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Anti-Aging Scheduling in Single-Server Queues:
A Systematic and Comparative Study

Zhongdong Liu, Liang Huang, Bin Li, and Bo Ji

Abstract: The age of information (AoI) is a new performance met-
ric recently proposed for measuring the freshness of information in
information-update systems. In this work, we conduct a systematic
and comparative study to investigate the impact of scheduling poli-
cies on the AoI performance in single-server queues and provide
useful guidelines for the design of AoI-efficient scheduling poli-
cies. Specifically, we first perform extensive simulations to demon-
strate that the update-size information can be leveraged for achiev-
ing a substantially improved AoI compared to non-size-based (or
arrival-time-based) policies. Then, by utilizing both the update-size
and arrival-time information, we propose three AoI-based policies.
Observing improved AoI performance of policies that allow ser-
vice preemption and that prioritize informative updates, we fur-
ther propose preemptive, informative, AoI-based scheduling poli-
cies. Our simulation results show that such policies empirically
achieve the best AoI performance among all the considered poli-
cies. However, compared to the best delay-efficient policies (such
as shortest remaining processing time (SRPT)), the AoI improve-
ment is rather marginal in the settings with exogenous arrivals. In-
terestingly, we also prove sample-path equivalence between some
size-based policies and AoI-based policies. This provides an intu-
itive explanation for why some size-based policies (such as SRPT)
achieve a very good AoI performance.

Index Terms: Age of information, G/G/1 Queues, scheduling poli-
cies, update-size information.

I. INTRODUCTION

RECENTLY, the study of information freshness has received
increasing attentions, especially for time-sensitive applica-

tions that require real-time information/status updates, such as
road congestion alerts, stock quotes, and weather forecast. In
order to measure the freshness of information, a new metric,
called the age of information (AoI) is proposed. The AoI is de-
fined as the time elapsed since the generation of the freshest up-
date among those that have been received by the destination [2].
Prior studies reveal that the AoI depends on both the inter-arrival
time and the delay of the updates. Due to the dependency be-
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Fig. 1. Our position in the design space of AoI-efficient scheduling policies for
a G/G/1 queue.

tween the inter-arrival time and the delay, this new AoI metric
exhibits very different characteristics than the traditional delay
metric and is generally much harder to analyze (see, e.g., [2]).

Although it is well-known that scheduling policies play an
important role in reducing the delay in single-sever queues, it
remains largely unknown how exactly scheduling policies im-
pact the AoI performance. To that end, we aim to holistically
study the impact of various aspects of scheduling policies on
the AoI performance in single-server queues and provide useful
guidelines for the design of scheduling policies that can achieve
a small AoI.

While much research effort has already been exerted to the
design and analysis of scheduling policies aiming to reduce the
AoI, almost all of these policies are only based on the arrival
time of updates, such as first come first served (FCFS) and last
come first served (LCFS), assuming that the update-size infor-
mation is unavailable. Here, the size of an update is the amount
of time required to serve the update if there were no other up-
dates around. In some applications, such as smart grid and traf-
fic monitoring, the update-size information can be obtained or
fairly well estimated [3]. It has been shown that scheduling
policies that leverage the size information can substantially re-
duce the delay, especially when the system load is high or when
the size variability is large [4]. This motivates us to investigate
the AoI performance of size-based policies in a G/G/1 queue.
Note that the update-size information is “orthogonal” to the
arrival-time information, both of which could significantly im-
pact the AoI performance. Therefore, it is quite natural to fur-
ther consider AoI-based policies that use both the update-size
and arrival-time information of updates.

In addition, prior work has revealed that scheduling policies
that allow service preemption and that prioritize informative up-
dates (also called effective updates, which are those that lead to a
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Table 1. Guidelines for the design of AoI-efficient scheduling policies for a G/G/1 queue.

Guideline Summary Representative policies
1 Prioritizing small updates SJF, SJF_P, SRPT
2 Prioritizing recent updates LCFS, LCFS_P
3 Allowing service preemption PS, LCFS_P, SJF_P, SRPT
4 AoI-based designs ADE, ADS, ADM
5 Prioritizing informative updates Informative version of the above policies

reduced AoI once delivered; see Section VI.A for a formal def-
inition) yield a good AoI performance [5]–[7]. Intuitively, pre-
emption prevents fresh updates from being blocked by a large
and/or stale update in service; informative policies discard stale
updates, which do not bring new information but may block
fresh updates. To that end, we also consider AoI-based schedul-
ing designs that both allow service preemption and prioritize in-
formative updates.

In Fig. 1, we position our work in the literature by summa-
rizing various design aspects of scheduling policies for a G/G/1
queue. Existing work mostly explores the design based on the
arrival-time information along with considering service preemp-
tion and informative updates. We point out that the size-based
design is an orthogonal dimension of great importance, which
somehow has not received sufficient attentions yet. Unsurpris-
ingly, designing AoI-efficient policies requires the consideration
of all these dimensions. In Table 1, we summarize several use-
ful guidelines for the design of AoI-efficient policies, which are
also labeled in Fig. 1. To the best of our knowledge, this is the
first work that conducts a systematic and comparative study to
investigate the design of AoI-efficient scheduling policies for a
G/G/1 queue. In the following, we summarize our key contribu-
tions along with an explanation of Fig. 1 and Table 1.

First, we investigate the AoI performance of size-based
scheduling policies (i.e., the green arrow in Fig. 1), which is
an orthogonal approach to the arrival-time-based design stud-
ied in most existing work. We conduct extensive simulations to
show that size-based policies that prioritize small updates signif-
icantly improve AoI performance. We also explain interesting
observations from the simulation results and summarize useful
guidelines (i.e., Guidelines 1, 2, and 3 in Table 1) for the design
of AoI-efficient policies.

Second, leveraging both the update-size and arrival-time in-
formation, we introduce Guideline 4 and propose AoI-based
scheduling policies (i.e., the blue arrow in Fig. 1). These AoI-
based policies attempt to optimize the AoI at a specific future
time instant from three different perspectives: The AoI drop ear-
liest (ADE) policy, which makes the AoI drop the earliest; the
AoI drop to smallest (ADS) policy, which makes the AoI drop
to the smallest; the AoI drop most (ADM) policy, which makes
the AoI drop the most. The simulation results show that such
AoI-based policies indeed have a good AoI performance.

Third, we observe that informative policies can signifi-
cantly improve the AoI performance compared to their non-
informative counterparts, which leads to Guideline 5. Integrat-
ing all the guidelines, we propose preemptive, informative, AoI-
based policies (i.e., the red arrow in Fig. 1). The simulation re-
sults show that such policies empirically achieve the best AoI
performance among all the considered policies.

Finally, we prove sample-path equivalence between some
size-based policies and AoI-based policies. These results pro-
vide an intuitive explanation for why some size-based policies,
such as shortest remaining processing time (SRPT), achieve a
very good AoI performance.

To summarize, our study reveals that among various aspects
of scheduling policies we investigated, prioritizing small up-
dates, allowing service preemption, and prioritizing informa-
tive updates play the most important role in the design of AoI-
efficient scheduling policies. However, compared to the best
delay-efficient policies (such as SRPT), the AoI improvement
of the preemptive, informative, and AoI-based policies is rather
marginal in the settings with exogenous arrivals. Moreover,
when the AoI requirement is not stringent or the update-size
information is not available, some simple delay-efficient poli-
cies (such as LCFS with preemption (LCFS_P)) are also good
candidates for AoI-efficient policies.

The rest of this paper is organized as follows. We first dis-
cuss related work in Section II. Then, we describe our system
model in Section III. In Section IV, we evaluate the AoI per-
formance of size-based scheduling policies. We further pro-
pose AoI-based scheduling policies in Section V. In addition,
we evaluate the AoI performance of preemptive, informative,
AoI-based policies in Section VI. Finally, we make concluding
remarks in Section VII.

II. RELATED WORK

The traditional queueing literature on single-server queues is
largely focused on the delay analysis. In [8], the authors prove
that all non-preemptive scheduling policies that do not make use
of job size information have the same distribution of the num-
ber of jobs in the system. The work of [9], [10] proves that for
a work-conserving queue, the SRPT policy minimizes the num-
ber of jobs in the system at any point and is therefore delay-
optimal. The work of [11] derives a formula of the average delay
for several common scheduling polices (which will be discussed
in Section IV).

On the other hand, although the AoI research is still in a
nascent stage, it has already attracted a lot of interests (see [12],
[13] for a survey). Here we only discuss the most relevant work,
which is focused on the AoI-oriented queueing analysis. Much
of existing work considers scheduling policies that are based
on the arrival time (such as FCFS and LCFS). The AoI is in-
troduced in [2], where the authors study the average AoI in
the M/M/1, M/D/1, and D/M/1 queues under the FCFS policy.
In [14], the AoI performance of the FCFS policy in the M/M/1/1
and M/M/1/2 queues is studied, where new arrivals are discarded
if the buffer is full. In [15], the authors study the average AoI
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performance of a multi-source FCFS M/G/1 queue. They derive
the exact expression and three approximations of the average
AoI for a special case of an M/M/1 queue and a general case
of an M/G/1 queue, respectively. The average AoI of the LCFS
policy in the M/M/1 queue is also discussed in [14].

There has been some work that aims to reduce the AoI by
making use of service preemption. In [16], the average AoI of
LCFS in the M/M/1 queue with and without service preemp-
tion is analyzed. The work of [17] is quite similar to [16], but it
considers the average AoI in the M/M/2 queue. In [18], the aver-
age AoI for the M/G/1/1 preemptive system with a multi-stream
updates source is derived. The age-optimality of the preemptive
LCFS (LCFS_P) policy is proved in [5], where the service times
are exponentially distributed.

In addition to taking advantage of service preemption, some
of the prior studies also consider the strategy of prioritizing in-
formative updates for reducing the AoI. The work of [6], [7]
reveals that the AoI performance can be improved by prioritiz-
ing informative updates and discarding non-informative policies
when making scheduling decisions. In [19], the authors consider
a G/G/1 queue with informative updates and derive the station-
ary distribution of the AoI, which is in terms of the stationary
distribution of the delay and the peak AoI (PAoI). With the AoI
distribution, one can analyze the mean or higher moments of
the AoI in GI/GI/1, M/GI/1, and GI/M/1 queues under several
scheduling policies (e.g., FCFS and LCFS).

Recent research effort has also been exerted to understanding
the relation between the AoI and the delay. In [20], the authors
analyze the tradeoff between the AoI and the delay in a single-
server M/G/1 system under a specific scheduling policy without
knowing the service time of each individual update. In [21], the
violation probability of the delay and the PAoI is investigated
under an additive white Gaussian noise (AWGN) channel, but
the update size is assumed to be identical.

III. SYSTEM MODEL

In this section, we consider a single-server queueing system
and give the definitions of the AoI and the PAoI.

We model the information-update system as a G/G/1 queue
where a single source generates updates (which contain cur-
rent state of a measurement or observation of the source) with
rate λ. The updates enter the queueing system immediately after
they are generated. Hence, the generation time is the same as
the arrival time. We use S to denote the size of an update (i.e.,
the amount of time required for the update to complete service),
which has a general distribution with mean E [S ] = 1/µ. The
system load is defined as ρ , λ/µ.

We use ti and t′i to denote the time at which the ith update
was generated at the source and the time at which it leaves the
server, respectively. The AoI at time t is then defined as ∆(t) ,
t − U(t), where U (t), max

{
ti : t′i ≤ t

}
is the generation time of

the freshest update among those that have been processed by the
server. An example of the AoI evolution under the FCFS policy
is shown in Fig. 2. Then, the average AoI can be defined as

∆ = lim
t→∞

1
t

∫ t

0
∆ (τ)dτ. (1)

A
oI
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Fig. 2. An example of the AoI evolution under the FCFS policy.

In general, the analysis of the average AoI is quite diffi-
cult since it is determined by two dependent quantities: The
inter-arrival time and the delay of updates [2]. We define the
inter-arrival time between the ith update and (i − 1)th update as
Xi , ti − ti−1 and define the delay of the ith update as Ti , t′i − ti.
Alternatively, the PAoI is also proposed as an information fresh-
ness metric [6], which is defined as the maximum value of the
AoI before it drops due to a newly delivered fresh update. Let
Ai be the ith PAoI. From Fig. 2, we can see Ai = t′i − ti−1. This
can be rewritten as the sum of the inter-arrival time between the
ith update and the previous update (i.e., Xi) and the delay of
the ith update (i.e., Ti). Therefore, the PAoI of the ith update
can also be expressed as Ai = Xi + Ti, and its expectation is
E[Ai] = E[Xi] + E[Ti].

IV. SIZE-BASED POLICIES

In this section, we investigate the AoI performance of sev-
eral common scheduling policies, including size-based policies
and non-size-based policies, via extensive simulations. Note
that these common scheduling policies may serve the non-
informative updates (which do not lead to a reduced AoI). This
is because in some applications, such as news and social net-
work, obsolete updates are still useful and need to be served [5].
In Section VI, we will discuss the case where obsolete updates
are discarded.

Following [4], we first give the definitions of several common
scheduling policies that can be divided into four types: Depend-
ing on whether they are size-based or not, where the size-based
policies use the update-size information (which is available in
some applications, such as smart grid [3]) for making schedul-
ing decisions; depending on whether they are preemptive or not.
The definition of preemption is given below. In this paper, we
do not consider the cost of preemption.

Definition 1. A policy is preemptive if an update may be stopped
partway through its execution and then restarted at a later time
without losing intermediary work.

The first type consists of policies that are non-preemptive and
blind to the update size:
• First come first served (FCFS): When the server frees up, it

chooses to serve the update that arrived first if any.
• Last come first served (LCFS): When the server frees up, it

chooses to serve the update that arrived last if any.
• Random order service (RANDOM): When the server frees up,

it randomly chooses one update to serve if any.
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Fig. 3. Comparisons of the average AoI performance under several common scheduling policies.
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Fig. 4. Comparisons of the average PAoI performance under several common scheduling policies.

The second type consists of policies that are non-preemptive
and make scheduling decisions based on the update size:
• Shortest job first (SJF): When the server frees up, it chooses

to serve the update with the smallest size if any.
The third type consists of policies that are preemptive and

blind to the update size:
• Processor sharing (PS): All the updates in the system are

served simultaneously and equally (i.e., each update receives
an equal fraction of the available service capacity).

• Preemptive last come first served (LCFS_P): This is the pre-
emptive version of the LCFS policy. Specifically, a preemp-
tion happens when there is a new update.
The fourth type consists of policies that are preemptive and

make scheduling decisions based on the update size:
• Preemptive shortest job first (SJF_P): This is the preemptive

version of the SJF policy. Specifically, a preemption happens
when there is a new update that has the smallest size.

• Shortest remaining processing time (SRPT): When the server
frees up, it chooses to serve the update with the smallest re-
maining size. In addition, a preemption happens only when
there is a new update whose size is smaller than the remaining
size of the update in service.

Previous work (see, e.g., [4, Section VII]) reveals that size-based
policies can greatly improve the delay performance. Due to such
results, we conjecture that size-based policies also achieve a
better AoI performance given that the AoI is dominantly deter-
mined by the delay when the system load is high or when the
size variability is large [2]. As we mentioned earlier, it is in gen-
eral very difficult to obtain the exact expression of the average

AoI except for some special cases (e.g., FCFS and LCFS) [2],
[19]. Therefore, we attempt to investigate the AoI performance
of size-based policies through extensive simulations.

In Figs. 3 and 4, we present the simulation results of the aver-
age AoI and PAoI performance under the scheduling policies we
introduced above, respectively. There are three commonly used
methods to conduct the simulation: Independent replications,
batch means, and regeneration. Here, we use the independent
replications for the following reasons: (i) The replication means
are independent; (ii) it allows to start the individual replications
in different initial states such that various different sample paths
of the underlying stochastic process can be observed. Specifi-
cally, we conduct 50 simulation runs and take the average val-
ues. In each simulation run, we consider a total number of 105

updates to ensure that the steady state is reached. All the random
numbers are generated using the default pseudorandom number
generator (i.e., the Mersenne Twister) in the Python standard li-
brary. Here, we assume that a single source generates updates
according to a Poisson process with rate λ, and the update size
is independent and identically distributed (i.i.d.). In Fig. 3(a),
we assume that the update size follows an exponential distribu-
tion with mean 1/µ = 1. In Figs. 3(b) and 3(c), we assume
that the update size follows a Weibull distribution1 with mean
1/µ = 1. We define the squared coefficient of variation of the
update size as C2 , Var (S ) /E[S ]2, i.e., the variance normalized

1The Weibull distribution is a heavy-tailed distribution with pdf f (x;α, β) =
α
β ( x

β )α−1e−(x/β)α for x > 0, where α > 0 is the shape parameter and β > 0 is the
scale parameter.
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by the square of the mean [4]. Hence, a larger C2 means a larger
variability. In Fig. 3(b), we fix C2 = 10 and change the value of
system load ρ, while in Fig. 3(c), we fix system load ρ = 0.7 and
change the value of C2. Note that throughout the paper, these
simulation settings are used as default settings unless otherwise
specified. In addition, the 95% confidence intervals of Figs. 3
and 4 are also provided in our online technical report [22], in
which we observe that the margin of error is only a very small
portion of the average (about 1%).

In the following, we will discuss key observations from the
simulation results and propose useful guidelines for the design
of AoI-efficient policies.

Observation 1. Size-based policies achieve a better average
AoI/PAoI performance than non-size-based policies in both non-
preemptive and preemptive cases.

In Fig. 3, we can see that for the non-preemptive case, SJF
has a better average AoI performance than FCFS, RANDOM,
and LCFS in various settings. Similarly, for the preemptive case,
SJF_P and SRPT have a better average AoI performance than PS
and LCFS_P. Similar observations can be made for the average
PAoI performance in Fig. 4.

Observation 2. Under preemptive, size-based policies, the av-
erage AoI/PAoI decreases as the system load increases.

In Figs. 3(a) and 3(b), we can see that under SJF, SJF_P, and
SRPT, the average AoI decreases as the system load ρ increases.
There are two reasons. First, when ρ increases, there will be
more updates with small size arriving to the queue. Therefore,
size-based policies that prioritize updates with small size lead to
more frequent AoI drops. Second, preemption operations pre-
vent fresh updates from being blocked by a large or stale update
in service. Similar observations can be made for the average
PAoI performance in Figs. 4(a) and 4(b).

Observations 1 and 2 lead to the following guideline:

Guideline 1. When the update-size information is available,
one should prioritize updates with small size.

However, in certain application scenarios, the update-size in-
formation may not be available or is difficult to estimate. Hence,
the scheduling decisions have to be made without the update-
size information. In such scenarios, we make the following ob-
servations from Figs. 3 and 4.

Observation 3. LCFS and LCFS_P achieve the best average
AoI performance among non-preemptive, non-size-based poli-
cies and preemptive, non-size-based policies, respectively.

Observation 4. Under LCFS_P, the average AoI/PAoI de-
creases as the system load increases.

Observations 3 and 4 have also been made in previous
work [5], [14], [23]. It is quite intuitive that when the update-
size information is unavailable, one should give a higher prior-
ity to more recent updates. This is because while all the updates
have the same expected service time, the most recent update ar-
rives the last and thus leads to the smallest AoI once delivered.
Therefore, Observations 3 and 4 lead to the following guideline:

Guideline 2. When the update-size information is unavailable,
one should prioritize recent updates.
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Fig. 5. An example of the AoI/PAoI evolution where the interarrival time has a
large variability.

Note that Observations 2 and 4 also suggest that under pre-
emptive policies, the average AoI/PAoI decreases as the system
load ρ increases. This is because preemptions prevent fresh up-
dates from being blocked by a large or stale update in service.
In addition, we have also observed the following nice properties
of preemptive policies.

Observation 5. Not only do preemptive policies achieve a bet-
ter average AoI/PAoI performance than non-preemptive poli-
cies, but they are also less sensitive when the update-size vari-
ability changes, i.e., they are more robust.

In Figs. 3(a) and 3(b), we can see that preemptive policies
(e.g., LCFS_P, SJF_P, and SRPT) generally have a better av-
erage AoI performance than non-preemptive ones (e.g., FCFS,
RANDOM, LCFS, and SJF), especially when the system load
is high. In Fig. 3(c), we can see that the advantage of pre-
emptive policies becomes larger as the update-size variability
(i.e., C2) increases. Moreover, the AoI performance of preemp-
tive policies is only very slightly impacted when the update-size
variability changes, while that of non-preemptive policies varies
significantly. Therefore, Observations 2, 4, and 5 lead to the
following guideline:

Guideline 3. Service preemption should be employed when it is
allowed.

Note that above observations not only hold for the M/G/1
queue, but also can be made for the G/G/1 queue. More sim-
ulation results for the G/G/1 queue (i.e., Figs. 16–23) can be
found in Appendix A and our technical report [22]. In addi-
tion, we make the following interesting observations regarding
the average PAoI and AoI in a G/G/1 queue.

Observation 6. The average PAoI could be much smaller than
the average AoI when the interarrival time has a large variabil-
ity.

In Figs. 16(a) and 17(a), we can see that the average PAoI is
much smaller than the average AoI for all the common schedul-
ing policies we considered. This is due to the interarrival time
has a large variability. We present an example in Fig. 5 to il-
lustrate that this phenomenon comes from the large variabil-
ity of the interarrival time. We consider three updates: The
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ith, the (i + 1)st and (i + 2)nd updates, which are served in
sequence during (t′i−1, t

′
i+2). Their interarrival times are as fol-

lows: ti − ti−1 = 30, ti+1 − ti = 1, and ti+2 − ti+1 = 1;
and their system times are as follows: t′i − ti = 1, t′i+1 −

ti+1 = 1, and t′i+2 − ti+2 = 1. In addition, we also assume
t′i−1 − ti−1 = 1. Therefore, the average AoI and the average PAoI
during (t′i−1, t

′
i+2) are 312 + 22 + 22 − 3 × 12/2 × (30 + 1 + 1) ≈

15.09 and 31 + 2 + 2/3 ≈ 11.67, respectively. In this case, the
average PAoI is indeed smaller than the average AoI.

The importance of Observation 6 can be summarized as fol-
lows. First, in certain settings (e.g., where the interarrival time
has a large variability), the average AoI can actually be higher
than the average PAoI. This observation is counterintuitive,
given that the computation of the average PAoI includes the
peak values of the AoI only. Second, given that the average
AoI and the average PAoI exhibit different relationships in dif-
ferent settings, an AoI-efficient scheduling policy may not nec-
essarily achieve a desired PAoI performance, and vice versa. In
other words, one must carefully study the design of AoI-efficient
scheduling policies with different goals in mind (i.e., minimiz-
ing the average AoI or the average PAoI).

Observation 7. While the average AoI performance of several
non-preemptive policies (such as RANDOM, LCFS, and SJF) is
sensitive to the update-size variability, their average PAoI per-
formance is not.

In Fig. 4(c), we observe that while the average PAoI perfor-
mance of FCFS is sensitive to the update-size variability, under
several non-preemptive policies (such as RANDOM, LCFS, and
SJF), the average PAoI performance is much less sensitive. An
explanation for this observation is the following.

First, we explain why the average PAoI under FCFS is still
sensitive to the update-size variability. Note that a key difference
between FCFS and other non-preemptive policies is that under
FCFS, every update leads to an AoI drop and thus corresponds
to an AoI peak2. When a large update is in service, it will block
all the following updates that are waiting in the queue, which
results in a large delay for all such updates and thus a large PAoI
corresponding to these updates. In contrast, under RANDOM,
LCFS, and SJF, the impact of such a blocking issue is minimal
for the updates that lead to an AoI drop.

Next, we explain why under RANDOM, LCFS, and SJF,
while the average AoI is sensitive to the update-size variability,
the average PAoI is not. We first consider LCFS. In the setting
we consider, there is a high chance that the newest update has
a small size. Serving such small-size updates leads to a small
PAoI. When the newest update has a large size, the correspond-
ing PAoI would also be large. However, this happens less of-
ten. Therefore, the AoI trajectory would consist of a smaller
percentage of large AoI peaks with many small AoI peaks in
between. As the update-size variability increases, there will be
fewer but larger AoI peaks. In such cases, while the average AoI
is sensitive to the large AoI peaks (which comes from the large
update-size variability), the average PAoI is much less sensitive.

2Consider a non-preemptive policy, the LCFS policy, as an example. Under
LCFS, there may be older updates waiting in the queue when a new update is
being served. After this new update finishes service, those older updates waiting
in the queue become outdated, and the delivery of any of these older updates
will not lead to an AoI drop.
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Fig. 6. An example of the AoI/PAoI evolution where the service time has a
large variability.

To illustrate this fact, we provide an example in Fig. 6, where
there is a large update of size n − 1, immediately followed by
n small updates of size 1. In this case, we can compute the av-
erage AoI as ∆=

[
1 × ( n2

2 −
12

2 ) + n ×
(

22

2 −
12

2

)]
/ ((n − 1) + n) =

n2+3n−1
4n−2 = O(n) and compute the average PAoI as A =

(n + 2 × n)/(n + 1) = 3n/(n + 1) = O(3). This example shows
that a larger update-size variability (i.e., a larger n in this exam-
ple) results in a larger average AoI but only minimally affects
the average PAoI. A similar explanation also applies to SJF and
RANDOM.

V. AOI-BASED POLICIES

In Section IV, we have demonstrated that size-based policies
achieve a better average AoI/PAoI performance than non-size-
based policies. However, size-based policies do not utilize the
arrival-time information, which also plays an important role in
reducing the AoI. In this section, we propose three AoI-based
scheduling policies, which leverage both the update-size and
arrival-time information to reduce the AoI. Our simulation re-
sults show that these AoI-based policies outperform non-AoI-
based policies.

We begin with the definitions of three AoI-based policies that
attempt to optimize the AoI at a specific future time instant from
three different perspectives:
• AoI drop earliest (ADE): When the server frees up, it chooses

to serve an update such that once it is delivered, the AoI drop
as soon as possible.

• AoI drop to smallest (ADS): When the server frees up, it
chooses to serve an update such that once it is delivered, the
AoI drops to a value as small as possible.

• AoI drop most (ADM): When the server frees up, it chooses to
serve an update such that once it is delivered, the AoI drops
as much as possible.

If all updates waiting in the queue are obsolete, then the above
policies choose to serve an update with the smallest size.

Although all of these AoI-based policies are quite intuitive,
they behave very differently. In order to explain the differences
of these AoI-based policies, we present an example in Fig. 7
to show how the AoI evolves under these policies. Suppose that
when the (i−1)st update is being served, three new updates (i.e.,
the ith, (i+1)st, and (i+2)nd updates) arrive in sequence at times
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Fig. 7. The AoI evolution under three AoI-based policies: ADE (red), ADS
(blue), and ADM (green).

ti, ti+1, and ti+2, respectively. The sizes of these updates satisfy
S i < S i+1 < S i+2. When the server frees up after it finishes
serving the (i − 1)st update at time t′i−1, ADE, ADS, and ADM
choose to serve the ith, (i + 1)st, and (i + 2)nd updates, respec-
tively. This is because serving the ith update leads to the earliest
AoI drop at time t′i (following the red curve), serving the (i+1)st
update leads to the AoI dropping to the smallest at time t′i+1 (fol-
lowing the blue curve), and serving the (i + 2)nd update leads
to the largest AoI drop at time t′i+2 (following the green curve).
Clearly, ADE, ADS, and ADM aim to optimize AoI at a specific
future time instant (i.e., the future delivery time of chosen up-
date) with different myopic goals. Note that at first glance, ADS
and ADM may look the same. Indeed, they would be equivalent
if the events of AoI drop have happened at the same time instant.
However, these two policies are different as the time instants at
which the AoI drops are not necessarily the same (e.g., t′i+1 vs.
t′i+2 in Fig. 7). In addition, ADE and SJF may also look the
same at first glance. Indeed, these two policies would make the
same decision (i.e., choose the smallest update to serve) when
the smallest update leads to an AoI drop. However, they make
different decisions when the smallest update does not lead to an
AoI drop. An example is provided in Fig. 8 to illustrate the key
difference. In Fig. 8, after the (i − 1)st update completes ser-
vice at time t′i−1, there are two updates waiting to be served: the
(n−2)nd update and the ith update. Suppose that the update size
and the arrival time of these two updates satisfy the following:
S i−2 < S i and ti−2 < ti−1 < ti. Clearly, ADE chooses to serve the
ith update that leads to an earlier AoI drop (see Fig. 8(a)), while
SJF chooses to serve the (i − 2)nd update that has a smaller size
(see Fig. 8(b)).

Next we conduct extensive simulations to investigate the AoI
performance of these AoI-based policies. In Fig. 9, we present
the simulation results of the average AoI performance of the
AoI-based policies compared to a representative arrival-time-
based policy (i.e., LCFS) and a representative size-based-policy
(i.e., SJF). All the policies considered here are non-preemptive;
the preemptive cases will be discussed in Section VI.

In Fig. 9(a), we observe that most AoI-based policies are
slightly better than non-AoI-based policies, although their per-
formances are very close. Among the AoI-based policies, ADE
is the best, ADM is the worst, and ADS is in-between. This is
not surprising that ADM is the worst: Although ADM has the
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Fig. 8. An example of the AoI evolution under ADE and SJF.

largest AoI drop, this is at the cost that it may have to wait un-
til the AoI become large first. ADE being the best suggests that
giving a higher priority to small updates (so that the AoI drops as
soon as possible) is a good strategy. In Figs. 9(b) and 9(c), sim-
ilar observations can be made for update size following Weibull
distributions.

The above observations lead to the following guideline:

Guideline 4. Leveraging both the update-size and arrival-time
information can further improve the AoI performance. However,
the benefit seems marginal.

VI. PREEMPTIVE, INFORMATIVE, AOI-BASED
POLICIES

In Section IV, we have observed that preemptive policies have
several advantages and perform better than non-preemptive poli-
cies. In this section, we first demonstrate that policies that prior-
itize informative updates (i.e., those that can lead to AoI drops
once delivered) perform better than non-informative policies.
Then, by integrating the guidelines we have, we consider pre-
emptive, informative, AoI-based policies and evaluate their per-
formances through simulations.

A. Informative Policies

As far as the AoI is concerned, there are two types of up-
dates: Informative updates and non-informative updates [24].
Informative updates lead to AoI drops once delivered while non-
informative updates do not. In some applications, such as au-
tonomous vehicles and stock quotes, it is reasonable to discard
non-informative updates (which do not help reduce the AoI but
may block new updates). In this subsection, we introduce the
“informative” versions of various policies, which prioritize in-
formative updates and discards non-informative updates. Then,
we use simulation results to demonstrate that informative poli-
cies generally have a better average AoI/PAoI performance than
the original (non-informative) ones. Furthermore, we rigorously
prove that in a G/M/1 queue, the informative version of LCFS is
stochastically better than the original LCFS policy.

We use π_I to denote the informative version3 of policy π.
All the scheduling policies we consider have their informative
versions. In some cases, the informative version is simply the
same as the original policy (e.g., FCFS and LCFS_P).

3For simplicity, we omit the additional “_" in the policy name if policy π is a
preemptive policy ending with “_P". For example, we use LCFS_PI to denote
the informative version of LCFS_P.
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Fig. 9. Comparisons of the average AoI performance: AoI-based policies vs. non-AoI-based policies.
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Fig. 10. Comparisons of the average PAoI performance: AoI-based policies vs. non-AoI-based policies.

In Fig. 11, we show the simulation results of the average AoI
performance of several informative policies compared to their
non-informative counterparts. In order to evaluate the benefit of
informative policies, we plot the informative AoI gain, which is
the ratio of the difference between the average AoI of the non-
informative version and the informative version to the average
AoI of the non-informative version. Hence, a larger informa-
tive gain means a larger benefit of the informative version. One
important observation from Fig. 11 is as follows.

Observation 8. Informative policies achieve a better average
AoI performance than their non-informative counterparts. The
informative gain is larger for non-preemptive policies and in-
creases as the system load increases.

Intuitively, informative policies are expected to outper-
form their non-informative counterparts because serving non-
informative updates cannot reduce the AoI but may block new
updates. The simulation results verify this intuition as the infor-
mative AoI gain is always non-negative. Second, we can see that
most non-preemptive policies (e.g., RANDOM, LCFS, and SJF)
benefit more from prioritizing informative updates. Third, as the
system load ρ increases, the informative AoI gain increases un-
der most considered policies, especially those non-preemptive
ones. This is because as the system load increases, the number
of non-informative updates also increases, which has a larger
negative impact on the AoI performance for non-preemptive,
non-informative policies.

Observation 8 leads to the following guideline:

Guideline 5. The server should prioritize informative updates
and discard non-informative updates when it is allowed.

Based on Observation 8, we conjecture that an informative
policy is as least as good as its non-informative counterpart. As
a preliminary result, we prove that this conjecture is indeed true
for LCFS in a G/M/1 queue. In the following, we introduce the
stochastic ordering notion, which will be used in the statement
of Proposition 1.

Definition 2. Stochastic ordering of stochastic processes [25,
Ch.6.B.7]: Let {X(t), t ∈ [0,∞)} and {Y(t), t ∈ [0,∞)} be two
stochastic processes. Then, {X(t), t ∈ [0,∞)} is said to be
stochastically less than {Y(t), t ∈ [0,∞)}, denoted by {X(t), t ∈
[0,∞)}≤st{Y(t), t ∈ [0,∞)}, if, for all choices of integer n and
t1 < t2 < · · · < tn in [0,∞), the following holds for all upper
sets4 S U ⊆ Rn:

P(~X ∈ S U) ≤ P(~Y ∈ S U), (2)

where ~X , (X(t1), X(t2), · · ·, X(tn)) and ~Y , (Y(t1),Y(t2), · · ·, Y(tn)).
Stochastic equality can be defined in a similar manner and is de-
noted by {X(t), t ∈ [0,∞)}=st{Y(t), t ∈ [0,∞)}.

Roughly speaking, (2) implies that ~X is less likely than ~Y to
take on large values, where “large” means any value in an upper
set S U . We also use ∆π(t) to denote the AoI process under policy
π. Furthermore, we define a set of parameters I = {n, (ti)n

i=1},

4A set S U ⊆ Rn is an upper set if ~y ∈ S U whenever ~y ≥ ~x and ~x ∈ S U , where
~x = (x1, · · ·, xn) and ~y = (y1, · · ·, yn) are two vectors in Rn and ~y ≥ ~x if yi ≥ xi
for all i = 1, 2, · · ·, n.
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Fig. 11. Comparisons of the average AoI performance: Informative policies vs. non-informative policies.
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Fig. 12. Comparisons of the average PAoI performance: Informative policies vs. non-informative policies.

where n is the number of updates and ti is the generation time
of update i. Having these definitions and notations, we are now
ready to state Proposition 1.

Proposition 1. In a G/M/1 queue, for all I, the AoI under
LCFS_I is stochastically smaller than that under LCFS, i.e.,

[
{
∆LCFS_I (t) , t ∈ [0,∞)

}
|I]≤st[{∆LCFS (t) , t ∈ [0,∞)} |I]. (3)

Proof. Recall that we use ti and t′i to denote the arrival time and
the delivery time of the ith update, respectively. In addition, we
use si to denote the service start time of the ith update.

We define the system state at time t under policy π as S π(t) ,
Uπ(t), where Uπ (t) is the largest arrival time of the updates that
have been served under policy π by time t. Let {S π(t), t ∈ [0,∞)}
be the state process under policy π. By the definition of AoI, (3)
holds if the following holds:

[
{
S LCFS−I(t), t ∈ [0,∞)

}
|I]≥st[{S LCFS(t), t ∈ [0,∞)} |I]. (4)

Next, we prove (4) by contradiction through a coupling argu-
ment. Suppose that stochastic processes Ŝ LCFS_I (t) and Ŝ LCFS (t)
have the same stochastic laws as S LCFS_I (t) and S LCFS (t), re-
spectively. We couple Ŝ LCFS_I (t) and Ŝ LCFS (t) in the following
manner: If an update i is delivered at t′i in Ŝ LCFS(t), then the
update j being served at t′i (if any) in Ŝ LCFS_I(t) is also deliv-
ered at the same time. This coupling is reasonable because: (i)
The updates served in Ŝ LCFS_I(t) are not chosen based on update
size; (ii) the service time of an update in both Ŝ LCFS_I (t) and
Ŝ LCFS (t) is exponentially distributed and has the memoryless

property. By Theorem 6.B.30 in [25], (4) holds if the following
holds:

P(Ŝ LCFS_I (t) ≥ Ŝ LCFS (t) , t ∈ [0,∞) |I) = 1. (5)

In the following, we want to show that Ŝ LCFS_I (t) ≥ Ŝ LCFS (t)
holds conditionally on an arbitrary sample path I, which triv-
ially implies (5). We prove it by contradiction. For the sake of
contradiction, suppose that Ŝ LCFS_I(t) < Ŝ LCFS(t) does happen
and that it happens for the first time at time t0 (see Fig. 13 for
illustration). Let m and n be the index of the served updates
with the largest arrival time by t0 in Ŝ LCFS_I(t) and Ŝ LCFS(t), re-
spectively. Then, we have ULCFS_I(t0) = tm and ULCFS(t0) = tn.
Note that we also have tm < tn due to Ŝ LCFS_I(t0) < Ŝ LCFS(t0)
(i.e., ULCFS_I(t0) < ULCFS(t0)). Since t0 is the first time when
Ŝ LCFS_I(t) < Ŝ LCFS(t) happens, a crucial observation is that t0
must be immediately after an update is delivered in Ŝ LCFS(t).
Hence, we have t0 = (t′n)+, where (t′n)+ denotes the time imme-
diately after t′n.

Due to the coupling between Ŝ LCFS(t) and Ŝ LCFS_I(t), there
are two cases in Ŝ LCFS_I(t): 1) The server is being idle at t′n;
2) an update is delivered at t′n too. We discuss these two cases
separately and show that there is a contradiction in both cases.

Case 1): The server in Ŝ LCFS_I(t) is being idle at t′n
(see Fig. 13(a)). Then, the most recently delivered update in
Ŝ LCFS_I(t) (i.e., the mth update) must be delivered before t′n.
Hence, we have t′m < t′n and that the server in Ŝ LCFS_I(t) stays in
the idle state during (t′m, t

′
n]. Then, the server in Ŝ LCFS_I(t) could

have started serving a newer update that arrives later than the
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Fig. 13. Part of sample path of Ŝ LCFS_I(t) and Ŝ LCFS(t) in different cases.

mth update immediately after t′m. (Such a newer update must ex-
ist as the nth update is a valid candidate due to tm < tn.) This re-
sults in a contradiction with the server being idle during (t′m, t

′
n].

Case 2): An update is delivered at t′n in Ŝ LCFS_I(t). This deliv-
ered update is the mth update. Note that we must have sm < tn.
This is because if sm ≥ tn, then the server in Ŝ LCFS_I(t) would
have chosen to serve the nth update or a fresher update that ar-
rives later than tn at time sm since this selected update is a newer
update (due to tm < tn). There are two subcases for the server in
Ŝ LCFS(t) at time sm: 2a) Idle; 2b) busy. Again, we discuss these
two subcases separately and show that there is a contradiction in
both cases.

Case 2a): The server in Ŝ LCFS(t) is idle at time sm (see
Fig. 13(b)). In this case, the mth update must have already
been delivered by time sm in Ŝ LCFS(t). Otherwise, the server in
Ŝ LCFS(t) would have started serving the mth update (or a newer
update) at or before sm. This implies that Ŝ LCFS_I(t) < Ŝ LCFS(t)
happens before sm, which results in a contradiction with that t0
is the first time at which Ŝ LCFS_I(t) < Ŝ LCFS(t) happens.

Case 2b): The server in Ŝ LCFS(t) is busy at time sm (see
Fig. 13(c)). Assume that the lth update is being served at sm
in Ŝ LCFS(t). In this case, the lth update must be delivered by
time sn in Ŝ LCFS(t). This is because the nth update starts service
at sn in Ŝ LCFS(t). Then, the mth update must also be delivered by
time sn in Ŝ LCFS_I(t), due to the coupling between Ŝ LCFS(t) and
Ŝ LCFS_I(t). This results in a contradiction that the mth update is
delivered at t′n.

Combining all the cases, we show that Ŝ LCFS_I (t) ≥ Ŝ LCFS (t)
holds conditionally on an arbitrary sample path I. This triv-
ially implies (5), which further implies (4) by Theorem 6.B.30
in [25]. This completes the proof. �

B. Preemptive, Informative, AoI-based Policies

So far, we have demonstrated the advantages of preemptive
policies, AoI-based policies, and informative policies. In this
subsection, we want to integrate all of these three ideas and pro-
pose preemptive, informative, AoI-based policies.

We first consider preemptive, informative version of three
AoI-based policies: ADE_PI, ADS_PI, and ADM_PI. Interest-
ingly, we can show equivalence between ADE_PI and SRPT_I
(i.e., the informative version of SRPT) and between ADE_I
and SJF_I (i.e., the informative version of ADE and SJF, re-
spectively) in the sample-path sense. These results are stated in
Propositions 2 and 3.

Proposition 2. ADE_PI and SRPT_I are equivalent in every
sample path.

Proof. We use strong induction to prove that under the same
sample path, ADE_PI and SRPT_I always choose the same up-
date to serve at the same time. In the following, we only con-
sider informative updates since non-informative updates are dis-
carded under both ADE_PI and SRPT_I.

Suppose that when ADE_PI needs to choose the nth update
to serve at time tADE_PI (n), it chooses the update with index
dADE_PI (n). Similarly, SRPT_I chooses the update with index
dSRPT_I (n) as its nth update to serve at tSRPT_I (n).

Claim: ADE_PI and SRPT_I always serve the same
update at the same time, i.e., (dADE−PI(n), tADE−PI(n)) =

(dSRPT−I(n), tSRPT−I(n)) for all n.
Base case: When n = 1, both ADE_PI and SRPT_I

serve the first update when it arrives. Hence, we have(
dADE_PI (1) , tADE_PI (1)

)
=

(
dSRPT_I (1) , tSRPT_I (1)

)
.

Induction step: Suppose that for n = k (k ≥ 1), we
have

(
dADE_PI (m) , tADE_PI (m)

)
=

(
dSRPT_I (m) , tSRPT_I (m)

)
for

the mth update for all 1 ≤ m ≤ k. We want to show that(
dADE_PI (n) , tADE_PI (n)

)
=

(
dSRPT_I (n) , tSRPT_I (n)

)
still holds

for n = k + 1. Note that there are two cases for the (k + 1)st
update: 1) The (k + 1)st update preempts the kth update; 2)
the (k + 1)st update does not preempt the kth update, i.e., the
(k + 1)st update starts service from the idle state or immediately
after the kth update is delivered. We discuss these two cases
separately and show that

(
dADE_PI (k + 1) , tADE_PI (k + 1)

)
=(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)

holds in both cases.
Case 1): The (k + 1)st update preempts the kth update. Dur-

ing the service of the kth update, the (k + 1)st update arrives.
Under ADE_PI, in order to make AoI drop as early as pos-
sible, the server compares the remaining service time of the
kth update with the original service time of the (k + 1)st up-
date and chooses to serve the update with a smaller remain-
ing service time. This is exactly the same as what SRPT_I
does. Therefore, we have

(
dADE_PI (k + 1) , tADE_PI (k + 1)

)
=(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)
.

Case 2): The (k + 1)st update does not preempt the kth
update. On the one hand, if the (k + 1)st update starts ser-
vice from the idle state, then by the induction hypothesis,
both ADE_PI and SRPT_I finish serving the kth update at the
same time and then go through a period of being idle. There-
fore, ADE_PI and SRPT_I will also serve the same (k + 1)st
update at the same time, i.e.,

(
dADE_PI (k + 1) , tADE_PI (k + 1)

)
=(

dSRPT_I (k + 1) , tSRPT_I (k + 1)
)
. On the other hand, if the
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Fig. 14. Comparisons of the average AoI performance: Preemptive, informative, AoI-based policies vs. others.
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Fig. 15. Comparisons of the average PAoI performance: Preemptive, informative, AoI-based policies vs. others.

(k + 1)st update starts service immediately after the service
of kth update, then by the induction hypothesis, ADE_PI
and SRPT_I will start service at the same time, i.e.,
tADE_PI (k+1) =tSRPT_I (k + 1). SRPT_I will select the (k + 1)st
update with the shortest remaining size. However, this selected
(k + 1)st update must have not been served before. Otherwise,
this update is no longer informative it was preempted by other
update. Thus, SRPT_I ends up choosing an update with the
shortest original size, which will also be selected by ADE_PI.
This implies dADE_PI (k + 1) = dSRPT_I (k + 1). Therefore, we
have (

dADE_PI (k + 1) , tADE_PI (k + 1)
)

=
(
dSRPT_I (k + 1) , tSRPT_I (k + 1)

)
.

�

Proposition 3. ADE_I and SJF_I are equivalent in every sam-
ple path.

Proof. Similar to the proof of Proposition 2, we use strong in-
duction to show that under the same sample path, ADE_I and
SJF_I always choose the same update to serve at the same time.
Here, we also only consider the informative updates.

Suppose that when ADE_I needs to choose the nth update
to serve at time tADE_I (n), it chooses the update with index
dADE_I (n). Similarly, SJF_I chooses the update with index
dSJF_I (n) as its nth update to serve at tSJF_I (n).

Claim: ADE_I and SJF_I always serve the same update at the
same time, i.e., (dADE−I(n), tADE−I(n)) = (dSJF−I(n), tSJF−I(n)) for
all n.

Base case: When n = 1, both ADE_I and SJF_I serve the first
update when it arrives. Hence, we have

(
dADE_I (1) , tADE_I (1)

)
=(

dSJF_I (1) , tSJF_I (1)
)
.

Induction step: Suppose that for n = k (k ≥ 1), we have(
dADE_I (m) , tADE_I (m)

)
=

(
dSJF_I (m) , tSJF_I (m)

)
for the mth up-

date for 1 ≤ m ≤ k. We want to show that (dADE−I(n),
tADE−I(n)) = (dSJF−I(n), tSJF−I(n)) still holds for n = k + 1. Note
that there are two cases for the (k + 1)st update: 1) The (k + 1)st
update starts service from the idle state; 2) the (k + 1)st up-
date starts service immediately after the kth update is deliv-
ered. We discuss these two cases separately and show that(
dADE_I (k + 1) , tADE_I (k + 1)

)
=

(
dSJF_I (k + 1) , tSJF_I (k + 1)

)
holds in both cases.

Case 1): The (k + 1)st update starts service from the idle
state. By the induction hypothesis, both ADE_I and SJF_I
finish serving the kth update at the same time and then go
through a period of being idle. Therefore, ADE_I and SJF_I
will also serve the same (k + 1)st update at the same time, i.e.,(
dADE_I (k + 1) , tADE_I (k + 1)

)
=

(
dSJF_I (k + 1) , tSJF_I (k + 1)

)
.

Case 2): The (k + 1)st update starts service immediately
after the kth update is delivered. By the induction hypothe-
sis, ADE_I and SJF_I will start service at the same time, i.e.,
tADE_I (k + 1) =tSJF_I (k + 1). SJF_I will choose the (k + 1)st up-
date that has the smallest update size, which will also be se-
lected by ADE_I since this update can make AoI drop earliest.
This implies dADE_PI (k + 1)=dSJF_I (k + 1). Therefore, we have(
dADE_I (k + 1) , tADE_I (k + 1)

)
=

(
dSJF_I (k + 1) , tSJF_I (k + 1)

)
.
�

Propositions 2 and 3 imply that although SRPT_I and SJF_I
do not explicitly follow an AoI-based design, they are essen-
tially AoI-based policies. This provides an intuitive explanation
for why size-based policies, such as variants of SRPT and SJF,
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have a good empirical AoI performance.
In Fig. 14, we present the simulation results for the aver-

age AoI performance of the preemptive, informative, AoI-based
policies (ADE_PI) compared to several other policies. We ob-
serve that in various settings we consider, ADE_PI achieves
the best AoI performance. However, compared to the best
delay-efficient policies (such as SRPT), the AoI improvement
of the preemptive, informative, and AoI-based policies is rather
marginal in the settings with exogenous arrivals.

VII. CONCLUSION

In this paper, we systematically studied the impact of various
aspects of scheduling policies on the AoI performance and pro-
vided several useful guidelines for the design of AoI-efficient
scheduling policies. Our study reveals that among various as-
pects of scheduling policies we investigated, prioritizing small
updates, allowing service preemption, and prioritizing informa-
tive updates play the most important role in the design of AoI-
efficient scheduling policies. It turns out that common schedul-
ing policies like SRPT and SJF_P and their informative variants
can achieve a very good AoI performance, although they do not
explicitly make scheduling decisions based on the AoI. This can
be partially explained by the equivalence between such size-
based policies and some AoI-based policies. Moreover, when
the AoI requirement is not stringent or the update-size informa-
tion is not available, some simple delay-efficient policies (such
as LCFS_P) are also good candidates for AoI-efficient policies.

Our findings also raise several interesting questions that are
worth investigating as future work. One important direction is to
pursue more theoretical results beyond the simulation results we
provided in this paper. For example, it would be interesting to
see whether one can rigorously prove that any informative pol-
icy always outperforms its non-informative counterpart, which
is consistently observed in the simulation results.

APPENDIX A
ADDITIONAL SIMULATION RESULTS

FOR THE G/G/1 QUEUE

We present additional simulation results for the G/G/1 queue
in Figs. 16–23. For all these simulations, we assume that the
interarrival time follows a Weibull distribution with C2 = 10.
In subfigure (a), we assume that the update size follows an Ex-
ponential distribution with mean 1/µ = 1; in subfigures (b) and
(c), we assume that the update size follows a Weibull distribu-
tion with mean 1/µ = 1. Note that in subfigures (a) and (b),
we change the value of the system load ρ; in subfigure (c), we
change the value of C2 for the update size while fixing the sys-
tem load at ρ = 0.7. Observations 1–8 can also be made for the
setting of G/G/1 queue.
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Fig. 16. Comparisons of the average AoI performances of several common scheduling policies under different distributions.
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Fig. 17. Comparisons of the average PAoI performances of several common scheduling policies under different distributions.
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Fig. 18. Comparisons of the average AoI performance under different distributions: AoI-based policies vs. non-AoI-based policies.
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Fig. 19. Comparisons of the average PAoI performance under different distributions: AoI-based policies vs. non-AoI-based policies.
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Fig. 20. Comparisons of the avg. AoI performance under different distributions: Informative policies vs. non-informative policies.
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Fig. 21. Comparisons of the avg. PAoI performance under different distributions: Informative policies vs. non-informative policies.
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Fig. 22. Comparisons of the avg. AoI performance under different distributions: Preemptive, informative, AoI-based policies vs. others.
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Fig. 23. Comparisons of the avg. PAoI performance under different distributions: Preemptive, informative, AoI-based policies vs. others.
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