
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

106 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

Video Streaming over HTTP/2: Design and
Evaluation of Adaptive Server-Paced Push

Huei-Wen Ferng, Shan-Hsiang Shen, and Chih-Wei Lai

Abstract: By using the server push of the hypertext transfer pro-
tocol (HTTP) version 2.0, i.e., HTTP/2, along with the technique
of server pacing, a novel scheme is proposed in this paper to de-
liver video segments. Furthermore, the load of bitrate adaptation
is shifted to the server to avoid bandwidth competition and wastage
caused by bitrate switching. It can be explicitly shown that no sig-
nificant overhead is brought by our proposed scheme via complex-
ity analysis. Moreover, our proposed scheme generates one HTTP
request only. With extensive simulations, we successfully demon-
strate that it is superior over the closely related schemes in terms
of the average achievable bitrate, the number of buffer stalls, the
ratio of unclaimed pushes, etc., in particular, when a harsh network
condition arises.

Index Terms: Adaptive, Bitrate adaptation, HTTP/2, server pacing,
server push, video streaming.

I. INTRODUCTION

THE HTTP adaptive streaming (HAS) is on top of the HTTP
protocol and has been widely deployed. Because the

HTTP traffic can easily penetrate the network address trans-
lation (NAT) and firewall, HAS has become one of the most
widely used video streaming technologies [1]. The well-known
instances of HAS include the HTTP live streaming provided by
Apple, the HTTP dynamic streaming provided by Adobe, and
the smooth streaming provided by Microsoft. Although these
technologies are similar, they are not compatible. Up to now,
the dynamic adaptive streaming over HTTP (DASH) [2] pro-
posed by the motion picture expert group (MPEG) is the only
international standard for HAS.

HAS pre-encodes a video clip into multiple versions with dif-
ferent levels of quality and cuts the video into segments. A
client selects and downloads a suitable version for each video
segment based on the network condition such as available band-
width to maximize the video quality. Because HAS is a pull-
based scheme [3], a client needs to send an HTTP request for
each video segment. It is crystal clear that longer segment pe-
riods reduce the total number of video segments to be down-
loaded, resulting in fewer HTTP requests accordingly. How-
ever, longer segment periods cause unstable video buffering and

Manuscript received October 3, 2019 approved for publication by Prof. Martin
Reisslein, Editor, February 17, 2021.

This research was supported by the Ministry of Science and Technology
(MOST), Taiwan, under contract MOST 109-2221-E-011-118-MY2.

H.-W. Ferng, S.-H. Shen, and C.-W. Lai are with the Department of Computer
Science and Information Engineering, National Taiwan University of Science
and Technology, Taipei, Taiwan, email: {hwferng, sshen}@csie.ntust.edu.tw,
rusty0831@hotmail.com.

H.-W. Ferng is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2021.000007

higher latency inevitably [4], [5] because of slow reaction to the
changes of the network condition. Therefore, most of the In-
ternet video streaming schemes prefer a shorter video segment
period. On the contrary, frequent HTTP requests bring higher
power consumption to mobile devices [6], [7], lower link uti-
lization, higher round-trip time (RTT), and more requests to be
processed by network nodes [8], [9]. To address these issues,
the international organization for standardization (ISO) and the
international electrotechnical commission (IEC) are working on
the extension of DASH. The number of video segments to be
downloaded will be explicitly specified in an HTTP request to
reduce the total number of HTTP requests [10].

Moreover, HTTP/2 [11] standardized in 2015 has been the
most important update for the communication between servers
and browsers since the time instant when HTTP/1.1 was re-
leased in 1999. HTTP/2 supports a push scheme at the server-
side. Based on this scheme, the server estimates the content that
the client may be interested in when it receives a request from
the client and pre-sends the content to the client to reduce the
download latency even though more network bandwidth may be
occupied. However, the server push scheme in the current ver-
sion of HTTP/2 only defines the format of transmitted content
and control messages between the communication peers. There-
fore, no further specifications are posed regarding the way to de-
ploy servers and clients. That is the reason why many previously
proposed schemes apply the server push scheme to HAS for re-
ducing the HTTP request overhead so that power consumption
of mobile devices can be lowered [12] and the playback latency
of the live video streaming can be shortened [5].

In the literature, the closely related schemes were proposed
in [8], [9]. These schemes tried to reduce the HTTP request over-
head by using the server push scheme but they still encountered
some problems. In particular, the traffic with the new data rate
competes for the network bandwidth with the traffic with the old
data rate when an adaptive video stream at a client-side switches
the video data rate in a harsh environment. Such competition
causes data rate switching delay and wastage of network band-
width, resulting in lower video quality. To properly address the
aforementioned issues, we shall propose a novel push scheme
in which the video adaptation scheme is moved to the video
server in this paper. For estimating the state and the video buffer
level of a client, some corresponding algorithms are designed
accordingly so that a suitable video version can be selected for
each video segment. With negligible extra overheads, the video
server can handle the streaming process. Therefore, our pro-
posed scheme can successfully cut the number of HTTP requests
to one and resolve the bandwidth competition issue. Compared
to the closely related server push schemes under extensive simu-
lations, our proposed scheme can effectively keep the number of

1229-2370/21/$10.00 © 2021 KICS

FERNG et al.: VIDEO STREAMING OVER HTTP/2: DESIGN AND EVALUATION ... 107

HTTP requests at 1, achieve a higher average video bitrate, and
bring no unclaimed pushes in a high RTT network environment
with mobile hosts as compared to the closely related schemes.
Undoubtedly, the quality of experience (QoE) for video stream-
ing can be greatly enhanced by our proposed scheme.

The rest of this paper is organized as follows. The literature
review on the related work is given in Section II. As for our pro-
posed scheme, it is depicted in Section III. Section IV offers the
time and space complexity of our proposed scheme with com-
parison to the closely related schemes. To show the effectiveness
of our proposed scheme, performance evaluation is provided in
Section V with comparison to the closely related schemes. Fi-
nally, Section VI concludes this paper.

II. RELATED WORK

Generally speaking, video streaming can be categorized into
on-demand streaming and live streaming [2]. The content of on-
demand streaming, e.g., movies, is pre-recorded so that all the
video segments are available before streaming. On the other
hand, the content of live streaming, e.g., a live soccer game, is
made dynamically and may rely on HAS naturally. To address
the corresponding issues of video streaming, in particular, HAS,
two push schemes were proposed in [5], i.e., Live All-Push and
K-Push [8]. In [13], Samain et al. gave a systematic comparison
between the information-centric networking (ICN) and TCP/IP
regarding the dynamic adaptive video streaming.

In the literature, [14] is one of the pioneering work applying
HTTP/2 to DASH. In [12], Wei et al. applied the server push
scheme to deliver multiple video segments to change the HTTP
request/response period for matching the period of the radio re-
source control (RRC). Their experiments revealed that 17.9%
of reduction in power consumption for mobile devices can be
reached when delivering 30 video segments during each push.
Huysegems et al. [15] provided several ideas to increase the
QoE for HAS by utilizing some HTTP/2 features. Their main
contribution lies in the overhead mitigation of HTTP requests
as well as the reduction in the service-to-display delay and the
start-up latency. With the aid of a forgetting factor, Aguayo et al.
[16] designed a DASH adaption algorithm named adaptive for-
getting factor (AFF) which has better behavior in video stalling
and the number of bitrate switches.

To reduce the content redundancy and display latency of
HAS, scalable video coding was leveraged by [17]. However,
several HTTP requests are needed for each video segment. The
aggregated RTT then causes high latency obviously, degrading
the quality of service (QoS). To address this issue, Hooft et
al. [18] proposed a server push scheme. When a client requests
an enhancement layer, the corresponding base layer is pushed
to the client as well to shorten the latency and to improve the
bandwidth utilization.

Note that players at clients stay in the mode of buffering ini-
tially and start to play the video after the content at the buffer has
exceeded a preset threshold. Obviously, a high aggregated RTT
to download multiple video segments causes a critical start-up
latency when the RTT gets larger. To address this issue, some pa-
pers in the literature proposed the corresponding push schemes.
In [19], the server starts to deliver video segments to a client

when the media presentation description (MPD) file has been
downloaded by the client. Cherif et al. [19] showed that their
scheme can reduce 50% or so of the start-up latency. Bouza-
karia et al. [20] proposed a push scheme so that the video server
pushes all initialization segments to a client when the MPD file
has been requested. Such a scheme has a shorter start-up latency
than the referenced scheme in [20].

For the remaining part of this section, some closely related
schemes applying server push to reduce the HTTP request over-
head are further examined, including Live All-Push, K-Push,
and Dynamic K-Push [9]. For Live All-Push, the video server
keeps pushing the video segments, if any, until the end of
streaming. In [5], two problems of Live All-Push were reported
explicitly. The parameter K of K-Push [8] represents the num-
ber of video segments to be pushed for each request by the video
server at the same data rate. Although K-Push can reduce the
load of HTTP requests as reported in [5], it inevitably brings
bandwidth wastage and high switching latency caused by band-
width competition between the data stream at an old data rate
and that at a new data rate when switching the video data rate.
Nguyen et al. [9] proposed DynamicK-Push to switchK based
on the network condition and the buffer level at the client-side.
To reach such a goal, a cost function was first defined in [9]
in terms of the number of pushed video segments per time, the
duration of a video segment, the buffer level in seconds at the
client-side, and the threshold of the lowest buffer level. Based
on the cost function, DynamicK-Push then finds theK with the
minimum cost before pushing video segments. According to the
simulation results given in [9], Nguyen et al. claimed that Dy-
namic K-Push can reduce the number of HTTP requests, main-
tain the stable buffer level, and increase the average video data
rate. Nevertheless, the push scheme may still suffer from the
competition for network bandwidth between different data flows
when changing the video data rate.

For our proposed scheme, the bitrate adaptation method is mi-
grated from a client-side to the server-side1 and a server-paced
push scheme determines the number of video segments to be
pushed and when to push them to a client based on the state of
the client. Unlike K-Push [8] and Dynamic K-Push [9], which
are the two schemes in the literature selected for comparison
with our proposed scheme later, there is no competition for net-
work bandwidth between data flows caused by video data rate
switching. After pushing a video segment, the bitrate adapta-
tion method calculates the throughput based on the data size,
etc. to determine the video data rate for the next video segment.
Explicitly, our design changes the pull-based nature of HAS to
the push-based nature by employing the HTTP/2 server push
scheme but switches video data rates according to the network
condition as the traditional HAS. Further compared to the pull-
based HAS, the push-based HAS employed by our proposed
scheme avoids the RTT accumulation problem [15], [18], [21],
[22], then shortening the latency efficiently. Even if the bitrate
adaptation method is moved to the server, no much overhead
is brought to the server and this can be manifested by the time
complexity analysis to be discussed later. Besides, the stateful
nature of HTTP/2 [23] will not be changed to accommodate our

1The issue of server errors or switching will not be covered by this paper and
deserves part of the future work.

108 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

proposed scheme. These show that more advantages but fewer
disadvantages are brought by our proposed scheme.

III. PROPOSED ADAPTIVE SERVER-PACED PUSH

A. Video Buffering

Measuring in time for the buffered video is a more direct way
than measuring in packets to reflect the buffering condition as
employed by [24], [25]. Therefore, the playback time in sec-
onds was employed by [9], [24], [26]. Using such a way, the out-
put rate is always 1-second playback time per second no matter
what the video data rate is. Assume that T (i) represents the av-
erage throughput when transmitting the ith video segment, br(i)
stands for the video data rate of the ith video segment, and t is
the transmission time of the ith video segment. When the ith
video segment enters the buffer, its video buffer level increases
by T (i)× t/br(i). The average input rate to the video buffer
is then (T (i)× t)/(br(i)× t) = T (i)/br(i). Therefore, the
real-time virtual client buffer proposed by this paper adopts the
aforementioned feature to estimate/mimic the output rate during
streaming without caring for the current video data rate. As for
the details of the real-time virtual client buffer, it is depicted in
the next paragraph.

B. Real-Time Virtual Client Buffer

First of all, the general behavior of a video player is given
as follows [27]: At the beginning, the video playback stays in
the state of buffering until the video buffer level surpasses a pre-
defined threshold (bufmin) before video playback. During the
video playback, the video player keeps the video buffer level
closer to a target video buffer level denoted by buf . Except for
these two thresholds used for the virtual client buffer, bufmax
in the maximal video playback time can be further defined to
denote the buffer capacity.

In our architecture employed, the video server cannot di-
rectly have the state and the buffer level at a client-side. In-
stead, the video server mimics the behavior of the video player
to trace its state and buffer level. Although [26]–[28] touched
the buffer level estimation, the virtual client buffer was not ad-
dressed. Moreover, our proposed push scheme will determine
how to push video segments to a client based on the state of
the client. For these reasons, a new virtual buffering scheme
called the real-time virtual client buffer (RVCB) is proposed in
this paper. For each new connection, the video server enables
an RVCB for that client by running an independent thread gov-
erned by a finite state machine (FSM) based on the information
of the buffer level and current state. Of course, the video server
calculates and updates the video buffer level based on the size
of the video segment after a client receives a video segment.
This allows the video server to determine its video push policy
based on the buffer level, etc. Note that two states are associ-
ated with the output rate for our proposed virtual client buffer:
a buffering state with the output rate of 0 and a playing state
with the output rate of 1. With the help of the two states, an
FSM can be designed to mimic the state of the video player at a
client-side. The Buffering state then serves as the initial state for
each connection. The FSM will be switched to this state if the
buffer is out of content. When staying in this state, the output

rate of 0 is associated and the video server refills the buffer until
the buffer level reaches the threshold of bufmin. Once bufmin is
exceeded, the FSM is then switched to the Playing state at the
output rate of 1 until the end of playback. Of course, the FSM
will be switched to the Buffering state from the Playing state if
the buffer is out of content.

C. Server-Paced Push Policy

For our proposed push policy, it allows the video streaming
server to determine the way to push videos based on the state of
a client. When a client requests an MPD file, the video stream-
ing server then allocates an RVCB for the client and sets the
state of the FSM to the Buffering state. Then, the video stream-
ing server keeps sending video segments back to back until the
buffer level reaches bufmin. After that, the FSM is switched to
the Playing state. Instead of pushing video segments back to
back, the video streaming server determines the volume of video
segments to be pushed according to the gap between the current
buffer level at the client-side and the target buffer level (buf).
Besides, a bitrate adaptation method takes the turn after finish-
ing pushing video segments to decide a suitable bitrate for the
next video segment based on the currently available throughput
derived from the volume of pushed data and the corresponding
time taken.

D. Challenges and Solution to Push Videos over HTTP/2

There exist some challenges to applying the server push in
HTTP/2 directly to HAS. When receiving a request by the server
and having video segments to push, the video server will is-
sue a PUSH PROMISE frame for each data to be pushed to
let the client know the PUSH information, including the file
name, the promised stream ID, etc. Via the promised stream
ID, the client can know which stream will carry the data. Once
the PUSH PROMISE frame is sent, the server can respond and
send data through the promised stream. There are some speci-
fications and limitations for the server push over HTTP/2. First,
the PUSH PROMISE frame should be pushed via the client-
initiated data stream, implying that the video server can only
push data to a client via responding to an HTTP request. Sec-
ond, the PUSH PROMISE frame must be sent before any frames
for pushing data to avoid a race condition.

Although Live All-Push [5] issues one HTTP request by the
client and pushes all video segments to the client by the video
server, the server cannot send the PUSH PROMISE frame to
push video segments in Live All-Push because the only data
stream initialized by the client for the MPD file is closed right
after the MPD file is received. Live All-Push addressed this
issue by sending push tags to trigger the push process at the
server-side. Actually, these push tags are similar to the HTTP
GET requests, revealing that the number of requests cannot be
lowered at all.

To achieve the original goal of the server push in HTTP/2, i.e.,
reducing web page loading time, it can be done by parsing the
hyperlinks to know all the associated objects first. Then, encap-
sulate these objects into DATA frames and send these frames.
For HAS, the aforementioned way should be properly taken
care of because the video versions are selected dynamically and
adaptively during playback. Obviously, the video server can-

FERNG et al.: VIDEO STREAMING OVER HTTP/2: DESIGN AND EVALUATION ... 109

11

Stream ID: 1

Stream ID: 2n

Stream ID: 4

Stream ID: 2

Client ServerHTTP/2

Parse MPD

Number of segments : n

Fig. 1. Detailed signal flows of the proposed server push over HTTP/2.

not determine which video segments should be pushed before
responding to the MPD file. Towards this goal, a solution is pro-
posed in the following and illustrated in Fig. 1. Although the
server cannot know all the video segments to be pushed before
responding to the MPD file, it can reserve data streams for video
segments by pre-sending multiple PUSH PROMISE frames to
the client. The detailed procedure is depicted as follows. The
video server parses the MPD file when receiving a request for
the MPD file and counts the number of video segments to be
pushed. Then, the video server sends all the PUSH PROMISE
frames via the only data stream (i.e., Stream ID of 1 shown in
Fig. 1) opened by a client for downloading the MPD file before
the closure of that data stream. At this moment, the file names
corresponding to the video segments to be pushed cannot be
made sure. Therefore, the path (i.e., :path) in the pseudo-header
of the PUSH PROMISE frames is virtually set to Dummy. Such
a setting will not cause any problem because PUSH PROMISE
frames are not in charge of transmitting data to be pushed.
This should be enforced that the protocol stack of HTTP/2 will
not try to encapsulate the virtual Dummy file, which is found
from :path of the pseudo-header, into DATA frames and send
these frames before our server-paced push scheme takes over the
video streaming process. After all the PUSH PROMISE frames
(for example, n frames shown in Fig. 1) are sent, the status code
(200) in the header and the MPD file (MPD body) via DATA
frames follow. Of course, extra data steams with promised
stream IDs of 2, 4, · · ·, 2n in the state of reserved (local) will
be created and reserved to push the subsequent video segments
to be pushed later. Note that the flag of End Stream will be set
for the last DATA frame to close the data stream. Of course, the
data stream with promised stream ID 1 enters the closed state
and releases resources if the video server has received a frame
with the flag of End Stream set by the client already. At this
moment, the only data stream initialized by the client is closed

and our bitrate adaptation method then takes over to adapt video
bitrates accordingly as shown in Fig. 1 via the data streams pre-
viously reserved by the PUSH PROMISE frames. The real file
names, sizes, etc. are reflected by the newly added fields of url
and file size in the headers to let the client know the correspond-
ing information.

E. Design of Bitrate Adaptation

As illustrated in [4], [27], a bitrate adaptation method usu-
ally includes two modules: throughput estimation and bitrate
selection. In the following paragraphs, let us detail our bitrate
adaptation method.

E.1 Proposed Bitrate Adaptation Method

Our proposed bitrate adaptation method can be shown via the
compound of Algorithms 1–4. In the following, let us discuss
these algorithms in detail.

Algorithm 1 Per-session initialization
1: idx = 1, br = NULL //Global Variable Initialization
2: b = 0, s = BUFFERING //Global Variable Initialization
3: Ts = NULL //Global Variable Initialization
4: Parse the requested MPD file to get the total number of

segments n, representations within this adaptation set R[],
number of representations m, and segment duration τ .

5: for i = 1 to n do
6: Send a PUSH PROMISE frame with promised Stream

ID 2i.
7: end for
8: Respond to the HTTP GET request with the MPD payload

and HTTP status code (200).
9: Call Algorithm 2 for initial buffering.

Connection initialization: As shown in Algorithm 1, an ini-
tialization procedure should be performed by the video server
upon receiving the request for an MPD file by a client. Firstly,
five global variables are initialized. Here idxmeans the index of
the next video segment to be pushed, br is the bitrate of the next
video segment to be pushed, b represents the level of the vir-
tual client buffer, s denotes the state of the virtual client buffer,
and Ts stands for the smoothed throughput measured according
to the pushed video segments. These global variables store the
states of playback, which will be referred by the correspond-
ing algorithms. Secondly, the algorithm retrieves the number of
video segments n, the adaptation set of bitrates for all supported
video versions R[], the number of representations m, and the
segment duration τ by parsing the requested MPD file. Note
that m is the number of elements, i.e., representations, in the
set of R[] and R[0] < R[1] < · · · < R[m − 1]. For the
reason explained previously, the video server needs to send a
PUSH PROMISE frame for each video segment. Thirdly, the
video server calls Algorithm 2 for the initialization of buffer-
ing after responding to the HTTP GET request with the MPD
payload and status code.

When performing initialization of buffering, Algorithm 2 cal-
culates the number of video segments nbuf to be pushed via the
number of segments to fill up the client buffer with the mini-

110 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

Algorithm 2 Initialization of buffering
1: nbuf ← dbufmin/τe
2: br← R[0] //Start from the lowest bitrate.
3: for i = 1 to nbuf do
4: Push segment i of bitrate br and measure the throughput

(T).
5: Call Algorithm 6 to select the bitrate of the next seg-

ment. //Algorithm 6 will update the bitrate of the next se-
lected segment to br.

6: b← b+ τ //Update the virtual buffer level.
7: end for
8: idx← idx+ nbuf //Update the segment index.
9: s← PLAY ING //Switch to the PLAY ING state.

mum threshold, i.e., dbufmin/τe, and starts from the lowest bi-
trate. When finishing pushing a segment, the algorithm selects
a bitrate for the next video segment according to the estimated
throughput by calling Algorithm 6 which will be discussed later.
Then, the virtual buffer level is updated. Such a procedure is re-
peated for nbuf times. Once the video buffer at the client-side
reaches bufmin, the segment index is updated and the FSM is
then switched to the Playing state. When staying in the Playing
state, Algorithm 7 imitates the output rate of the video buffer
level at the client-side officially with a period of c in seconds.
If the video buffer is exhausted, then Algorithm 2 stops and the
FSM is switched to the Buffering state until the video buffer
level reaches bufmin again.

Pushing video segments and estimation of the video buffer
level at the client-side: In Algorithm 1, the total number of seg-
ments to be pushed, i.e., n, has been acquired through parsing
the MPD file. Therefore, the remaining goal is pushing these
segments sequentially and properly. Once all the segments have
been pushed, the entire session of video streaming should be
terminated as shown in lines 1–3 of Algorithm 3. When stay-
ing in the Playing state, the video server calculates the number
of video segments to be pushed, i.e., nbuf , based on the differ-
ence between the current video buffer level, i.e., b, and the target
video buffer level, i.e., buf , to let the video buffer level be close
to buf after pushing as follows:

nbuf =

{
d buf−bτ e, if 0 < b < buf,

0, if b ≥ buf.

Note that no more segments should be pushed if b ≥ buf . The
aforementioned procedure is shown in Algorithm 3. If nbuf >
0, Algorithm 3 will call Algorithm 4 to push video segments.
Whenever a video segment is pushed, the virtual client buffer
level will be updated according to Algorithm 4 as well. Given
that the ith video segment with size τ in seconds and bitrate
br(i) is received by the client, the change of the virtual client
buffer level is estimated as follows:

∆b = τ − br(i)× τ
T (i)

.

Such a change is explained in the following. τ cannot be added
to the virtual client buffer level directly because a time period is
required to let that segment reach the client after being pushed

Algorithm 3 Calculating the number of segments to be pushed
1: if idx > n then
2: Terminate the entire session of video streaming because

there is no more segments to be pushed.
3: end if
4: if b ≥ buf then
5: Quit the algorithm. //Quit the algorithm because current

buffer level has reached the target buffer level already.
6: end if

nbuf ← d buf−bτ e //Calculate the number of segments
to be pushed.

7: if idx+ nbuf − 1 > n then
8: nbuf ← n−idx+1 //Ensure that non-existing segments

will not be pushed.
9: end if
10: for i = 1 to nbuf do
11: Call Algorithm 4 to push segments.
12: end for

by the server. This time period should be reflected by the buffer
level at the client-side for sure because the buffer level at the
client-side drops as time goes. Here, the transmission time, i.e.,
br(i)× τ/T (i) in seconds, is employed. Therefore, the change
of the virtual client buffer level should be τ−br(i)× τ/T (i). If
the bitrate of the ith video segment (br(i)) is higher than T (i),
it results in ∆b < 0, implying that the exhaustion of the video
buffer level is faster than refilling. In Algorithm 4, Algorithm 5
will be called to calculate the new smoothed throughput and Al-
gorithm 6 will be called to select the bitrate of the next segment.
These will be detailed in the following two paragraphs.

Algorithm 4 Update of the virtual buffer level and segment push
at the PLAY ING state
1: Push segment idx of bitrate br(idx), save segment size in

bytes to size(idx) and elapsed time in seconds to t.
2: T (idx)← size(idx)×8

t //Measure throughput (T (idx)).
3: b← b+ τ − br(idx)×τ

T (idx) //Update the virtual buffer level.
4: Call Algorithm 5 to calculate the new smoothed throughput.
5: Call Algorithm 6 to select the bitrate of the next segment.
6: idx← idx+ 1 //Update the segment index.

Throughput estimation: Due to the fact that the adaptation
method is moved to the video server in our architecture, the
overhead of our method is critical for scalability. To this end,
the throughput-based method is adopted in our design for low-
ering time and space complexity. As far as the throughput-based
method is concerned, it can be further divided into the following
categories: instant throughput based (ITB), smoothed through-
put based (STB), and conservative throughput based (CTB)
methods [27]. To maximize the average bitrate for our method,
STB is leveraged. In our paper, the smoothed throughput is cal-
culated via the following equation:

Ts(i) =

{
(1− ρ)× Ts(i− 1) + ρ× T (i), if i > 1,

T (i), if i = 1,

where Ts(i) means the smoothed throughput after the ith video

FERNG et al.: VIDEO STREAMING OVER HTTP/2: DESIGN AND EVALUATION ... 111

segment is transmitted, (1− ρ) and ρ are the weighting factors,
and T (i) is the throughput when the ith video segment is trans-
mitted. Our bitrate adaptation method then selects a bitrate for
the (i + 1)th video segment according to Ts(i) with the algo-
rithm shown in Algorithm 5.

Algorithm 5 Calculation of smoothed throughput
Require: T : The latest throughput measured for pushing a seg-

ment
1: if Ts = 0 then
2: Ts ← T //The initial situation
3: else
4: Ts ← (1− ρ)× Ts + ρ× T
5: end if

Video bitrate selection: Note that the bitrate should be close
to the estimated throughput ideally. However, it is hard to es-
timate future throughput exactly. For this reason, we leverage
a more conservative way to estimate the throughput. First of
all, we calculate Tsafe by multiplying Ts(i) by a safety margin
denoted by α (0 < α < 1) as follows:

Tsafe = (1− α)× Ts(i).

The bitrate with the highest quality but lower than Tsafe is se-
lected from R[]. If all candidate bitrates are higher than Tsafe,
the bitrate with the lowest quality is then set. Such a procedure
is shown in Algorithm 6.

Algorithm 6 Bitrate selection
Require: α : Safety margin
1: Tsafe ← (1− α)× Ts
2: for i = m− 1 to 0 do
3: if R[i] < Tsafe then
4: br ← R[i] //Set the selected bitrate to br.
5: Quit the algorithm.
6: end if
7: end for
8: br ← R[0] //Choose the lowest bitrate, i.e., R[0], if no

match is found.

Algorithm 7 Real-time virtual client buffer: Emulation of the
client buffer level reduction
Require: c : Cycle duration to call this algorithm.
1: if b ≤ 0 then
2: s← BUFFERING //Switch to the BUFFERING

state.
3: Quit the algorithm.
4: else
5: b← b− c //Reduce the virtual buffer level.
6: end if

To show the relationship among Algorithms 1–7, the follow-
ing remark is given.

Remark 1: Note that Algorithms 1–3 will be performed se-
quentially for a session of video streaming in our proposed
scheme. About Algorithm 4, which calls Algorithms 5 and 6,

Table 1. Symbols associated with complexity.

Symbol Description
m number of representations (bitrate versions)

within the adaptation set
Tadd execution time of addition
Tsub execution time of subtraction
Tmul execution time of multiplication
Tdiv execution time of division
Tassign execution time of variable assignment
Tcompare execution time of comparing two variables
Iloop loop iteration overhead
Tsubscript execution time of array subscripting
Ccall function call overhead
C one or more basic addressable units of memory (byte) to

store an integer
Chttp2 HTTP/2 per-connection memory overhead to keep states
Cmem memory footprint of the proposed adaptation logic at the

server

it is called by Algorithm 3. Actually, Algorithm 6 is called by
Algorithm 2 as well. As for Algorithm 7, it is controlled by an-
other thread to emulate the reduction of the virtual client buffer
level.

IV. COMPLEXITY OF THE BITRATE ADAPTATION
METHOD

Our bitrate adaptation method is involved with Algorithms
1–7, where Algorithm 4 activated by Algorithm 3 and the algo-
rithms called by it, i.e., Algorithms 5 and 6, keep running during
video streaming, while Algorithms 1 and 2 are called for initial-
ization once during the whole video streaming. As for Algo-
rithm 7, it simply handles the the emulation of the client buffer
level reduction. Therefore, we shall focus on the time and space
complexities of the algorithms running repeatedly during video
streaming.

A. The Execution Time

A.1 The Execution Time of Algorithm 5

During playback, only line 1 and line 4 in Algorithm 5 will
be executed repeatedly since Ts has been set already. The as-
sociated total execution time is the Tcompare + Tsub + 2Tmul +
Tadd + Tassign, where the corresponding symbols can be referred
to Table 1.

A.2 The Worst-Case Execution Time of Algorithm 6

Through proper derivation, the total execution time of Algo-
rithm 6 is then (m + 1) × Tsubscript + m × (Iloop + Tcompare) +
2Tassign + Tsub + Tmul.

A.3 The Execution Time of Algorithm 4

Through proper derivation, the total execution time of Al-
gorithm 4 is 8Tassign + 5Tmul + 2Tdiv +3Tadd + 3Tsub + (m +
1)Tcompare +2Ccall +(m+1)Tsubscript +mIloop for the worst case.

B. Time Complexity

When the video server handles a connection, the bitrate adap-
tation method (Algorithm 4) takes the worst-case execution time
as discussed previously. It is explicitly that each time-related
symbol in Table 1 has its upper bound. Letting Cmax be the

112 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

maximum value of these upper bounds and f(n) denote the ex-
ecution time when the server handles n concurrent connections,
we then have

f(n) ≤ n(3m+ 25)Cmax. (1)

Note that Cmax is quite small and m is usually small, imply-
ing that the extra overhead caused by moving bitrate adapta-
tion to the video server in our architecture is negligible. Com-
pared to our architecture, no extra overhead in time complexity
is brought by the traditional HAS, K-Push, and Dynamic K-
Push. Of course, (1) says that f(n) ∈ O(n) which is acceptable
in scalability.

C. Space Complexity

Let us check the space complexities for the related schemes
in the following paragraphs.

C.1 Traditional HAS

In the traditional HAS, no extra space is required because
HTTP/1.1 is a stateless protocol.

C.2 K-Push and Dynamic K-Push

Due to the fact that HTTP/2, which keeps some states because
the HPACK header compression scheme employed by HTTP/2
is stateful, is employed by K-Push and Dynamic K-Push, the
video server allocates extra memory space denoted by Chttp2 for
each connection. The space complexity associated with the two
schemes denoted by g(n) when n concurrent connections exist
is derived as follows:

g(n) = nCChttp2, (2)

which says that g(n) ∈ O(n).

C.3 Our Proposed Push Scheme

For our bitrate adaptation method, the video server keeps the
following states for each connection: 1) idx, 2) br, 3) Ts, 4) b,
and 5) s. Therefore, the extra memory space for each connection
denoted by Cmem is Chttp2 + 5. The space complexity associated
with our proposed scheme denoted by h(n) when n concurrent
connections exist is derived as follows:

h(n) = nCCmem = nC(Chttp2 + 5), (3)

which says that h(n) ∈ O(n).

C.4 Comparison among the Proposed Scheme, K-Push, Dy-
namic K-Push, and the Traditional HAS

Considering n concurrent connections, the extra memory
space required for our proposed scheme is 5nC as compared to
K-Push, Dynamic K-Push. Likewise, the extra memory space
required for our proposed scheme is nC(Chttp2 +5) as compared
to the traditional HAS. Actually, either 5nC or nC(Chttp2 +5) is
negligible, implying that the complexity involved with our pro-
posed scheme is still acceptable.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance comparison between our pro-
posed scheme and the closely related schemes in the litera-
ture will be shown by simulation. Such a comparison will be
illustrated via the following performance metrics: 1) average
(achievable) bitrate, 2) the number of buffer stalls, i.e., buffer
emptiness/exhaustion, 3) the number of HTTP requests, 4) the
volume of unclaimed pushes, 5) the ratio of unclaimed pushes,
which is the ratio of the volume of unclaimed pushes and the
volume of total pushes.

A. System Architecture and Simulation Environment

Our simulation system will be developed by Node.js. In ad-
dition, the node-http2 [29] HTTP/2 protocol stack developed by
Google is leveraged for the system of our simulations. Further-
more, K-Push [8] and Dynamic K-Push [9] are implemented
via Node.js as well for the purpose of comparison. As for the
details of the system architecture and simulation environment,
these are depicted in the following paragraphs.

A.1 Traffic Shaping at the Server

For part of our simulations, the bandwidth change and the
RTT variation for mobile devices under a real scenario will be
emulated to acquire the performance of the push schemes con-
sidered under such a scenario. This is done by a traffic shap-
ing mechanism at the server with the CentOS. By analyzing the
bandwidth trace log [30] previously employed by Dynamic K-
Push [9] using traffic shaping and by applying the traffic control
provided by the Linux kernel of the CentOS at the server, the
bandwidth change and the RTT variation are emulated accord-
ingly.

Considering the framework of K-Push and Dynamic K-Push
at a client-side, the simulator at a client-side for our proposed
scheme can be built with suitable modification, i.e., the bitrate
adaptation logic is moved to the server. Therefore, the client
receives video segments passively from the video server and
buffers/plays a video segment according to the current state.
Moreover, a performance-profiler is implemented in our sim-
ulator to measure performance metrics.

A.2 Simulation Environment

About the version of Node.js employed, it is 4.4.5. For the
client, it is built on the Intel Core i7-2600 CPU with the oper-
ation system of Microsoft Windows 7.0 SP1 x86 64 and 16GB
DDR3-1066 memory. As for the server, it is built on the In-
tel Core i7-2600 CPU with the operation system of CentOS 6.2
x86 64, the OS kernel of version 2.6.32-220.el6.x86 64, and
16GB DDR3-1066 memory. As for the parameters of the simu-
lation environment, they are listed in Table 2. Note that two dif-
ferent scenarios are considered explicitly in our following simu-
lations: a Gigabit Ethernet and the Internet with Mobile Clients
(under different RTTs) to consider the dynamic changes in the
network, e.g., congestion. In the Gigabit Ethernet, the abundant
bandwidth is assumed. Therefore, no congestion is incurred in
such a scenario. However, the dynamic changes, e.g., conges-
tion, are considered for the Internet with Mobile Clients (under

FERNG et al.: VIDEO STREAMING OVER HTTP/2: DESIGN AND EVALUATION ... 113

Table 2. Parameter setting for the simulation.

Parameter Setting/Description
bufmin, buf 12 s, 16 s
c, ρ, α 1 s, 0.35, 0.3

DASH dataset

Well-known ”Big Buck Bunny”
DASH Dataset [31],
Video size: 9 m 55 s,
Segment duration : 1 s,
Number of segments : 596,
Representations (kbps) : 220.81, 414.57,
606.16, 789.12, 1046.42, 1282.02,
1623.84, 2181.78, 2555.94, 3227.65

Real world bandwidth trace HSDPA-bandwidth logs for the mobile
HTTP streaming scenario [30]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

A
v
e

ra
g

e
 B

it
ra

te
 (

k
b

p
s
)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

N
u

m
b

e
r

o
f

H
T

T
P

 R
e

q
u

e
s
ts

(b)

Fig. 2. Performance of different push schemes in a Gigabit Ethernet: (a) Aver-
age bitrate and (b) number of HTTP requests.

different RTTs). Different values of RTTs are used to reflect the
changes in the network for sure.

B. Simulation Results and Discussions

B.1 Simulation in a Gigabit Ethernet

Shown in Fig. 2 are the simulation results in a Gigabit Ether-
net. Due to the abundant bandwidth of the Gigabit Ethernet, no
unclaimed pushes exist and the average video bitrates achieved
by different push schemes are almost the same and reach 3220
kbps as shown in Fig. 2(a) because the highest video quality at
3227.65 kbps is almost affordable during the whole playback.
Note that the video stream starts from the lowest video quality
at 220.81 kbps initially and then switches to the highest bitrate
later. This explains why the average bitrates are slightly lower
than the maximally affordable bitrate. Because the total num-
ber of video segments is 596, the traditional HAS requires 597
HTTP requests as shown in Fig. 2(b) for the whole video, in-
cluding the one for the MPD file. As for K-Push and Dynamic
K-Push, the number of HTTP requests can be lowered. The
higher K is, the fewer HTTP requests are sent. Last but not
least, our proposed scheme only requires one HTTP request.

B.2 Simulation for the Internet with Mobile Clients under Dif-
ferent RTTs

The bitrates under such a scenario are shown in Figs. 3(a) and
3(b) with RTTs of 50 ms and 100 ms, respectively. Explicitly,
our proposed scheme is affected the most by RTT which can
stand for the congestion level. When the more congested net-
work condition, i.e., the condition with RTT of 100 ms, is posed,
the bitrate drops significantly. However, our proposed scheme
achieves the highest average bitrate among the related schemes.
As for the average bitrates of K-Push with K = 2, 3, 4, they are
a bit higher than those of Dynamic K-Push and K-Push with

 1200

 1400

 1600

 1800

 2000

 2200

 2400

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

A
v
e

ra
g

e
 B

it
ra

te
 (

k
b

p
s
)

(a)

 1200

 1400

 1600

 1800

 2000

 2200

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

A
v
e

ra
g

e
 B

it
ra

te
 (

k
b

p
s
)

(b)

 0

 5

 10

 15

 20

 25

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

N
u

m
b

e
r

o
f

B
u

ff
e

r
S

ta
lls

(c)

 0

 5

 10

 15

 20

 25

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

N
u

m
b

e
r

o
f

B
u

ff
e

r
S

ta
lls

(d)

 0

 100

 200

 300

 400

 500

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

N
u

m
b

e
r

o
f

H
T

T
P

 R
e

q
u

e
s
ts

(e)

Fig. 3. Average bitrates, numbers of buffer stalls, and numbers of HTTP re-
quests under different RTTs: (a) RTT = 50 ms, (b) RTT = 100 ms, (c)
RTT = 50 ms, (d) RTT = 100 ms, and (e) RTT = 100 ms.

K = 1. When the value of RTT is getting larger (from 50 ms
to 100 ms), the improvement regarding the average achievable
bitrate gained by our proposed scheme becomes more apparent
as compared to the other schemes as shown in Figs. 3(a) and
3(b). Further examining the number of buffer stalls as shown
in Figs. 3(c) and 3(d), K-Push with K = 2, 3, 4 incur more
buffer stalls (and playback stalls accordingly) than our proposed
scheme, K-Push with K = 1, and Dynamic K-Push because
more segments cause severe network bandwidth competition.
Actually, there are no buffer stalls for our proposed scheme and
K-Push with K = 1 under both RTT values. As for Dynamic
K-Push, it is found once regarding the buffer stall when the
value of RTT is 100 ms. Shown in Fig. 3(e) are the numbers
of HTTP requests for all schemes when the value of RTT is 100
ms. From this figure, one can see that our proposed scheme only
requires one single HTTP request no matter what the video size
is. On the contrary, the numbers of HTTP requests are still quite
large (ranging from 248 to 444) for the other schemes as com-
pared to our proposed scheme even ifK-Push with a largeK can
lower the number of HTTP requests greatly. To check the video
buffer levels for different schemes during the whole video play-
back, one can refer to Fig. 4. Unlike K-Push with K = 2, 3, 4,
almost no occurrence of buffer emptiness/exhaustion is found
for K-Push with K = 1, Dynamic K-Push, and our proposed
scheme. According to Fig. 3(b), our proposed scheme provides

114 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

0

1000

2000

3000

4000

5000

6000

7000

0

5

10

15

20

25
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

4
0

1

4
1

1

4
2

1

4
3

1

4
4

1

4
5

1

4
6

1

4
7

1

4
8

1

4
9

1

5
0

1

5
1

1

5
2

1

5
3

1

5
4

1

5
5

1

5
6

1

5
7

1

5
8

1

5
9

1

6
0

1

6
1

1

B
an

d
w

id
th

 (
kb

p
s)

B
u

ff
e

r
Le

ve
l

(s
e

co
n

d
s)

Time (s)

Proposed Dynamic K-Push K=1 K=2 K=3 K=4 Bandwidth

Fig. 4. The buffer levels during the whole video playback when RTT = 100 ms.

 0

 50

 100

 150

 200

 250

 300

 350

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

V
o

lu
m

e
 o

f
T

ra
n

s
m

it
te

d
 V

id
e

o
 S

e
g

m
e

n
ts

 (
M

B
)

HTTP Get
Claimed Push
Unclaimed Push

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

R
a

ti
o

 o
f

U
n

c
la

im
e

d
 P

u
s
h

e
s

(b)

 0

 50

 100

 150

 200

 250

 300

 350

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

V
o

lu
m

e
 o

f
T

ra
n

s
m

it
te

d
 V

id
e

o
 S

e
g

m
e

n
ts

 (
M

B
)

HTTP Get
Claimed Push
Unclaimed Push

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Proposed

D
ynam

ic K-Push

K=1
K=2

K=3
K=4

R
a

ti
o

 o
f

U
n

c
la

im
e

d
 P

u
s
h

e
s

(d)

Fig. 5. Volumes of different transmitted video segments and ratios of unclaimed
pushes in the Internet under different RTTs: (a) RTT = 50 ms, (b) RTT =
50 ms, (c) RTT = 100 ms, and (d) RTT = 100 ms.

20% and 26% higher in the average bitrate than Dynamic K-
Push and the K-Push with K = 1, respectively. As for K-
Push with K = 2, 3, 4, frequent occurrences of buffer empti-
ness/exhaustion caused by insufficient bandwidth to carry video
segments are observed, i.e., 10, 16, and 20 times. Compared to
K-Push with K = 4, our proposed scheme has 15% higher in
the average bitrate. The aforementioned observations explicitly
indicate that our proposed scheme achieves better video quality
than the other related schemes.

B.3 Further Investigation in the Internet with Mobile Clients

With worse network conditions, unstable network bandwidth
is inevitable. To adapt network bandwidth changes, more fre-
quent video bitrate changes are observed, causing unclaimed
pushes easily for K-Push and Dynamic K-Push. This is in-
vestigated in the following. When the value of RTT is 50 ms,

Dynamic K-Push and K-Push switch bitrates frequently, caus-
ing a lot of unclaimed pushes as shown in Fig. 5(a). Dynamic
K-Push wastes 57.27 MB and K-Push with K = 4 wastes
111.57 MB during the whole video playback. In terms of the
ratio of unclaimed pushes as shown in Fig. 5(b), the percent-
ages of wastage revealed by DynamicK-Push andK-Push with
K = 4 are 52.59% and 53.35%, respectively. For our proposed
scheme, such a problem can be removed and avoided. There-
fore, no unclaimed pushes are observed at all for our proposed
scheme. When the RTT gets larger, i.e., 100 ms, the average
achievable bitrate drops and the volume of unclaimed pushes
grows for both K-Push and Dynamic K-Push. For this case,
Dynamic K-push wastes 58.59 MB and K-Push with K = 4
wastes 103.95 MB in pushing unclaimed segments as shown in
Fig. 5(c) with 63.62% and 56.90%, respectively, of wastage as
shown in Fig. 5(d). It explicitly says that a worse network condi-
tion makes even worse performance for both Dynamic K-Push
and K-Push. Unlike these two schemes, Our proposed scheme
does not suffer from any unclaimed pushes at all, revealing that
it can work much better even in a harsh network condition. In
Table 3, the simulation results when RTT = 100 ms are summa-
rized. It clearly shows that our proposed scheme outperforms
the other schemes in terms of the average achievable video bi-
trate, the number of buffer stalls, the number of HTTP requests,
and the ratio of unclaimed pushes.

VI. CONCLUSIONS

To solve the drawbacks incurred by HTTP/2, K-Push, and
DynamicK-Push, an adaptive server-paced push scheme is pro-
posed in this paper. Our proposed scheme moves bitrate adap-
tation to the server-side and integrates server-paced push and
bitrate adaptation properly. It not only successfully lowers the
number of HTTP requests to one but also improves the QoS of
video streaming greatly in terms of the achievable bitrate, the
number of buffer stalls, and the ratio of unclaimed pushes with
acceptable extra overheads to the sever checked by complexity
analysis. Checking via simulations, in particular, in a harsh net-
work environment with a long RTT, i.e., 100 ms, our proposed
scheme achieves the highest video bitrate among the closely re-

FERNG et al.: VIDEO STREAMING OVER HTTP/2: DESIGN AND EVALUATION ... 115

Table 3. Summary of simulation results.

Proposed Dynamic K-Push K = 1 K = 2 K = 3 K = 4
Average Bitrate (kbps) 1990.13 1652.09 1581.43 1692.16 1679.14 1725.69
Number of Buffer Stalls 0 1 0 11 15 21
Number of HTTP Requests 1 444 444 360 294 248
Ratio of Unclaimed Pushes 0% 63.62% 62.90% 62.33% 59.35% 56.90%
Total Pushed Data (MB) 143.85 92.10 84 139.08 164.40 182.68
Unclaimed Pushes (MB) 0 58.59 52.83 86.68 97.57 103.95

lated schemes. The observed percentages of improvement in the
achievable video bitrate are at least 15%. Unlike Dynamic K-
Push and K-Push, in particular, K-Push, our proposed scheme
avoids playback stalls caused by emptiness/exhaustion of the
video buffer. As for the ratio of unclaimed pushes, no unclaimed
pushes are brought by our proposed scheme, while Dynamic
K-Push and K-Push incur at least 56.9% of unclaimed pushes.
These observations firmly support our proposed adaptive server-
paced push scheme and highly recommend it for adoption by
video streaming over HTTP/2 for sure.

REFERENCES
[1] A. Begen, T. Akgul, and M. Baugher, “Watching video over the web: Part

2: Applications, standardization, and open issues,” IEEE Internet Com-
put., vol. 15, no. 3, pp. 59–63, Dec. 2011.

[2] ISO/IEC 23009-1, “Information technology – Dynamic adaptive stream-
ing over HTTP (DASH) – Part 1: Media presentation description and seg-
ment formats,” International Organization for Standardization, Mar. 2012.

[3] A. Begen, T. Akgul, and M. Baugher, “Watching video over the web: Part
1: Streaming protocols,” IEEE Internet Comput., vol. 15, no. 2, pp. 54–63,
Dec. 2011.

[4] T. C. Thang, H. T. Le, H. X. Nguyen, A. T. Pham, J. W. Kang, and Y. M.
Ro, “Adaptive video streaming over HTTP with dynamic resource estima-
tion,” J. Commun. Netw., vol. 15, no. 6, pp. 635–644, Jan. 2013.

[5] S. Wei and V. Swaminathan, “Low latency live video streaming over HTTP
2.0,” in Proc. ACM NOSSDAV, 2014, p. 37.

[6] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy efficient mul-
timedia streaming to mobile devices – A survey,” IEEE Commun. Surveys
Tutorials, vol. 16, no. 1, pp. 579–597, Nov. 2014.

[7] G. Tian and Y. Liu, “On adaptive HTTP streaming to mobile devices,” in
Proc. IEEE PV, Dec. 2013, pp. 1–8.

[8] S. Wei and V. Swaminathan, “Cost effective video streaming using server
push over HTTP 2.0,” in Proc. IEEE MMSP, Sept. 2014, pp. 1–5.

[9] D. V. Nguyen, H. T. Le, P. N. Nam, A. T. Pham, and T. C. Thang, “Adapta-
tion method for video streaming over HTTP/2,” IEICE Commun. Express,
vol. 5, no. 3, pp. 69–73, Jan. 2016.

[10] ISO/IEC 23009-6, “Information technology – Dynamic adaptive stream-
ing over HTTP (DASH) – Part 6: DASH with server push and WebSock-
ets,” International Organization for Standardization, Feb. 2016.

[11] M. Belshe, R. Peon, and M. Thomson, “RFC 7540: Hypertext transfer pro-
tocol version 2 (HTTP/2),” Internet Engineering Task Force, May 2015.

[12] S. Wei, V. Swaminathan, and M. Xiao, “Power efficient mobile video
streaming using HTTP/2 server push,” in Proc. IEEE MMSP, Oct. 2015,
pp. 1–6.

[13] J. Samain, G. Carofiglio, L. Muscariello, M. Papalini, M. Sardara,
M. Tortelli, and D. Rossi, “Dynamic adaptive video streaming: Towards
a systematic comparison of ICN and TCP/IP,” IEEE Trans. Multimedia,
vol. 19, no. 10, pp. 2166–2181, 2017.

[14] C. Mueller, S. Lederer, C. Timmerer, and H. Hellwagner, “Dynamic adap-
tive streaming over HTTP/2.0,” in Proc. IEEE ICME, July 2013, pp. 1–6.

[15] R. Huysegems, J. van der Hooft, T. Bostoen, P. Rondao Alface, S. Pe-
trangeli, T. Wauters, and F. De Turck, “HTTP/2-based methods to improve
the live experience of adaptive streaming,” in Proc. ACM Multimedia, Oct.
2015, pp. 541–550.

[16] M. Aguayo, L. Bellido, C. M. Lentisco, and E. Pastor, “Dash adaptation al-
gorithm based on adaptive forgetting factor estimation,” IEEE Trans. Mul-
timedia, vol. 20, no. 5, pp. 1224–1232, May 2018.

[17] Y. Sánchez de la Fuente, T. Schierl, C. Hellge, T. Wiegand, D. Hong,
D. De Vleeschauwer, W. Van Leekwijck, and Y. Le Louédec, “iDASH:

Improved dynamic adaptive streaming over HTTP using scalable video
coding,” in Proc. ACM MMSys, Feb. 2011, pp. 257–264.

[18] J. van der Hooft et al., “An HTTP/2 push-based approach for SVC adaptive
streaming,” in Proc. IEEE/IFIP NOMS, April 2016, pp. 104–111.

[19] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori, “DASH fast
start using HTTP/2,” in Proc. ACM NOSSDAV, March 2015, pp. 25–30.

[20] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Fast DASH bootstrap,”
in Proc. IEEE MMSP, Oct. 2015, pp. 1–6.

[21] J. van der Hooft et al.,, “HTTP/2-based adaptive streaming of HEVC video
over 4G/LTE networks,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2177–
2180, Aug. 2016.

[22] N. Bouten, S. Latré, J. Famaey, F. De Turck, and W. Van Leekwijck, “Min-
imizing the impact of delay on live SVC-based HTTP adaptive streaming
services,” in Proc. IFIP/IEEE IM, May 2013, pp. 1399–1404.

[23] R. Peon and H. Ruellan, “HPACK: Header compression for HTTP/2,”
Tech. Rep., May 2015.

[24] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dy-
namic HTTP streaming,” in Proc. ACM CoNEXT, Dec. 2012, pp. 109–120.

[25] T.-Y. Huang, R. Johari, and N. McKeown, “Downton abbey without the
hiccups: Buffer-based rate adaptation for HTTP video streaming,” in Proc.
ACM SIGCOMM workshop, Aug. 2013, pp. 9–14.

[26] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for adap-
tive live video streaming,” in Proc. ACM MMSys, Feb. 2011, pp. 145–156.

[27] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation of bitrate
adaptation methods for HTTP live streaming,” IEEE J. Sel. Areas Com-
mun., vol. 32, no. 4, pp. 693–705, Mar. 2014.

[28] Y. Shuai and T. Herfet, “Improving user experience in low-latency adap-
tive streaming by stabilizing buffer dynamics,” in Proc. IEEE CCNC, Jan.
2016, pp. 375–380.

[29] “node-http/2,” [Online]. Available: https://github.com/molnarg/node-
http2

[30] “Dataset: HSDPA-bandwidth logs for mobile
HTTP streaming scenarios,” [Online]. Available:
http://skuld.cs.umass.edu/traces/mmsys/2013/pathbandwidth/

[31] “Big Buck Bunny Movie,” [Online]. Available:
http://www.bigbuckbunny.org

Huei-Wen Ferng received the B.S. degree in Electri-
cal Engineering from the National Tsing Hua Univer-
sity, Hsinchu, Taiwan, in 1993 and the Ph.D. degree in
Electrical Engineering from the National Taiwan Uni-
versity, Taipei, Taiwan, in 2000. He joined the De-
partment of Computer Science and Information Engi-
neering, National Taiwan University of Science and
Technology, Taipei, Taiwan, as an Assistant Professor
in August 2001. From February 2005 to January 2011,
he was an Associate Professor. Since February 2011
and June 2012, he has been a Professor and a Distin-

guished Professor, respectively. From August 2016 to July 2019, he was the
department head. Funded by the Pan Wen-Yuan Foundation, Taiwan, he spent
the summer of 2003 visiting the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, U.S.A. His research interests
include Internet protocols, video streaming, wireless networks, mobile comput-
ing, high-speed networks, protocol design, teletraffic modeling, queuing theory,
security, and performance analysis. He was a recipient of the research award
for young researchers from the Pan Wen-Yuan Foundation, Taiwan, in 2003 and
was a recipient of the Outstanding Young Electrical Engineer Award from the
Chinese Institute of Electrical Engineering (CIEE), Taiwan, in 2008. He is a
senior member of the IEEE.

116 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 2, APRIL 2021

Shan-Hsiang Shen received the M.S. degree from
National Chiao Tung University, R.O.C., in 2004,
and the Ph.D. degree from University of Wisconsin,
U.S.A., in 2014. He is currently an Associate Profes-
sor with the Department of Computer Science and In-
formation Engineering, National Taiwan University of
Science and Technology, R.O.C. His main research in-
terests include software-defined networking, network
function virtualization, network security, and cloud
computing.

Chih-Wei Lai received the B.S. degree in Informa-
tion Management from the National Central Univer-
sity, Taoyuan, Taiwan, in 1998, and the M.S. degree in
Computer Science and Information Engineering from
the National Taiwan University of Science and Tech-
nology, Taipei, Taiwan, in 2017. He is currently a
Senior Staff Software Engineer and Researcher of the
Trend Micro Inc., a cyber security software company
in Taiwan. His research interests include Internet pro-
tocols, video streaming, and anti-malware technolo-
gies, e.g., sandboxing, deep packet inspection, etc.

