative rates depend on the time since infection.
Levine-Tiefenbrun et at. [20] report that false-negative rates
are highest during the first 5 days after exposure (up to 22.8%),
after which the false-negative rate reduces to 10.7%. Following
this report, we set the false-negative rate in the simulator to:

1) 22.8% in the states "infected", "detectable", and
"contagious-pre-symptomatic".

2) 10.7% in the states "contagious-symptomatic" and the
"contagious-asymptomatic".

(6)

(7)

if {x, y} <;;; d
otherwise.

riskint(y) £ (a, v(y))

riskint(d) £ b,v(d))

( ) ~ {5(X)A(y)riSkint(y)riSkint(d)Pd x,y =
o

riskext(x) £ ((3, z(x)). (4)

The probability of external infection is given by:

P(x infected externally) £ A(X) . riskext(x). (5)

The probability that a person x is infected internally is
defined as follows. Let a denote a vector of weights related to
internal risks. Let v(x) denote the internal features of person
x. Let v (d) denote the group features of group d. Let "(
denote a vector of weights related to group risks. We define
the internal risk factors per person and group as follows.
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The formula for the weight of person x is

w(x) £ 5.(x) (riskext(X)

. (" POS(d,T) + 1 . ))+ nskint(x) L.J Idl .nskint(d)
dE{d1IxEdl

}

(13)

The parameters riskext(x), riskint(x) and riskint(d) are
defined in Section II. The parameter POS (d, T) equals the
number of people in group d that were found positive in a test
during the past T days. We note that the addition of 1 in the
numerator of 13 is to avoid zeroing of the internal risk if no
COVID-positive people were detected recently. We also note
that the notation Idl stands for the number of people in group
d. The parameter 5.(x) is a discount factor defined by

5.(x) £ fneg (t neg (x)) . fpos (tpos (x))
x (1 - quarantined(x)) . (14)

Note that),(x) is a discount factor based on the ground truth,
whereas A is a discount factor computed for the policy based
on the information it has access to. The parameters tpos (x)
(resp., t neg (x)) equals the number of days that have elapsed
since the last positive test (resp., negative test) of person x.
(If no such test result exists, then the parameter is set to 00).
The function fpos (t) is defined in 2, from which it is implied
that a person that was found positive in the past will receive
fpos = 0, and a person that has not yet been found positive
will have fpos = 1. The function fneg (t) is defined in 15

The definition of fneg (t) implies that as the time since the last
negative test grows, the likelihood of of infection increases.
The monotone increase of fneg(t) provides negative incentive
to test the same individual day after day. The precise numbers
that define fneg (t) were chosen manually to alleviate the
repetitive testing of the riskiest people in the community,
however these values can be subject to a rigorous optimization,
which we kept 0t.'t of the scope of this work.

Conceptually, A is °for people who are either quarantined
or recovered, and it degenerates to fneg (t neg (x)) for other
people (non-quarantined people who have not been known
to be infected by COVID-19). The term fneg(tneg(x)) causes
people x who have recently been tested and found negative, to
have their 5.(x) (and consequently w(x» to drop while other
candidates receive a higher weight.

The goal of the weight function w (x), is to approximate
the probability of x to become infected. The intuition behind
the structure of w(x) is that the probability of becoming
infected is affected by the fully observable static features
of the people and the groups (riskintJext) as well as by the
partially observable information regarding the actual illness
state gathered by the policy (5., POS(d, T).

(15)
{

0.1 ift=O
~ 0.3 if t = 1

fneg(t) = 0.6 if t = 2 .

1.0 if t ?: 3

C. Random Sampling (SQ, Test(B, Rand), Retest(4, 2))

Every symptomatic person is quarantined. Every day, a
random sample of B people among the unquarantined people
is tested. Every positive person is quarantined. A quarantined
person is tested starting from the 4th day of quarantine
every 2 days until found negative. After a negative test, a
quarantined person is released. We refer to this policy, in short,
as Rand(B).

D. Risk Factor Greedy (SQ, Test(B, RFG), Retest(4, 2))

The RFG(B) policy is similar to Rand(B) except that the
daily sample of B testees is computed greedily (rather than a
random sample). The greedy selection of the testees assigns,
every day, a weight w(x) to every non-quarantined person
x EX. The B people with the highest weights constitute
the sample for that day. We refer to this policy, in short, as
RFG(B). We now elaborate on how weights are computed.

selects the people with the top B weights (described in
Section III-D). The Optimization algorithm selects B
people computed by the optimization procedure described
in Section III-E.

3) Testing of quarantined people (Retest( a, b). A quaran­
tined person is tested after (a - 1) days of quarantine.
Further tests, if positive, are conducted every b days. After
a negative test, a quarantined person is released.

We denote a policy by a three-tuple specifying the chosen
rules.

B. Symptoms-based (SQ, Test(O, Rand), Retest(4, 2))

No tests are applied, but every symptomatic person is im­
mediately quarantined. A quarantined person is tested starting
from the 4th day of quarantine every 2 days until found
negative. After a negative test, a quarantined person is released.
The choice of the low values 4 and 2 allowed the research
to focus on the selection of people for testing and isolation,
by reducing the impact of recovered people being held in
the quarantine. Choosing higher values will inevitably cause
longer quarantining of the already recovered people and a
reduction in quarantine efficiency (GQE, mPQE). We leave
the exploration of a repeat testing for further work, and keep
it fixed in our work. We do, however, provide an experimental
section where we show the impact of reducing the repeat
testing frequency from Retest(4, 2) to Retest(9, 7).

A. No-policy (no SQ, Test(O, Rand), Retest(00,00))
The no-policy is a trivial policy in which no counter­

measures are conducted (no tests and no quarantining). The
no-policy is used as a reference of the contagion when no
counter-measures are employed. One key feature that can be
inferred from the no-policy approach is the herd-immunity.
Namely, what is the morbidity ratio after which the epi­
demic decays in the absence of counter-measures? The herd­
immunity threshold obtained from simulations serves as a
"sanity-check" of the disease model as well as the simulator.
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E. OPTIMIZATION (SQ, Test(B, Optimization), Retest(4, 2))

The optimization-based approach is identical to RFG(B),
except in the way that the daily sample of testees is computed.
The daily set of B testees among the non-quarantined people
is computed by an optimization algorithm. The optimization
algorithm solves a maximization problem in a form of a Linear
Program (LP) and rounds the fractions to a {O, 1}-solution.
The LP balances the "coverage" of groups rather than simply
choose "riskiest" people.

The unknowns (i.e., variables) of the LP are s(x) E [0,1]'
for every non-quarantined person x E X. A value s(x) = 1
means that x is surely in the sample, whereas, a value s(x) = 0
means that x is surely not in the sample.

The LP uses the following coefficients (i.e., knowns):
(i) B - number of testees per day.

(ii) V - the set of unquarantined people.
(iii) E - set of sufficiently heavy groups (see Equation 16).
(iv) w(x) - the weight of x as defined by Equation 13.
(v) w(d) £ L:xEd w(x) - weight of group d.
The variable c(d), for group d, measures "coverage" of d

and is determined by the values of s(x), for xEd. Namely,
c(d) E [0, 1] describes which portion of the group weight
will be removed ("covered") if the currently selected people
will be tested. The variable z simply equals mindEE c(d),
hence maximizing z requires obtaining a fair coverage of all
the sufficiently large groups. The set E of sufficiently heavy
groups is defined by

E £ {d E D I w(d) 2 21~1 . L w(x)} . (16)
xEV

We define the set E of sufficiently heavy groups in order to
avoid the optimization to be constrained on covering groups
whose total weight is below half the average personal weight
in the community. Without the restriction of the groups to the
set E, the sample selected by the solution of the LP contained
people unlikely to become infected, due to their association
with small groups.

The formulation of the LP is as follows.

maximize z+ lOOllEI L:dEEc(d)
subject to wed)' L:xEd s(x) . w(x)=c(d) \ld E E

c(d)2z \ld E E
L:xEV s(x)SoB

S(X)E [0,1] \Ix E V

Note that the second addend in the objective function
1/100· lEI L:dEE c(d) is used to provide incentive to utilize
the budget B (even if a smaller fractional sample achieves the
same value z).

The solution of the LP outputs a fractional-sample, namely,
o So s So 1, for every x E X. A sample of B people is obtained
by randomized rounding as follows:

1) Let b(x) E {O, I} denote a Bernoulli random variable
with probability s(x). Let B! £ L:x b(x).

2) If B! > B: among the people with b(x) = 1, set b(x) = 0
for B! - B people with the lowest fractional values s(x).

3) If B! < B: among the people with b(x) = 0, set b(x) = 1
for B - B! people with the highest fractional values s(x).

The sample is taken to be the set {x E X I b(x) = I}.

IV. METRICS

This section describes the quantitative metrics used to asses
the performance of the different policies.

Notation: Let D~iso) denote the set of days during which
person x is isolated. Let D~ctg) denote the set of days during
which person x is in one of the contagious states. For p E

{ iso, ctg}, let D(p) c N x X denote the set

Namely, D(iso) denotes the set of person-day pairs (x, t) in
which person x is isolated on day t.

1) Total Morbidity - total number of infected people is
defined by

Total Morbidity £ I{x I D~ctg) # 0}1. (17)

The total morbidity is an important metric for estimating
mortality, severe cases of illness, etc.

2) Peak Morbidity - maximum number of simultaneously
contagious people is defined by

Peak Morbidity £ maxt { L lI(t E D~ctg))}. (18)
xEX

Keeping the peak morbidity low (i.e., "flattening of the
curve") is extremely important to avoid the collapse of
the healthcare system. When peak morbidity is bigger
than the capacity of hospitals, proper medical treatment
is infeasible, thus leading to rejection and prioritization
of patients.

3) PQEx - Personal quarantine efficiency of person x.

I
D(iSO) n D(ctg)1 +

PQEx £ x x E (19)
ID~iSO) u D~ctg)1 + E

where E E JR.> is arbitrarily small constant (to avoid
division by zero). We use E = 2.22 X 10- 16 in our im­
plementation, as it was the smallest representable floating
point number on the system we used.
The PQEx metric is an intersection-over-union metric
that captures both the precision of quarantine days of x
and the recall of the contagious period of x. This metric
is similar to the Fl metric in which the denominator
assigned half the weight to the symmetric difference.2

A value of PQ Ex = 1 implies a perfect decision.
Conversely, PQ Ex close to 0 indicates a poor choice
of quarantine days for person x. There are two causes
for mistaken decisions: not quarantining when contagious
and quarantining when not contagious. For simplicity,
we treat both errors equally (of course, not quarantining
when contagious has an adverse effect on controlling the
epidemic).
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A. Simulation Environment

V. EXPERIMENTAL SETUP

t

Simulator

t
UN/QUARANTINE(x) TEST(x) TEST-RE5ULT(x) SYMPTOMATIC(x)

Policy

Pig. 3. Simulator-Policy interaction used in our experimentation.

B. Scenario Data

We examine different policies using 4 scenarios. Each
scenario is defined by: (i) The community graph, (ii) the
features of each individual (i.e., exterual and interual features)
and (iii) the features of each group.

The community graphs were designed to represent a realistic
interaction between students and teachers in a school. For
example, the sizes of the classrooms were chosen to be the
typical capacity of 30-40 students. The interaction of the
people was chosen to be relatively local (students interact
within a class much more than across classes. We also consider
larger community graphs with 7 schools in which interaction
between individuals from different schools is either through
families or through groups of friends. Larger communities
can be viewed as having another level of hierarchy in their
structure.

Individual features included 4 exterual features (having
multiple jobs, usage of public transportation, frequency of
appearance in the community and extremely infection-prone
activity outside the community) with the respective attribute
weights f3 = (0.1,0.1,0.1,0.7). In addition, 3 interual features
(Highly interacting person, degree of physical presence of a
person, and other infectious-prone activity of a person) were
equally weighted by the weight vector Q= (1/3,1/3,1/3).
The spreading degree (spread( x) of people were assigned
randomly with 5% of the people having a high value
of 0.5 (being super-spreaders) and the rest of the peo­
ple to values below 0.25. Group features consisted of 5
features (social distancing negligence, poor room ventila­
tion, crowdedness, duration of interaction in the group, and
other highly infectious-prone activity), and were weighted by
"'Y = (0.06,0.06,0.06,0.412,0.412). The risk factors and the
weights are generic and were tuned to achieve a significant
contagion phenomenon in the simulated communities, as will
be presented in Figs. 4(a) and 5(a). Determining more realistic
weights for these risk factors, as well as discovering novel
risk factors, can be of a great contribution to the simulation
fidelity. We encourage a research in this direction by providing
an open-sourced, easily configurable simulator infrastructure,
in which the risk factor weights can be adjusted without
reprogramming, but rather using a configuration file.

We now elaborate on the 4 scenarios in more details.
1) Single-School: A single school consists of 150 people,

with 4 classes of students approximately of the same size

(20)

(21)

~ 1 ~mPQE = TXT L.J PQ Ex
xEX

5) GQE - Global quarantine efficiency

~ ID(iso) n D(ctg) I + E

GQE = ID(iso) U D(ctg)1 + E .

As opposed to the mPQE measure, the GQ E equally
treats the value of all human-days, rather than treating
the people equally. Ashcroft et at. [29] define a similar
metric, referred to as "utility of quarantine", as the ratio
between the number of correctly chosen quarantine days
and the total number of quarantine days. This metric
captures the precision of the quarantine days of chosen by
the policy, but does not penalize for a bad recall of the
contagious period of the people3 . GQ E metric on the
other hand, addresses both the precision and the recall
capabilities of the policy at hand.

6) Policy Efficiency Counters: Number of human-days
during which the person is (i) healthy and free, (ii) con­
tagious and quarantined, (iii) healthy and quarantined, or
(iv) contagious and free.

4) rnPQE - Mean personal quarantine efficiency across all
people in X

3Por example, in a I-person community, a policy that assigns a total of
2 quarantine days that overlap 2 out of 10 contagious days will result in a
100% utility of quarantine, whereas the GQE and the mPQE metrics will be
at 20%

It is hard to theoretically evaluate the ability of an interven­
tion policy to cope with a disease spread due to the complexity
of the interactions within the community of people. Therefore,
we employ the simulation-driven approach (i.e. empirically­
driven, rather than theory driven), which is widely used in the
research of epidemic control [30]-[32]. Apart from epidemic
control, the simulation an approach is widely used in the
research of controlling other complex systems such as power
grids [33] or communication networks [34].

The simulator executes a day-by-day simulation of the
disease model for all the people in the community-graph. The
simulator takes into account the decisions of the policy that
may select testees and quarantine people found positive. The
simulator and the policy are separate entities, and hence, a
policy has only partial information about the ground truth.
The input of the policy consists of the community graph,
features of the people and the group, budget B of daily tests,
results of tests, and the subset of people currently in the
state "contagious symptomatic". See Fig. 3 for a high level
depiction of the simulation-policy framework. We note that,
in addition to the budget of tests B, quarantined people are
tested according to the retesting rule (e.g., Retest(4,2».
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(i.e., 37 students), where each class is isolated from the rest.
Besides students, there are 7 teachers who visit all the classes.
In addition to the teachers and the students, there are 3
managers that only interact between themselves, and there is
also a cleaner that interacts with everyone in the organization.
Average number of people a single person is in a direct contact
with: 54.64.

2) Single-School-Mobility: This scenario is the same as
the Single-School scenario with the modification that between
every two adjacent classes there are 5 pairs of interactions.
This modification represents a less strict social distancing rule.
Average number of people a single person is in a direct contact
with: 62.9.

3) Multischool-Families: A community of 1000 people,
consisting of 7 schools of the following form: 4 "Single­
School"-type schools and 3 "Single-School-Mobility"-type
schools. Schools are indexed 1 through 7, and two schools
are adjacent if the absolute difference of the indexes is 1. In
addition to the schools, there are 300 small groups referred
to as families with an average of 2.3 children per family.
The children of a family attend either a single school or two
adjacent schools. Average number of people a single person
is in a direct contact with: 57.

4) Multischool-Friends: Same scenario as Multischool­
Families scenario, however, instead of the 300 small families,
there are 13 groups of friends. Groups of friends consist of
10 groups of students, each consisting of approximately 50
students drawn at random from all schools; and 3 groups
of teachers with 5,7 and 12 teachers each. The teachers are
chosen at random from all the teachers in all of the schools.
Average number of people a single person is in a direct contact
with: 76.

C. Experiments
In every experiment, we evaluate the 5 policies that

were presented in section III. The policies are referred
to as: No-policy, symptom-based, Rand(B), RFG(B) and
Optimization(B). The policies that apply tests are examined
with different test budgets.

Initially, on day-I, all people are in the state "susceptible".
From this initial configuration, a day-by-day simulation runs
for a total duration of either 150 days for the small scenarios
(Single-School scenarios) and 300 days for larger scenarios
(Multischool scenarios).

Each scenario-policy-budget combination runs in a separate
simulation, for which we record the metrics described in
section IV. Due to the stochastic nature of the simulation,
we repeat the simulation to achieve a statistical significance
of the metrics. Specifically, for the small scenarios (Single­
School scenarios) each simulation is repeated 50 times, and
for the larger scenarios (Multischool scenarios) the simulation
is repeated 10 times. We note that the Multischool scenarios
have a regular structure (i.e., 7 schools consisting of 4 classes
each). Thus, a simulation of a Multischool scenario is actually
a simulation of 7 schools with some interactions between the
schools. Indeed, simulations of Multischool scenarios exhibit
smaller variance in the measured metrics across the 10 runs

of the large scenarios compared to 50 runs of the smaller
scenarios (i.e., Single-School).. All the recorded metrics are
averaged across the repeating runs, and we report their mean
values as well as standard deviations.

In order to make our results more realistic, we added
two experiments: (1) Measure the effect of errors in PCR­
tests, and (2) measure the effect of retesting of quarantined
people. Both these experiments were chosen in order to test
the robustness of our optimization based policy. To show
the impact of test errors, we introduced an error probabil­
ity for tests into our simulation (based on numbers from
the literature, as discussed in Section II-D), and compared
the measures for the Multischool-Families scenario. Effects
of retesting of quarantined people was simulated using the
Multischool-Families scenario. The default testing policy we
chose for quarantined person was Retest(4, 2) (i.e., starting
from day 4 of quarantine, the person is tested once every
2 days until found negative). The less strict retesting rule
we chose is Retest(9, 7). We dedicate section VI-D for the
comparison between these two rules, and the impact they have
on controlling the epidemic.

VI. RESULTS
A. Morbidity-over-Time Experiment

To gain an intuition regarding the effect of the policies on
the morbidity, we present plots that show the daily number of
infected people. To this end, we simulate all 5 policies in a
Multischool-Families scenario with a budget of B = 40 daily
tests, no test errors, and with a re-testing rule of Retest(4, 2).
The simulations indicate that the more sophisticated policies
exhibit a reduction in the total number of infected people
(Fig. 4) as well as in the peak of morbidity (Fig. 5). Com­
pared to the symptom-based policy, the optimized policy
Optimization(40) reduced the total morbidity roughly by
half, and the peak morbidity by roughly 40%.

B. Policy Comparison
In this section we compare the four metrics (total morbidity,

peak morbidity, GQE, mPQE) with respect to the 5 policies.
Our goal is to learn which policy is better in terms of morbidity
reduction and in terms of quarantine efficiency.

Fig. 6 shows that, to achieve the same bound on total
morbidity, the OPTIMIZATION-based policy requires roughly
B/4 of the daily budget of tests compared to both Rand(B)
and the RFG(B) policies (for small population refer to a
budget B ~ 10, for large population refer to a budget B ~ 15).

The reduction of the peak morbidity was also consistently
better for the OPTIMIZATION strategy in all the scenarios. As
can be seen in Fig. 7, the peak number of infected people is
reduced by 5%-50% by the OPTIMIZATION policy (compared
to the other policies).

The reduction in the morbidity is less profound in the
Single-School-Mobility scenario rather than in the Single­
School scenario and similarly for Multischool-Friends com­
pared to Multischool-Families. Indeed, the connectivity of the
community-graph for Single-School-Mobility is higher than
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Fig. 4. Cumulative Morbidity over time. Each plot (a)-(e) describes a simulation of a different policy applied in a Multischool-Families scenario (1000
people) using a daily test budget of 40. Note that the purple portion of the plot height at each time step describes the number of recovered people. The
OPTIMIZATION policy decreases the total morbidity roughly by half compared to the Symptom-based policy.
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Fig. 5. Daily Morbidity evolution over time (flattening the curve). Each plot (a)-(e) describes a simulation of a different policy applied in a Multischool­
Families scenario (1000 people) using a daily test budget of 40. Note the different Y-axis scale of the different plots. The OPTIMIZATION policy reduces
the peak by roughly 40% compared to the Symptom-based policy.
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Fig. 6. Total Morbidity as a function of the daily test budget, in 4 different
scenarios (a)-(d) and 5 policies (nopolicy, Symptom-based, RAND, RFG,
OPTIMIZATION). No test errors were simulated. We applied a re-testing rule of
Retest(4,2) for all the policies (except for no-policy). The no-policy graph
indicates that herd immunity is reached with roughly 80 - 65% morbidity
depending on the population size and community-graph.

Fig. 7. Peak Morbidity as a function of the daily test budget, in 4 different
scenarios (a)-(d) and 5 policies (nopolicy, Symptom-based, RAND, RFG,
OPTIMIZATION). No test errors were simulated. We applied a retesting rule
of Retest(4, 2) for all the policies (except no-policy).

the connectivity-graph of Single-School. The same observation
holds for the Multischool-Friends community-graph (which
introduces large groups of friends that span across all the
schools in the community) compared to the community­
graph of Multischool-Families. A stronger connectivity of the
community graph results in (i) requirement of a larger test-

budget in order to achieve a control over the disease (ii) lower
personal quarantine efficiency.

It is easy to achieve low morbidity by increasing the
number of quarantined people. We quantify the efficiency of
quarantining using the intersection-over-union metrics. The
GQE metric presented on Fig. 8 represents the global effi­
ciency of the quarantine decisions, and these results show
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Fig. 8. GQE as a function of the daily test budget, in 4 different scenarios (a)­
(d) and 5 policies (nopolicy, Symptom-based, RAND, RFG, OPTIMIZATION).
No test errors were simulated, and the re-testing rule was Retest(4,2) for
all the policies.

Fig. 9. mPQE as a function of the daily test budget, in 4 different
scenarios (a)-(d) and 5 policies (nopolicy, Symptom-based, RAND, RFG,
OPTIMIZATION). No test errors were simulated, and the rule of re-testing
was Retest(4, 2) for all the policies.

Fig. 10. Impact of tests with errors - on the total morbidity, for scenario
Multischool-Families.

of the Optimization policy is sustained in the presence of
testing errors.
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E. Running Time Complexity
The complexity of the running time can be decomposed into

two components: (i) The simulation overhead which accounts

D. Repeated Testing Rules
The releasing from the quarantine in our previous ex­

periments was based on the Retest(4,2) re-testing rule. In
this section we compare the total morbidity and the global
quarantine efficiency (GQE) achieved by the Retest(4,2) rule
against a Retest(9, 2) rule.

Results presented in Fig. 12 show that, as expected, reduc­
ing re-testing of quarantined does not affect the morbidity.
However, it does degrade the efficiency, as can be seen from
the difference between Figs. 12(c) and 12(d). This can also be
explicitly viewed in a form of increased isolation days incurred
for the healthy people (Fig. 11).

C. Tests with Errors

We present the results of Multischool-Families scenario
simulation with 5 different policies in presence of realistic
test errors. The simulation followed the error probabilities as
defined in section II-D. Fig. 10 shows the total morbidity
comparison between the simulation of error-free testing and
testing with errors. The plots demonstrate that the superiority

that RAND and OPTIMIZATION policies are similarly efficient.
The OPTIMIZATION and the RFG policies are especially
prevalent in lower test budgets, whereas the RAND policy
shows a competitive efficiency when using larger budgets
(B > 10) in smaller communities (150 people). This is
explained by the bias the OPTIMIZATION has towards the more
risky people, whereas the RAND policy uniformly samples the
people regardless of their risk factors. When the budget is large
enough the uniform sampling pays off as it helps identifying
the infected people that were less likely to become infected.

The mPQE metric, as shown on Fig. 9, is the highest
for the OPTIMIZATION policy. The mPQE metric represents
a fair efficiency metric with respect to the individuals. The
mPQE metric values are generally higher than the the values
observed for GQE due to the people that never became
contagious, and hence they were easily not quarantined and
contributed a perfect score of 1.0 to the mean value. The
fact that the OPTIMIZATION policy leads both in morbidity
reduction and global and personal efficiency indicates the
superiority of Optimization over the other policies. Namely,
the OPTIMIZATION policy manages to reduce the morbidity
while maintaining individual fairness and community-level
efficiency.
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TABLE III
RUNNING TIMES OF THE SIMULATIONS IN SECONDS PER SIMULATED DAY.

TABLE IV
COMMUNITY GRAPH CHARACTERISTICS THAT AFFECT DISEASE SPREAD.

RFG

Budget

Average min Expansion factor (group size)
Diameter distance (5) (10) (20) (50)

Single-School 2 1.6467 25.8 14.4 7.4 2.99

Single-School-Mobility 2 1.5911 26.3 14.41 7.4 2.99

M ultischool-Families 5 3.8352 49.47 41.99 31.96 18.11

Multischool-Friends 4 2.3109 61.67 51.7 37.01 18.66
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(a) Multischool-Families under Retest(4, 2) rule

VII. CONCLUSION

We consider a realistic simulation of COVID-19 contagion
over a community-graph. With a limited daily budget of
PCR-tests, it is beneficial to rely on the structure of the
community-graph to select testees. This has been consistently
observed throughout our quantitative comparison between
policies which demonstrated that the Optimization policy is
the most effective in reducing peak/total morbidity as well
as maximizing quarantine efficiency. Namely, the policies that
disregard the community structure (nopolicy and Symptom­
based, which do not perform tests; and Rand which applies
tests randomly regardless of the grouped structure of the
community) performed worse both in terms of quarantine
efficiency and in terms of morbidity reduction. The success
of the RFG and Optimization stems from the community
structure-aware weight functions, according to which the poli­
cies rank the people for testing. Further superiority of the
Optimization policy over the Rand is achieved thanks to
the constraint that forces a fair coverage (via testing) of all
the groups in the community. The fair coverage mitigates
outbreaks across the community.

In addition, we show that our conclusions are robust to
realistic PCR testing errors, and we describe the relation

(b) Multischool-Families under Retest(9, 7) rule

Fig. 11. Policy Efficiency Counters metrics under a Retest(4,2) rule
(lla) and under a Retest(9, 7) rule (lIb), both in a error free simulation
of "Multischool-Families" scenario.

:;20
I
0]1.5

F Community Structure Challenges
Two key parameters of a community which have a high

impact on the spread of the infection are average distance
between pairs of people over the community graph (average
number of hops) and the small-set expansion-factor (i.e., for a
small random set U of nodes, IU I plus the number of neighbors
of U divided by lUI). The lower the average distance and
the higher the expansion factor compared to the size of the
community - the faster the contagion.

Table IV summarizes these parameters for the 4 community­
graphs that we considered. The expansion factors of each
community with respect to group sizes lUI E {5, 10,20, 50}
were computed by taking the average of expansion factors of
100 randomly selected subgroups U. The 2 smaller commu­
nities (i.e. the 150-people Single-School and Single-School­
Mobility) exhibit a much lower average distance between
two random people, and their expansion factor suggests that
a random set of 5 people has an immediate connection to
approximately 125 people (out of the total 150). In this
case, the contagion happens extremely fast, rendering various
policies less effective. On the other hand, 2 larger communities
(i.e. the 1000-people Multischool-*) have a higher average
distance and they do not expand small subsets to almost the
entire population size. Therefore, the contagion becomes more
manageable in the Multischool-* communities and this ex­
plains the overall more profound contribution of the proposed
testing and isolation policies, as was observed in this section.

We remark that graphs such as preferential attachment
[35] graphs and stochastic block graphs have high expansion
and small average distance. Indeed, the main contribution of
social distancing or limiting meetings to small numbers of
people is in reducing the average distance and expansion factor
parameters.

Multischool (1000 people)

Single-School (150 people)

for infection probability computation for each person and the
maintenance of the illness states; (ii) the policy overhead,
which accounts for the selection of candidates for testing
from the non-quarantined people and the performing the repeat
testing of the quarantined people.

The Simulation overhead is dominated by the infection
probability computation which is 0 (I X I· ~), where ~ denotes
the average number of people that each individual interacts
with.

The policy overhead for the RAND policy is O(IXI) since
only a random choice of candidates for testing is required.
The policy overhead for RFG policy increases this to O(IXI·
(IVI + log IXI)) due to weights computation (13) and sorting.
The complexity of the OPTIMIZATION policy, which relies on
the same weight computation as RFG, further increases due
to the need to solve a linear program. The running time of the
simulation is reported in Table III.
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VIII. DISCUSSION

During peak morbidity in Israel, the daily budget of tests
reached 0.5 - 2% of the population. It seems that exceed­
ing this budget is not feasible for large populations. The
community-graph models the interactions between people,
and therefore, can help perform investigations of "chains-of­
contagion". A common policy is to test or quarantine people
that have interacted with positive people. We note that such
a policy may require too many tests (i.e., testing much more
than 1% of the population per day). The proposed policies
(RFG,OPTIMIZATION) carry out such epidemiological investi­
gations indirectly. Indeed, the presence of a positive individual
in a group increases the weight of the group members, and
hence, the likelihood of these individuals to be selected for
testing.

We suggest two directions for further research based on
learning. The first direction deals with the problem that the
accumulation of data regarding the features of individuals and
groups is costly, time-consuming, and error-prone. Further
work should consider methods for extracting such features
from available sources such as location from phones, reg­
istration upon entry to groups, and filling of online forms.
Determining the weights of such features can be a great con­
tribution to the overall fidelity of the simulator environment,
and worth investigating as well. The second direction suggests
to employ our simulator as an environment simulation for
training a reinforcement-learning agent. Our hope is that such
an agent can outperform the OPTIMIZATION-policy.
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