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Abstract: The increasing use of unmanned aerial vehicles (UAVs) in
various commercial applications, such as precision agriculture and
aerial remote sensing, is fast contributing to a significant growth
in the UAV market. Also, it is crucial to provide continuous cov-
erage after failures of wireless network components or additional
bandwidth in high traffic situations. By introducing the concept of
UAVs as a service (UaaS), we propose a novel framework, dubbed
𝐷3S, consisting of four phases: Demand, decision, deployment,
and service. The main objective of this framework is to provide a
realistic and streamlined approach to support the implementation
of the UaaS paradigm. The technical problems involved include de-
termining the type and number of UAVs to be deployed and their
final locations (e.g., hovering or on-ground). They also include the
trajectory planning, possibly several times, between charging sta-
tions and deployment locations. We present the application of the
𝐷3S framework to two case studies with the goal of providing wire-
less connectivity services to (i) static users after failures of wireless
network components, including long-term and short-term failures,
and (ii) dynamic users in wireless relaying systems.

Index Terms: UAVs as a service (UaaS), unmanned aerial vehicles
(UAVs), wireless networks.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have been mainly used
in military domains for years. More recently, UAVs have

found many other civilian applications and their number is ex-
pected to grow very fast in the future. Recently, with their inte-
gration in our society, UAVs have found many civilian applica-
tions and the number and type of such applications are expected
to grow fast in the future. The U.S. federal aviation adminis-
tration (FAA) expects that UAVs will introduce a new paradigm
shift and that they will do to aviation what the Internet did to
information [1]. In the area of Information and Communication
Technology, UAVs are gaining huge popularity mainly because
of their ability to be equipped with communication and com-
putational capabilities, as well as being highly scalable for on-
demand deployment. In this regard, several well-known com-
panies have launched pilot projects intending to provide con-
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nectivity from the sky, such as Odysseus project [2], Astigan
project [3], and Zephyr project [4], which aim to leverage UAVs
for providing worldwide access to the Internet. The 3rd genera-
tion partnership project (3GPP) is also looking at having UAVs
supported by long term evolution (LTE) [5]. Also, with the ap-
proval of the FAA, AT&T and Qualcomm have already opti-
mized their LTE networks for UAV communications [6], paving
the way for deployments of UAVs in 5G networks. Extensive
research efforts are also devoted to including UAVs in differ-
ent wireless communication platforms [7], using them as aerial
mobile base stations (BSs) [8] and mobile relays [9]. For exam-
ple, project CAPANINA studied antennas to deliver broadband
wireless access using UAVs [10]. Project ABSOLUTE aimed
to design and implement LTE-A aerial base stations to provide
wireless coverage for public safety usage during large-scale un-
expected and temporary events [11].

All these innovative efforts are paving the way for a generic
notion of UAVs as a service (UaaS), where a variety of UAVs-
based applications could be developed. Open, standardized,
and flexible UAV-based application development platforms are
therefore needed in order to enable stakeholders to explore
techno-economic boundaries and tradeoffs in the UAV ecosys-
tem. Further, innovation in UAV applications requires such a
UaaS vision to become a reality as a framework for developers
and designers. A key challenge towards this vision of UaaS is
the communication and networking capability of UAVs. Seam-
less and immersive solutions are therefore necessary to make
many different UAVs work together without causing harm to
humans while providing connectivity from the sky.

In this paper, we propose a framework to implement UaaS
in order to provide an end-to-end connectivity service to appli-
cations such as the above. We refer to this framework as 𝐷3S
which is an acronym of the four phases of the framework: De-
mand, decision, deployment, and service. The main objective of
this framework is to develop efficient and realistic solutions to
support the UaaS paradigm. We present the four phases of the
𝐷3S framework, and explain the methodologies used to imple-
ment them. We also present two case studies of the application
of 𝐷3S, where in the first one the focus is on using UAVs for mit-
igating the effect of cellular networks after component failures,
and in the second one UAVs are used to provide connectivity
between mobile users and a sink.

As an example of an application that uses UaaS, we con-
sider the occurrence of a natural disaster, such as a hurricane,
that damages the communication infrastructure in a certain area,
e.g., a city. In 2017 several such hurricanes hit different parts
of the U.S. such as Hurricanes Maria, Irma, and Harvey which
damaged significant proportions of the wireless cell towers in
several parts of Puerto Rico, Florida, and Southern Texas, re-
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spectively. For example, during Hurricane Harvey in Houston,
all 911 call centers were damaged and 20 out of 27 cell towers
covering the metropolitan Houston area were damaged. Trapped
and stranded citizens, as well as rescue personnel, therefore can-
not communicate with each other or with entities outside the dis-
aster area. City officials can request communications services
based on a demand that they estimate, in terms of bandwidth
requirements and locations. A swarm of UAVs, equipped with
wireless communications access points or base stations, can be
deployed to provide the wireless communications services. The
demands are used to determine the required number of UAVs,
their 3D deployment locations and the communications capaci-
ties of the UAVs that will be needed to provide the required level
of service, with a minimum cost. Another tier of UAVs may be
needed to implement backbone connectivity between the UAVs,
and between the UAVs and the core network. The UAVs need
to be deployed, possibly from multiple locations, and the tra-
jectories of flying from these locations to their final deployment
locations are determined in order to minimize flying time, en-
ergy consumption and cost. After deploying the UAVs, associ-
ation and communication between ground users and the UAVs,
communication and routing between the UAVs, and between the
UAVs and the edge access points to the core networks will have
to be decided optimally and in a reliable manner. In this case,
UAVs deployment can be implemented in two stages:

1. A short-term deployment stage of agile, albeit limited life
time, UAVs, such as drones, in order to provide a mini-
mum necessary level of service. Several drones may have
to serve the same location due to their limited battery ca-
pacities, and the drones will have to commute between the
service locations and the charging stations.

2. Then, a stage of long-term deployment of UAVs, such as
helikites and balloons, which are more energy efficient but
take longer to deploy. Once the second set of UAVs are
deployed, the drones may be sent back to their charging
locations.

This paper starts by introducing the D3S framework for UaaS
and its four phases. Then, each of the phases of the framework
is described in detail. Two case studies of the application of the
proposed D3S framework are then presented, namely, UaaS for
wireless networks self-healing and UaaS for connectivity of dy-
namic ground users. This will be followed by a short conclusion
section.

II. THE D3S FRAMEWORK FOR UAAS

In this section, we present the proposed framework for imple-
menting UaaS. This framework consists mainly of four phases,
Demand, Decision, Deployment, and Service, abbreviated as
D3S. The rationale for using four phases is to simplify and
streamline the flow of processing in the framework, including
the formal definition of feedback and feed-forward points in the
framework, as shown in Fig. 1. The reason for this separation
is also motivated by the possibility of working independently to
optimize and improve each of the phases. The techniques and
algorithms of each phase may therefore updated, replaced or fine
tuned independently.

Demand: In this phase, the entity requesting service places a

Demand Decision Deployment Service

Failure of UAVs

Significant changes in users & demands

Updates on mobility & locations

Small/medium updates on users & demands

Fig. 1. The D3S framework for implementing UaaS.

request with a set of high-level parameters that characterize the
requested service. These will include: (1) Type of request (dis-
aster recovery, self-healing, etc.), (2) the location coordinates
of the event and its coverage area, (3) the bandwidth required,
(4) mobility characteristics of users, if any, (5) the computing
power needed from the UAV, if any, (6) sensing services needed
and sensing resolutions, and (7) the time frame of the requested
coverage service.

Some of the demand parameters will not be deterministically
available, e.g., in disaster areas. These will be learned by the sys-
tem after deploying initial sets of UAVs, and have them collect
information from ground users in order to estimate the demand
parameters. This information will be used to revise the demand
to be used in other phases. Finally, the specification of the de-
mand will serve as an entry to the second phase, namely, the
Decision phase.

Decision: Based on requests made in the Demand phase, this
phase will determine the types of UAVs to deploy, their optimal
number, their precise deployment locations, and the bandwidth
to be used by their communication components. The UAVs will
therefore form a mesh network that will provide the requested
service to a set of stationary, and/or possibly mobile, ground
devices. As different types of UAVs and different deployment
locations (e.g., hovering versus on-ground) may offer different
tradeoffs in terms of energy consumption, flying time before the
need to be recharged, size of the coverage area, etc, will be taken
into consideration when making the decision. In addition, other
mobile devices or devices that do not need continuous service,
such as sensors in a farming field, will also be taken into consid-
eration and linked to the determination of the trajectories taken
by UAVs in the Deployment phase.

Deployment: Once the types, numbers, and future locations of
the UAVs are determined in the Decision phase, this phase will
deal with defining the best trajectories of the UAVs to be de-
ployed. The UAVs will be dispatched either from the same lo-
cation, and therefore will be flying as a swarm towards the de-
ployment location, or from different locations, therefore will fly
individually and be gathered one-by-one to converge towards
their deployment location. Multiple configurations to route these
UAVs will be taken into consideration such that the energy re-
source will be used optimally.

Service: In this phase, the proper coverage service to achieve
end-to-end connectivity will be provided. This includes com-
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munication of UAVs with ground users (stationary or mobile),
routing of data between UAVs, and routing of data to and from
access points to the core network.

Short-Term versus Long-Term Service: Two time scales will
be used to provide service: short- and long-term. The short-
term service provisioning refers to the use of UAVs that can be
deployed with agility, e.g., drones. These UAVs typically have
short flying and hovering times but can be deployed to provide
service with a very short delay. The long-term service provi-
sioning uses UAVs that take longer to deploy but can stay in ser-
vice for a long time without requiring maintenance or recharg-
ing, e.g., helikites, airships, and balloons. The use of short-term
followed by long-term, short-term only, or long-term only, de-
pends on the application and the application domain and its
properties. For example, disaster recovery and self-healing of
wireless systems can use short-term followed by long-term ser-
vice. For applications involving forecasted increase in band-
width demand, such as in football games, pre-planning can be
implemented ahead of the event and long-term service can be
provisioned. The introduction of these two time scales, and the
transitioning between them will be implemented by the Deci-
sion, Deployment, and Service phases of the framework. Fig. 2
shows an example of the application of four phases of the D3S
framework. As shown in the figure, the demand phase receives
demands from different sources, processes them, then the out-
put of this phase is forwarded to the decision phase which will
make decisions related to the amount of bandwidth needed, the
types and number of UAVs. After that, the output of the deci-
sion phase will be fed to the deployment and service phases. A
disaster scenario is considered where the cellular service is as-
sumed to be out of service and the UAVs are going to provide
temporary cellular service to the first responders as well as the
users stuck in the disaster area.

III. DEMAND FORECASTING AND
CHARACTERIZATION

In the first phase of the framework, the entity requesting a
service must provide information about the type of service (e.g.,
disaster recovery), the devices to be served, whether they are sta-
tionary or mobile, and the requested service rates. The requested
service duration can also be identified, and whether the service
is continuous or intermittent, e.g., for sensors. The information
may also be updated with time (Fig. 2).

This information can be provided formally as follows:
• A set, D, of stationary devices that may include sensors,

IoT and other stationary devices. Each of the devices is de-
fined in terms of an ordered pair that identifies its location
in the two-dimensional Cartesian plane and its rate require-
ments. The information may be for individual devices, or
groups of devices. Each group can be treated collectively as
one point of service. If the requested service rates change,
then this information may be updated with time.

• A set, M(t), of mobile devices, e.g., user equipments
(UEs), service vehicles, etc. Each device is defined in terms
of an ordered pair which identifies its location in the two-
dimensional Cartesian plane and its rate requirements at

O
utput

Demand 1
Location 1
 Low BW
 < 25 users
 Extended coverage

Demand 2
Location 2
 Regular BW
 < 50 users
 Short-term failure recovery

Demand 3
Location 3
 High BW
 < 50 users
 Long-term failure 

recovery

Demand 4
Location 4
 High BW
 > 50 users
 Disaster recovery

Demands

Server

Decisions

Disaster affected area

Communication
links

UAV
Deployment

Deployment and service
Disaster scenario

eNB

UAV 
initial 

location

O
utput

Decision of 
demand X

Type of UAVs 
determined

Determine optimal # UAVs

Bandwidth satisfied

Determine UAVs’ 
deployment locations

Demands satisfied

Start deployment

Demands can’t be 
satisfied

Negotiate demand 
requirements

True_ 

False

False

False

True_ 

True_ 

Fig. 2. The D3S Phases: Demand, Decision, Deployment, and Service.

time 𝑡. Due to mobility, the locations of devices have to be
updated with time.

• The total bandwidth available for communications which
consists of a set, W, of fixed bandwidth channels. A device
in the sets of stationary or mobile devices D or M may use
one or multiple of these channels, depending on the rate
requirements, the channel gains between the device and the
associated UAV, as well as interference from other UAVs.
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The rates identified for a device can be regarded as minimum
required rates. The type of service and the requested service du-
ration are also important in planning a service and the devices
to be committed. For example, service due to a disaster is very
different from service due to an increased traffic demand. In the
first case there is no service and guaranteeing a minimal level of
service is important. In the second case, service is available, but
the network is congested, and service improvement is requested.

The decision phase requires that the demand be provided us-
ing a certain characterization and a certain model, and this ap-
plies to the characterization of D, M(t), and W. Several mod-
els have been developed for characterizing the spatial distribu-
tion of wireless traffic, and this has been done using 2-D and
3-D point processes. The surveys in [12], [13] provide an ac-
count of these models. Also, mobility discovery and prediction
have been dealt with in the literature using stochastic processes
and machine learning, as surveyed in [14]–[16].

We identify three classes of demand, and for each class the
collection and characterization of the demand is different:

(a) Fully characterized demand: This is mostly a demand
that is based on information available from service providers
based on their service records. This demand characterization is
used in the formulation of a static dimensioning problem, as de-
scribed in the next phase. The use case also dictates how soon
this information can be found. In serving disaster areas with
predictable disasters, such as a hurricane, service providers may
provide this information just before the disaster hits. In unpre-
dictable disasters, such as earthquakes, a snapshot of the last
available workload profile could serve as the workload charac-
terization.

(b) Partially characterized demand: Some information,
such as users distributions and their demands may be partially
available, and these can be used as a starting point to construct
statistical models of the demands which can be used in dimen-
sioning. UAVs, in addition to acting as service points, may also
collect local information in order to refine the demand charac-
terization. Machine learning plays an important role in profiling
the demand, and in characterizing and predicting mobility pat-
terns.

(c) Uncharacterized demand: In some cases the informa-
tion may not be available. An initial assumption about the de-
mand characterization can be made, but similar to the second
case the UAVs will also collect local information that better
characterize the demand. Machine learning also contributes to
the demand profiling and the prediction of mobility patterns,
e.g., [17], [18].

Different mechanisms can be used for demand discovery and
collection. As an example, the minimization drive test (MDT)
that was introduced by 3GPP in Release 10 [19] makes use of
UEs’ measurements and reports to operators information, in-
cluding locations, signal quality, etc. UAVs can fly and act as
scouts to discover UEs and collect the MDT vectors from them.
The UAVs will act as base stations at different locations, hence
the MDT vector can be treated as both demands at those loca-
tions and UAV service quality. The UAVs flying trajectories,
while acting as scouts, are optimally computed to expeditiously
and comprehensively cover the possible service areas in order to
collect information about UEs and their demands. The probable

service areas may be discovered in phases based on their priority
and likelihood of existing demands.

In addition to collecting fully characterized demand, machine
learning techniques can be used to learn and classify different
demand types and their locations. Demand types may be classi-
fied according to levels of bandwidth requirement, latency and
loss rates. Deep learning algorithms can also be used to capture
and predict users mobility and their demands. To improve accu-
racy and expedite convergence, deep learning can be combined
with probabilistic latent semantic analysis in order to character-
ize different classes of users traffic and their mobility [17].

IV. DECISION AND DIMENSIONING PHASE

In this phase, the information collected in the demand phase is
used to determine the number of UAVs, their locations, and the
bandwidth assignments to provide the requested service. For the
sake of illustration, we focus on downlink communications only.
Backhauling is implemented in a distributed manner between
UAVs using multi-hop communications to the nearest stationary
base station (Fig. 2).

(a) Short-term dimensioning: To provide a service to the
set of stationary devices defined above, a subset of the UAVs will
act as base stations. The objective of the dimensioning problem
is twofold: (1) Minimize the number of UAVs, and (2) maximize
their operational lifetime. These two objectives may be contra-
dictory since one may be able to reduce the number of UAVs but
they will have to cover wider geographical areas, hence consum-
ing more energy and depleting their batteries faster. Therefore,
the dimensioning phase is solved as a dual objective optimiza-
tion problem:

Minimize (fU,−fT), (1)

where 𝑓𝑈 is the number of used UAVs and 𝑓𝑇 is a function of
their lifetimes. 𝑓𝑇 can be expressed as the minimum lifetime
among all UAVs and minimizing − 𝑓𝑇 corresponds to maximiz-
ing the minimum lifetime among all UAVs. The lifetime of a
UAV depends on its battery energy available for communica-
tions after subtracting the mechanical energy. The UAV’s life-
time is obtained by dividing this energy by the power used for
communications. The mechanical energy used by the UAV to
fly to a hovering location, and from the hovering location to
a charging station, is dependent on the chosen location for the
UAV. The optimal hovering location of a UAV at a certain time
is in the three-dimensional Cartesian plane. As explained above,
if the demand is defined according to a stochastic process, the
above optimization problem will be formulated as a stochastic
optimization problem.

There are two types of communications in which the UAVs
are involved, and these influence the use and sharing of the band-
width: UAV-to-user and UAV-to-UAV communications. These
are captured in the dimensioning phase by using two association
matrices:

(1) The device-UAV association, which is captured using a
matrix with appropriate dimensions, where each matrix el-
ement is a binary variable that equals one if the device
indicated by the row uses the UAV indicated by the col-
umn. Typically, each device is constrained to use exactly
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one UAV. Determining whether a UAV is used can be ob-
tained from this matrix, which is also used to obtain the
number of needed UAVs.

(2) If UAVs communicate between themselves using the
same RF spectrum, then a symmetric UAV-to-UAV asso-
ciation matrix with appropriate dimensions is defined. A
matrix element is one if two UAVs communicate.

The dimensioning phase evaluates the above two matrices,
and the power used for communication between UAVs and UEs,
as well as between UAVs. It also determines the downlink rates
to devices and guarantees that the spectrum is shared between
the above two types of communications and achieves the min-
imum required rate, even with interference. The interference
depends on the channel gain between pairs of devices, and the
distances between them. The backbone rate is also a function of
the rate of communications between the UAVs and their served
UEs and is determined by the backbone routing. Interference is
not present if OFDMA is used. A third objective may be added
to cater for the case in which the resources are not sufficient,
and this will be the maximum violation of the bit rate among all
devices. This objective will be minimized.

Solving the optimization problem expressed by the objective
function (1), and constraints formulated based on the above dis-
cussion, should result in the optimal dimensioning including the
number and hovering locations of UAVs and their association
with users, as well as their transmission power levels. The solu-
tion will be a Pareto front of the non-dominated solutions. Solv-
ing this problem is not easy due to a number of reasons: (i)
It is a dual objective optimization problem; (ii) the device-UAV
and UAV-UAV association problem is a combinatorial optimiza-
tion problem that is NP-hard; and (iii) it is highly non-convex.
Therefore, approximations and heuristics may be employed to
solve this optimization problem within a reasonable time. Solu-
tion approaches include device clustering, binary variable relax-
ation, successive convex approximation and evolutionary pro-
gramming approaches.

(b) Long-term dimensioning: This is similar to short-term
dimensioning, except that the characteristics of the UAVs used
for long-term service are taken into consideration. Since en-
ergy efficient UAVs can stay afloat for a long time, they will
need to adapt to changing traffic demands and they may also use
high power levels for communication, hence achieving higher
rates and covering wider areas. Transitioning from short-term
to long-term needs to consider the coexistence of UAVs of dif-
ferent types and capabilities. The simplest approach is to deploy
all long-term UAVs and then withdraw all short-term UAVs, but
this may also be done incrementally.

V. DEPLOYMENT AND TRAJECTORY PLANNING
PHASE

The information from the demand and decision phases play a
significant role in the deployment and trajectory planning phase.
Information from the decision phase, such as the rate require-
ments for users, can affect the trajectories. For example, ob-
taining good channel gains between UAVs and users requires, in
general, the UAVs to move closer to users expecting an increase
in the achievable rate. On the other hand, the information from

(a) (b) (c)

Fig. 3. Different types of charging stations: (a) Stationary, (b) mobile, and (c)
semi-stationary.

the decision phase, such as the number of UAVs and bandwidth
limitation, will directly affect the deployment and trajectory de-
sign by limiting the available resources to use.

We categorize the ground users into stationary and mobile.
The only difference between these two types is that the speed
of stationary users is set to zero. By exploiting a careful tra-
jectory design of the UAVs, significant performance gains can
be achieved compared to traditional wireless systems. However,
several energy and safety factors need to be considered.

(a) Instantaneous battery levels: Each UAV determines its
battery level periodically to make sure it has enough battery for
both hovering and communication.

(b) Charging stations types: We consider three types of
charging stations as shown in Fig. 3: (1) Stationary: Charging
stations at pre-determined locations that cannot be moved, (2)
semi-stationary: UAVs that take some time to deploy, e.g., bal-
loons, which can be connected to a power grid or large batteries,
but they can be deployed in optimal and strategic locations to
recharge other UAVs, and (3) mobile: UAVs with large batter-
ies that fly around and recharge other UAVs. Note that for sta-
tionary and semi-stationary types, each charging station can ac-
commodate a maximum number of UAVs at a time. Therefore,
each UAV needs not only find the optimal trajectory, but also
the best charging station type. In the case of stationary users,
the selections of trajectories and charging station type of the
serving UAVs can be optimized offline (i.e., non-instantaneous
optimization). On the other hand, in the case of dynamic users
(variable users’ locations with time), the selections of trajecto-
ries and charging station type of the UAVs are optimized online
(i.e., instantaneous optimization). This is due to the variations
of the qualities of communication channels over time. The on-
line optimization will enhance the performance; however, it will
add more complexity to the problem by optimizing the decision
variables based on users’ movements.

(c) Recharging period: This is the time the UAV needs to
stay in the charging station, which depends on the decision of
the central control unit based on the user’s demand.

(d) Safe path planning: The UAVs are required to avoid fly-
ing over some restricted regions, such as airports. Also, they are
required to avoid obstacles, such as buildings, or collisions with
other UAVs.

Assuming that we have a certain number of charging loca-
tions, with a maximum UAVs that can be accommodated in each
charging station, two constraints need to be respected. First,
the maximum number of UAVs that can be charged during each
time slot at each charging station. Second, to avoid collisions, no
more than one UAV can be at the same location during the same
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time slot. Therefore, the possible scenarios are as follows: (1)
The UAV moves between the serving location and the charging
station, (2) the UAV stays at the same serving location, (3) the
UAV moves from one serving location to another serving loca-
tion, and (4) the UAV decides to remain in the charging station.

VI. SERVICE PHASE

In the service phase, the proper coverage service to achieve
end-to-end connectivity will be provided. This includes com-
munications between UAVs and ground users (stationary or mo-
bile), between UAVs, and between access points and the core
network. In order to provide UaaS for end-to-end connectivity,
it is critical to establish a reliable backbone network between
UAVs to allow reliable and low-latency data delivery either from
a UAV to a base station, or from a base station to one or more
UAVs, or from a base station to another base station through a
network of UAVs.

Many of the existing works on routing in UAV networks have
typically used classic mobile ad-hoc networks (MANET) proto-
cols. These protocols can be classified as either proactive [20]–
[22] or reactive [23], [24], depending on whether they maintain
routes a priori or build routes on demand. Hybrid protocols,
such as hybrid wireless mesh protocol (HWMP) of the IEEE
802.11s standard, also exist [25]. However, these classic proto-
cols usually perform poorly in UAV networks where nodes are
generally moving fast.

Some other works have adapted MANET protocols for their
use in UAV networks [26]. For example, ML-OLSR [27] is
a mobility- and load-aware version of OLSR, and P-OLSR
(Predictive OLSR) [28] uses GPS information to predict link
states based on relative speed and direction of the UAVs. Other
modifications of OLSR specifically for UAV networks include
COLSR [29] and DOLSR [30]. A cluster-based, location-aided
version of DSR for UAV networks is proposed in [31]. Other
UAV network routing protocols include GPMOR [32], a geo-
graphic routing protocol that considers mobility and orientation,
and RGR [33], a protocol that combines reactive and geographic
routing. Although these efforts have been successful in handling
some of the scenarios of UAV networks, more innovations are
needed to improve the reliability and latency performances of
the routing protocols.

We introduce three possible approaches to deal with routing
in the dynamic and challenging environment of UAV networks.

(a) Proactive routing based on cohesive swarming and
machine learning: Unlike conventional MANETs, designing
optimal multi-path routing and congestion control algorithms
for UAV networks is particularly challenging due to the highly
dynamic and energy-aware UAV flight maneuvers, which yields
constantly changing network topology and fluctuating channel
qualities. Classic MANET routing methods are known to per-
form poorly in such environments. One possible way of en-
hancement is to combine them with cohesive swarming which
coordinates UAVs to form a swarm that suits best the underly-
ing routing method, as well as the locations of the base stations
or charging stations and the events or users of interest. In addi-
tion, machine learning techniques can be used for more accurate
traffic prediction and thus enhancing in-routing functions among

UAVs [34], [35]. This type of methods may work well in situa-
tions where the locations of base stations, charging station, and
events or users of interest are known a priori and thus it is possi-
ble to plan the routing and swarming strategies in advance [36].

(b) Fast-converging reactive routing: In addition to accu-
rate predictive proactive routing, designing fast-converging re-
active routing methods also plays a critical role in UAV net-
works. In classic reactive methods, queue-length changes are of-
ten used as weights in making dynamic routing decisions. Such
methods are known to converge slowly. One possible way to im-
prove the convergence speed is to couple queue-length changes
with route update from the previous time slot (called momen-
tum). Momentum-based reactive routing methods such as the
one proposed in [37] could be a good candidate for routing in
UAV networks, due to its low-complexity, and its strong per-
formance guarantees in terms of throughput-optimality, delay
reduction, and convergence speed. This type of methods may
work better in situations where the locations of events or users
of interest may not be completely known a priori before the
UAVs are deployed.

(c) Anycast-based opportunistic routing: Opportunistic
routing refers to the practice of making routing decisions dy-
namically (instead of following predetermined routes) based on
network events and conditions, such as link availability and
quality. The opportunistic approach gives nodes multiple op-
tions for forwarding a packet and, thus, may particularly be
suited for UAV networks where a node’s neighbors can be con-
stantly changing. The cross-layer approach proposed in [38]
could be a candidate for opportunistic routing in UAV networks.
This approach merges information from both network and link
layers to make dynamic routing decisions based on the available
links. Moreover, the opportunistic approach may be integrated
with the first two methods to further improve the system perfor-
mance.

VII. CASE STUDIES

A. Case Study 1: UaaS for Self-Healing

A.1 Description

We present here a case study that illustrates the application
of the D3S framework. This case study addresses the failure
of ground base stations (GBSs) and the application of the D3S
framework to provide a backup coverage for the failed GBSs.
GBS failures can be classified as short-term and long-term.
Short-term failure is defined as the failure that lasts for a short
period of time (few hours). The long-term failure can last for a
few days.

In our case study and based on different types of UAVs docu-
mented in [11], rotary-wing drones are proposed to mitigate the
short-term failures as they have an important feature of instant
deployment. Moreover, the operational power consumption of
these drone BSs (DBSs), i.e., UAVs, is very high, resulting in a
limited flying/service time, which is suitable for short-term de-
ployment. On the other hand, Helikites are proposed to mitigate
long-term failures as they fly at low altitudes and for long pe-
riods of time, being tethered to a continuous source of power.
Based on Fig. 2, where a disaster scenario is considered, other
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UAVs/DBSs will be used in the healing process, if the failure is
short-term or until Helikites are deployed.

In the presented scenario, if the failure is short-term, UAVs
will be used in the healing process. However, if it is a long-
term failure, Helikites will be used. For the short-term failure
scenario, we apply the D3S framework as follows:

Demand: Once the network operator detects a failure, a re-
quest is placed with a set of parameters related to the failed GBS,
i.e., location, area, number of users, and bandwidth.

Decision: Based on the previous request, and since it is a
short-term failure, the decision will be taken based on the col-
lected data from the demand phase, i.e., the number of users
and requested bandwidth. The number of UAVs needed to heal
the failed GBS and their deployment locations will be decided
based on an optimization problem.

The formulated optimization problem will aim to maximize
the minimum achievable rate of the UEs under the failed GBS
and meanwhile minimizing the transmission power of the UAV
used which also minimizes the total number of UAVs used.

maximize
J,Φ,Ψ,p

Ω

𝑅th − 1
𝑃max ∗ |D|

∑︁
d

∑︁
u

∑︁
m

𝜓𝑢,𝑑Φ
𝑚
𝑢,𝑑 𝑝

𝑚
𝑢,𝑑 . (2)

The optimization variables are the UAV coordinates J, the
DBS-UE association Ψ, the resource allocation binary variable
Φ, and the transmission power of the UAV p. Note that Ω is an
auxiliary continuous variable used to represent the maximiza-
tion of the minimum achievable rate of the UEs [39].

The optimization problem is subject to the following con-
straints: (i) Resource allocation and user association constraints,
(ii) minimum achievable rate constraint, and (iii) 2D coordinates
constraint to limit the coverage/service area of each UAV given
that they all fly at the same altitude.

Deployment: The deployment depends mainly on the ini-
tial DBS locations and the trajectory is determined optimally. In
Fig. 2, the initial location of a particular DBS is shown to be
above a certain building.

Service: A minimum achievable rate is guaranteed to the
users in the affected area. The location of the serving DBSs can
change based on the mobility of users.

For long-term failures, the application of the D3S framework
is exactly the same as the short-term failure, except for the type
of UAVs. Based on the demand, we may use Helikite(s) only
(if the application is not time sensitive) or DBSs first until de-
ploying the Helikites since their deployment can take up to 45
minutes. In this case, the DBSs will heal the users until the He-
likites are deployed and then the DBSs will return back to their
initial locations.

A.2 Numerical Results

Numerical results are provided to investigate the benefits of
using different types of UAVs to mitigate GBS failure using
the D3S framework. The optimization problem presented in
this section is solved using General Algebraic Modeling Sys-
tem (www.gams.com). The simulation area is 400×400 m2 and
the UEs are distributed randomly. In this case study, we con-
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sider that the users are static and the UAVs move dynamically
based on the optimization problem.

Fig. 4 represents a mitigation performance for short-term and
long-term failures in terms of the achievable downlink rate for
static UEs. By increasing the number of used DBSs/UAVs, the
consumed power increases. As the maximum power increases,
the rate increases but levels off when the power reaches 1W [40].
Owing to the fact that the objective function of the optimization
problem is maximizing the minimum achievable rate and at the
same time minimizing the downlink power, there is a trade-off
between increasing the achievable rate and decreasing the down-
link power. The long-term scenario, which uses one Helikite, re-
sults in the lowest achievable rate. This is because the Helikite
altitude is higher than that of the DBSs.

Fig. 5 shows a short-term failure scenario where the failed
GBS (shown as a red triangle) is centered in the middle and
other fully loaded GBSs are distributed near the edge. Based
on the decision phase, three DBSs are ready to serve the users.
Dotted red lines show the scenario if any of the GBSs is not fully
loaded. In this case, the UEs will be associated with this partic-
ular GBS and the DBS will return back to its initial location. It
worth noting that DBS1 and DBS2 utilize less than 50% of their
maximum power since in this scenario not all UEs are associ-
ated with one DBS. On the contrary, DBS4 utilized around 95%
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of its maximum power. This is because more than three UEs are
connected to DBS4.

B. Case Study 2: UaaS for Dynamic Users

B.1 Description

In the second case study, we apply the D3S framework to the
case of dynamic users. This case study considers a wireless re-
laying system consisting of mobile users aiming to transmit their
data to a given sink. We assume that mobile users and the sink
are out of communication ranges and they are communicating
through multiple UAVs. The D3S framework can be applied as
follows:

Demand: Because of mobile users and sink are out of com-
munication range, the network operator places a request to con-
nect the mobile users with the sink.

Decision: Because UAVs are battery operated, based on the
demand request, the decision will be taken to optimize the
needed number of UAVs, energy consumption, power alloca-
tion, and association between UAVs and users. For fairness, the
formulated optimization problem will aim to maximize the sum
of the achievable data rates while respecting: (i) Transmit power
budget, (ii) UAVs’ battery level, and (iii) trajectory limitations.
We assume that each UAV can employ a decode-and-forward
strategy. The objective function can be expressed as follows:

maximize
J,𝚿,Pd

∑︁
𝑑

∑︁
𝑢

∑︁
𝑚

min
[
𝑅𝑚
𝑢,𝑑 (𝐽,Ψ, 𝑃𝑑), 𝑅𝑚

𝑑,0 (𝐽, 𝑃𝑑)
]
, (3)

where 𝑅𝑚
𝑢,𝑑

(𝐽,Ψ, 𝑃𝑑) and 𝑅𝑚
𝑑,0 (𝐽, 𝑃𝑑) are the achievable data

rate from mobile user 𝑢 to UAV 𝑑 over bandwidth 𝑚 and from
UAV 𝑑 to sink, respectively.

Deployment: Because of the dynamic nature of the mobile
users, the UAV trajectory has to be updated regularly. Given a
predefined trajectory of UAVs, we can update/adjust the trajec-
tory under some boundary constraints to enhance the provided
throughout to users. Hence, we optimize the user-UAV asso-
ciation, in addition to the UAVs’ transmit power levels, while
taking into consideration the communication channel quality.

Service: A minimum achievable rate is considered for mobile
users.

B.2 Numerical Results

Fig. 6 plots the UAV trajectories using updated and pre-
planned trajectory for one UAV. Note that the updated trajectory
can be adjusted based on users’ location. In Fig. 7 [41], we plot
the achieved average throughput per user versus users’ trans-
mit power for updated and pre-planned trajectory approaches.
It shows the improvement of updated trajectory approach over
the pre-planned trajectory approach (for static users) in terms
of average throughput. This is because the updated trajectory
approach has a higher degree of freedom by modifying the tra-
jectory of the UAV to be close to users as much as possible to
enhance the channel gain and the total throughput.

VIII. CONCLUSION

We have introduced a novel framework of UaaS and showcase
its usage in the context of wireless connectivity service. Based
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on four phases of Demand, Decision, Deployment, and Service,
the main objectives of this framework is to develop efficient and
realistic solutions to implement these four phases. To evaluate
the performance of this framework, we illustrated its application
in two case studies. The first case study addresses the failure
of one or more GBSs of a wireless cellular network and shows
how we can mitigate the effect of this failure to keep the wireless
connectivity service operational using the D3S framework. The
second case study considers a wireless relaying system between
one GBS and dynamic users. Depending on the time requested
by the users, the drones are able to modify their trajectories to
provide effective connectivity services.
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