
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021 43

Design and Implementation of Trusted Sensing
Framework for IoT Environment

Sungjin Park, Jaemin Park, and Jisoo Oh

Abstract: Even though Internet of things (IoT) sensing services are
introduced in a wide range of areas, it is not applicable to mission-
critical services due to the lack of the trustworthiness of the IoT
sensing data. To address this problem, we propose TruSense, a
novel trusted sensing framework for the IoT environment that cov-
ers end-to-end implementation from an IoT device to a cloud ser-
vice. The TruSense framework includes a small sensing board, a
communication protocol, and a cloud service for the trusted sens-
ing in the IoT environment. To show our framework’s feasibility,
we design an ARM TrustZone-based IoT sensing board and imple-
ment an application and a trusted sensing service running in the
Secure world. We also implement a cloud service for the trusted
sensing in Google app engine, which is one of the widely used cloud
services.

Index Terms: ARM TrustZone, cloud computing, trusted sensing.

I. INTRODUCTION

AS the Internet of things (IoT) environment matures, the IoT
is being introduced in a wide range of areas such as envi-

ronmental monitoring, logistics (e.g., truck fleet tracking and
item location), home automation, and national infrastructures
(e.g., power plants and SCADA networks). Generally, IoT de-
vices collect and aggregate data from sensors placed in various
environments. The data collected by the IoT devices are sent to a
cloud service, and the cloud service creates valuable and mean-
ingful information with the collected data using the big data an-
alytics.

However, in the context of the mission-critical IoT environ-
ment, sensing data manipulated by attackers can lead to big
disasters. For example, when an attacker can transfer crafted
sensing data to a monitoring system, an organization can make
wrong decisions. As a result, the monitoring system operates
actuators to control critical operations such as gas pipelines and
turbines, and it can make critical infrastructures dangerous. As
with the infrastructure case, insecure sensors embedded in a
medical device can also threaten human life. If a sensor that
monitors a patient’s status is compromised, a doctor can pre-
scribe the wrong medicines or fail to treat the patient’s diseases.

The trusted sensing can be a proactive way to detect and pro-
tect such urgent cases. This is a secure channel to guarantee the
trustworthiness between a sensor in a device and a cloud ser-
vice. Many researchers have presented the related studies in

Manuscript received June 2, 2020; revised October 19, 2020; approved for
publication by Junbeom Hur, Division III Editor, November 23, 2020.

S. Park, J. Park, and J. Oh are with the Affiliated Institute of of Electron-
ics and Telecommunications Research Institute (ETRI), email: {taiji, jmpark,
jsoh77}@nsr.re.kr.

J. Park is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2020.000035

the various parts of the trusted sensing: A sensor-side imple-
mentation [1], a device-side implementation (e.g., a hypervi-
sor with a virtual machine [2] and a hypervisor with a trusted
OS [3]), a server-side implementation [4], a protocol proposal
[5], and a cloud service for the mobile device [6]. In addition,
ETSI released the first globally applicable standard for con-
sumer IoT [7]. This document recommends that IoT devices
should safeguard security-sensitive data using secure, trusted
storage mechanisms provided by the trusted execution environ-
ment (TEE), the universal integrated circuit card, and so on. All
of the aforementioned work addressed various problems such as
the integrity of the platform and sensing data, the large trusted
computing base (TCB), and the mutually trusted communica-
tion channel. Still, there is no practical end-to-end framework
that integrates and covers entire parts for the trusted sensing.

In this paper, we design and create an ARM TrustZone-based
sensing board, the TruSense device, for the trusted sensing.
The TrustZone technology compartments the TCB for sensor-
handling in the Secure world from the untrusted operating sys-
tem (OS) in the Normal world. Sensor-handling code in the TCB
captures a sensing value from a sensor dedicated to the Secure
world and computes an evidence value with a TCB measurement
value, the sensing value, and a device-specific private key. To
compute the TCB’s integrity value, we establish a secure chain
from an application processor (AP) to a secure OS in the Secure
world. Specifically, a boot loader in the sensing board measures
the secure OS and passes the measurement to the secure OS. The
TCB measurement value is stored in secure memory only acces-
sible by the Secure world. When computing the evidence value,
the sensor-handling code signs the TCB measurement value and
the sensing value with the device-specific private key.

An IoT cloud service needs to collect and aggregate sensing
values to generate value-added information via big data analysis
or deep learning. To aggregate sensing values from many sens-
ing boards, we implement the aggregator running in Google app
engine (GAE) [8]. A sensing board sends a sensing value and
an evidence value to the aggregator and the aggregator performs
the remote attestation that verifies the evidence value with the
corresponding public key. With this verification, the aggregator
can assure that the integrity of the sensing board platform and
the sensing value is valid. After successful verification, the ag-
gregator inserts the sensing value into a cloud database. For the
user convenience, the aggregator provides a user interface via
the web browser to show sensing values stored in the database.

The sensing boards communicate with the aggregator via the
REST API, which is commonly used for Web services. More-
over, the sensing boards transmit sensing data and remote attes-
tation messages over the HTTPS protocol to secure the commu-
nication channel.

1229-2370/19/$10.00 © 2020 KICS

44 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021

The contributions of this paper are as follows.
• Design of end-to-end trusted sensing framework: We

design a trusted sensing framework to build up the trust
of sensing data. Our design covers the Normal world and
Secure world in a sensing board, a cloud service, a user
interface for the cloud service, and an attestation protocol
between the sensing board and the cloud service.

• Implementation of a TrustZone-enabled sensing board
for IoT environment: We design and implement a sens-
ing board based on the ARM TrustZone technology. This
board mainly features a WiFi module, a TrustZone LED in-
dicator, a battery connector, and so on that are required for
the IoT environment.

• End-to-end implementation of the trusted sensing
framework for the IoT environment: We implement a
prototype from hardware (i.e., a small-size trusted sensing
board) to software (i.e., a cloud service and a software stack
running on a sensing board).

• Practicality of the proposed framework: We show that
our prototype framework runs on GAE, one of the com-
monly used commercial cloud platforms.

This paper is structured as follows. Section II summarizes re-
lated work, Section III explains the ARM TrustZone technology,
and Section IV defines our problems. Section V, Section VI, and
Section VII describe our approaches to address the problems.
Section VIII explains how to implement the end-to-end imple-
mentation of the TruSense framework and Section IX evaluates
the TruSense framework. In Section X, we conclude this paper
and present future work.

II. RELATED WORK

The trusted sensing is a secure channel to guarantee the trust-
worthiness of measured data between a sensor in a device and a
sensing service [3]. By adopting the trusted sensing, an IoT ser-
vice can gain the benefits of the trusted sensing: Authentication
of the source of the sensing value and the integrity of the sensing
value from a sensor to a cloud service. To assure the features
above, many researchers conducted related work.

Park et al. proposed TGVisor [6], a tiny hypervisor-based
trusted sensing framework for the cloud environment, to guaran-
tee the trustworthiness of sensing values. Specifically, TGVisor
introduced the dynamic root of trust measurement (DRTM) and
the trusted platform module (TPM) to attest the integrity of the
TCB (i.e., the hypervisor) and the sensing values. Oh et al. [9]
proposed a trusted authentication as a service in the cloud on top
of a variant of TGVisor. This approach establishes a trusted path
between a keyboard in a device and an authentication service in
the cloud.

Liu et al. [2] presented two abstraction layers, sensor attesta-
tion and sensor seal. Sensor attestation guarantees the sensor’s
integrity and authenticity. Sensor seal encrypts a secret value
and binds it to a sensor policy (e.g., access permission in the al-
lowed geofence). They also implemented and evaluated two ab-
stractions based on two TEEs, ARM TrustZone and x86-based
hypervisor. However, they only focus on how to handle sensing
value inside the TEEs of the sensing device.

Gilbert et al. [3] proposed a method to assure the local
sensing data processing and the device owner’s privacy in mo-
bile sensing services. To solve these problems, they presented
a trusted platform that consists of hardware and software com-
ponents trusted by the service provider and the device owner.
For the integrity of sensing data, the TCB captures a sensing
data and signs it with a private key in the TPM. For protecting
the device owner’s privacy, they separated a sensing app from
the trusted core so that the app cannot directly access security-
sensitive sensors. However, the size of TCB components includ-
ing a hypervisor, and a trusted OS, and mobile hardware, is rel-
atively large compared to other related work.

Dua et al. [1] proposed a TPM-based trusted sensing platform
for the integrity and share of the sensing data. This approach at-
tests the integrity of the platform and sensing data with the TPM
and protects the sensing data with the Augmented Broadcast En-
cryption scheme to share data with multiple parties. However,
it is vulnerable to various attacks like the platform integrity be-
cause this approach does not leverage the TEE to protect the
code base for attestation.

IBM proposed a new truck-tracking solution [10] based on
IBM Blockchain [11] and Watson IoT [12]. This solution uses
blockchain to store the relevant information captured from sen-
sors placed on trucks. Because the information shared by the
blockchain repository can only be altered with consensus from
all groups (i.e., logistics companies, producers, and consumers),
malicious groups cannot manipulate the sensing data stored in
the blockchain. However, this approach merely assures the trust-
worthiness of the sensing data stored in the blockchain, not one
captured from sensors.

Shepherd et al. [5] proposed a protocol to secure a TEE-to-
TEE communication channel between two remote TEEs. This
approach focuses on a problem of one-way trust verification of
TEE; that is, a challenger attests the platform integrity of an at-
tester, but not vice versa. To address this problem, the proposed
protocol verifies trust uni-directionally or bi-directionally based
on remote attestation protocol. The authors also performed for-
mal verification of the proposed protocol with Scyther [13], a
protocol verification language.

Weiser et al. proposed SGXIO [14] so as to realize the trusted
path in the Intel software guard extension (SGX) [15] environ-
ment. The key feature of SGX distinguished from other TEEs
is that an SGX enclave runs in the user mode. However, higher
privileged-layers like a kernel and a hypervisor cannot access
code and data protected by the SGX enclave. This feature hin-
ders the realization of the trusted path on top of SGX, because
code running in the user mode cannot handle I/O events directly.
To overcome this problem, SGXIO leverages a hypervisor to
manage I/O peripherals directly and establishes a secure chan-
nel between the hypervisor and an SGX enclave.

Although many researchers have proposed related work, there
is no practical end-to-end implementation of the trusted sensing
for the IoT environment. To address these problems, we present
a novel trusted sensing framework for the IoT environment. In
this paper, we state a trusted sensing framework for the IoT en-
vironment and implement it to show our approach’s feasibility.

PARK et al.: DESIGN AND IMPLEMENTATION OF TRUSTED SENSING FRAMEWORK ... 45

III. BACKGROUND: ARM TRUSTZONE

Our sensing board relies on ARM TrustZone, which is capa-
ble of delivering the TEE for a mobile device. In this section,
we state key features of TrustZone to be used for safeguarding
the sensing board.

Memory isolation is a key feature of the TrustZone technol-
ogy. TrustZone can compartment memory by using the Trust-
Zone protection controller (TZPC) and the TrustZone address
space controller (TZASC). The TZPC can configure peripherals
as secure or non-secure and the TZASC can partition its address
range into several regions, which can be configured as secure
or non-secure. In addition, the secure OS can prevent periph-
erals from using them in the Normal world by mapping their
addresses into a secure memory region. In our implementation,
the address of the serial port (i.e., 0x5000c000) for the sensor
connection is mapped into a secure memory region.

The secure monitor call (SMC) instruction triggers a mode
switch from the Normal world to the monitor mode. The mon-
itor mode is a gatekeeper to control the mode switch from one
world to the other world. The monitor mode software saves the
context of the current world and restores the context of the new
world. On the other hand, setting the non-secure (NS) bit in the
secure configuration register (SCR) to 1 can switch into the Nor-
mal world without running a specific instruction. When initial-
izing the secure OS in the Secure world and finishing an SMC
instruction, the secure OS sets the NS-bit to 1 in order to switch
into the Normal world. Before switching to the Normal world,
the secure OS switches to the monitor mode by writing the value
(i.e., 0x16) to the current process status register (CPSR).

To pass data from one world to the other world, the monitor
mode software plays an interface role between the two worlds.
It can transfer data from one world to the other based on world-
shared memory through marshalling and unmarshalling data.
Our prototype uses the world-shared memory to pass a sensing
value, a nonce, and an evidence value.

IV. PROBLEM STATEMENT

A. Problem Overview

Trusted sensing is a protected channel between a sensor in a
device and a server-side program. In this section, we identify
problems in order to satisfy the trusted sensing and state why
they have to be addressed.

First of all, security-sensitive code for the trusted sensing
must run in the TEE in order to work as intended. If that code
runs in the untrusted execution environment, attackers can com-
promise a trusted sensing framework. To make a trusted sens-
ing framework trustworthy, code for sensor reading and cryp-
tographic operations must run in the TEE. In addition, the
security-sensitive code must be self-contained in the TEE. If
leveraging software components (e.g., a driver and a library for a
sensor) that reside in the rich execution environment (REE), the
TEE can minimize the TEE’s TCB size. However, attackers can
acquire and craft sensing values in the REE because the REE
is the untrusted execution environment. Therefore, the security-
sensitive code for the trusted sensing must be self-contained in

Table 1. Security requirements for TruSense.

No. Requirements Section
G1 Self-contained sensor reading code in the TEE VI.D
G2 Self-contained cryptographic code in the TEE VI.D
G3 Secure sensor under the direct control of the TEE VI.C
G4 Persistent secure storage for cryptographic key VII.A
G5 Ephemeral secure memory for integrity value VI.B
G6 Trusted boot based integrity measurement VI.B
G7 Verifiable TCB and sensing value VII.B

the TEE.
Second, sensors used for the trusted sensing must be under the

direct control of the TEE. If being capable of accessing sensors
in the REE, attackers can craft sensing values. Thus the access
to the sensors should be dedicated to the TEE.

Third, the trusted sensing framework requires secure storage
to safeguard security-sensitive values used during trusted sens-
ing operations. Secure storage is classified into persistent and
ephemeral storage for security-sensitive data. The persistent se-
cure storage is used to store long-term data like cryptographic
keys, which lasts for a device lifetime. On the other hand, the
ephemeral secure storage is secure memory for short-term sen-
sitive data such as the integrity value of the secure chain. Typ-
ically, this type of secure storage permits a read operation from
the REE (e.g., reading a platform configuration register in a
TPM), but restricts an update operation from the REE. In a
trusted sensing platform, only the TEE can access both the se-
cure storages but the REE cannot read nor modify data in the
secure storages.

Lastly, the integrity of a sensing device’s TCB and its sensing
value must be verifiable in a server-side program for the trusted
sensing. The trusted boot is a commonly used way to measure
the security-sensitive code. The trusted boot measures all TCB
components and securely manages their integrity values using
ephemeral secure storage. The sensor reading code hashes and
stores a sensing value in memory inside the TEE. This code also
signs the integrity values regarding to the TCB and the sens-
ing values for the integrity verification to be performed by the
server-side program.

Table 1 shows the security requirements to address the afore-
mentioned problems. We mark each security requirement where
TruSense satisfies the corresponding requirement.

B. Adversary Model

Threats in a sensing device. We assume that all software
components running in the REE of a sensing device are insecure.
It means that attackers can perform all kinds of attacks against
our framework running in user and kernel modes in the Nor-
mal world. For example, they can manipulate a sensing value in
a kernel-mode driver, user-mode libraries, and other processes.
However, we assume that all software components running in
the Secure world are trustworthy.

Threats in a communication channel. We assume that at-
tackers can compromise a sensing value transmitted over the
network. For example, they can eavesdrop or manipulate a sens-
ing value sent to a cloud service. Moreover, they can forge net-
work packets to deceive the cloud server.

46 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021

Fig. 1. The TruSense framework for the IoT environment.

C. Assumption

Our approach focuses on countermeasures against attacks in-
side an IoT sensing board. Therefore, we do not consider the ma-
nipulation of the signal outside a sensor. In addition, the cloud
service is under the control of the cloud provider, and we thereby
assume that the cloud service works as intended.

V. TRUESENSE FRAMEWORK

In this section, we propose a trusted sensing framework of
the IoT environment, referred as TruSense. We also present
the overall architecture of TruSense, and then describe how
the components of the TruSense architecture interact with each
other to provide a trustworthy service.

Fig. 1 shows the overall TruSense architecture consisting of
IoT devices, an IoT gateway, and a cloud service.

TruSense device. A TruSense device is an IoT sensing board
that gathers information from a sensor such as a GPS, a cam-
era, or a fingerprint reader, and periodically uploads sensing
values to a cloud service. To provide a trustworthy service, the
TruSense device has to assure the integrity of the sensor read-
ings. To this end, we leverage the ARM TrustZone extensions
to protect the integrity of sensor readings from all other soft-
ware running on the REE. A trusted application running on the
TrustZone-aware OS collects the sensor readings, and signs the
sensor readings with the private key of the TruSense device be-
fore passing them to the rich OS. An agent running on the rich
OS delivers the sensor readings, the signature, and the certificate
of the TruSense device to the cloud service. Of the transmitted
data to the cloud service, the certificate is used to verify the sig-
nature of the sensor readings.

IoT gateway. An IoT gateway is a connection point to trans-
mit sensing data to a cloud service. Typically, IoT devices use
various connectivity modules (e.g., Bluetooth low energy and
WiFi) in order to connect to the Internet. The used modules de-
pend on the characteristics of IoT devices. With the connec-
tivity modules, the TruSense device sends the sensing data to
the cloud service via the IoT gateway. In this paper, we use an
off-the-shelf IoT gateway to send the sensing data to the cloud
service.

Aggregator. In the proposed architecture, a cloud service,

Aggregator TSA

Normal world
(REE)

Secure world
(TEE)

secure OS

User

Kernel

Key

Hardware

Sensors

Measurement

Agent

rich OS

Monitor
TZ

driver

Legend

call

socket

Fig. 2. Overall architecture of the TruSense device.

named the aggregator, gathers sensor readings from a lot of
TruSense devices, and verifies the integrity of the sensor read-
ings using cryptographic operations. Since the amount of the
sensing data dynamically varies in the IoT environment, the
elastic resource management is beneficial to the trusted sensing
framework. The cloud computing meets this property so that
we implement the aggregator on the Google app engine, which
is one of the commonly used cloud services. The cloud tenant
can use a web browser in a user device to view the aggregated
sensing data over an HTTPS channel.

In the proposed framework, all communication channels be-
tween the TruSense device and the aggregator are protected by
a secure protocol such as the TLS/SSL.

VI. DESIGN OF TRUSENSE DEVICE

In this section, we state how a trusted TruSense device guar-
antees the integrity and authenticity of sensing data inside the
TruSense device.

With the proposed TruSense device, the aggregator can verify
the trustworthiness of the sensing data from the trusted IoT de-
vice. To this end, the TruSense device leverages the ARM Trust-
Zone extensions as an isolation method between the TEE and
the REE, and adopts the trusted boot to produce the TCB mea-
surement. For the trusted sensing, the TruSense device operates
the trusted sensing application (TSA) running in the TEE. The
TSA reads a sensing value from a sensor dedicated to the TEE
and signs the sensing data and the TCB measurement value with
the private key of the TruSense device. The agent, which is an
application running in the Normal world, uploads the output of
the TSA to the aggregator via REST APIs.

Fig. 2 shows the overall architecture of the TruSense device.
In the Secure world, the secure OS is the key part for the trusted
sensing and plays the central role to protect the TSA for han-
dling sensing data from the untrusted execution environment
(i.e., the rich OS). The TSA uses services of the secure OS in
order to access secure resources such as a sensor, a key, and a
measurement value.

In the Normal world, the agent and the TZ driver run on the
rich OS and merely relay values from the secure OS to the ag-
gregator, The agent invokes a system call of the rich OS to the
TZ driver in order to request a command to the secure OS and

PARK et al.: DESIGN AND IMPLEMENTATION OF TRUSTED SENSING FRAMEWORK ... 47

receive an evidence for the trusted sensing. The communication
channel between the agent and the aggregator is safeguarded by
the TLS protocol. Because all evidences and sensing data are
cryptographically computed in the secure OS, the agent and the
TrustZone driver cannot affect the trustworthiness of TruSense.

A. TCB

The TCB is the set of hardware, firmware, and/or software
components that are critical to its security of trusted sensing.
In the TruSense framework, software TCB components for the
trusted sensing are a boot loader, a secure OS, and trusted ap-
plications running on the secure OS. To guarantee their trust-
worthiness, we use the trusted boot regarding the software TCB
components, which are commonly used for the integrity of the
secure boot chain. We state the detailed explanation of the se-
cure boot and trusted boot in the Section VI.B.

Generally, the trusted boot guarantees the integrity of the boot
chain comprised by software components, like the boot loader
and the secure OS. In TruSense device implementation, the se-
cure OS image contains the binary image of trusted applications.
Therefore, the trusted boot regarding the secure OS image can
cover the integrity check of the trusted applications.

On the other hand, the TCB of our work does not contain the
agent running on the rich OS because the agent merely sends
and receives communication data between the secure OS and
aggregator. Even though adversary crafts communication data
at the outside of the TCB, the aggregator can be aware of the
manipulation through cryptographic operations. Thus, it cannot
affect the trustworthiness of the sensing data, so that the agent
is not a component of the TCB.

B. Trusted Boot

The secure boot and the trusted boot are commonly used to
build up the trust chain of a target device. The key difference
between them is the guarantee of the secure state after the boot.
That is, the secure boot allows a sensing board to boot only
into a secure state, while the trusted boot securely reports on
the state of the boot [16]. Our sensing board adopts the trusted
boot so that it boots regardless of the TCBs’ measurement re-
sults (G6). Instead, the aggregator verifies the boot state of the
sensing board in order to check if sensing values aggregated by
the aggregator are valid.

The necessary components to achieve the trusted boot are
the root of trust measurement (RTM) and the ephemeral secure
memory. The trusted boot starts from immutable RTM code, the
1st boot loader, in an AP. In turn, the 1st boot loader measures
the 2nd boot loader, and the 2nd boot loader measures the se-
cure OS. After that, the 2nd boot loader passes the measure-
ment values of the trust chain to the secure OS when calling
the entry point function of the secure OS. Finally, the secure
OS securely stores them inside the TrustZone-protected volatile
memory (G5).

C. Secure OS in TrustZone

A secure OS is an operating system that runs in the Secure
world. Like general OSes, the key role of the secure OS is to
manage the resources under the control of the Secure world. In
our approach, the secure OS manages the access to sensors (i.e.,

a GPS, a fingerprint, and a camera), and allows a trusted appli-
cation to securely compute an evidence value of a sensing value
with a cryptographic key and the TCB measurement (G3). Note
that the sensing value, the cryptographic key, and the measure-
ment are only accessible in the Secure world.

Of the available open source OSes, such as TLK [17] and
OP-TEE [18], we chose Genode [19] as a secure OS in the Se-
cure world. Genode is a microkernel-based OS that features the
kernel core isolation from other OS components (e.g., device
drivers, a memory manager, and so on) and the small memory
footprint. Those features are appropriate to secure OS imple-
mentation that requires the small TCB size and the restriction of
bug propagation from other components.

To handle various sensors in the Secure world, we customize
Genode to include a module that handles a GPS sensor, a fin-
gerprint module, and a camera, which are all connected to the
sensor connector on the sensing board. The well-known weak-
ness of microkernel-based OS is the inter-process communica-
tion (IPC) overhead, and it is inevitable to our customization.
In our approach, we consider that it is the trade-off between se-
curity and performance. We adopt the microkernel-based OS to
safeguard our customized components for prioritizing the trust-
worthiness of the proposed approach.

D. Trusted Sensing Application in TrustZone

A TruSense device executes a trusted application, TSA, on
the microkernel-based secure OS. The TSA gathers sensing data
from a sensor and generates evidences on the sensing data. As a
trusted application running in the secure OS, the TSA can read
the genuine values of the sensing data (G1), the TCB measure-
ment and an attestation key. We explain the attestation key in de-
tail in Section VII.A. To produce the evidences, the TSA hashes
a nonce from the aggregator, the TCB measurement, and the
sensing data. Then, the TSA signs the hashed value using the
attestation key (G2). The agent in the REE uploads these evi-
dences from the TSA.

E. Agent in REE

An agent running in the REE relays communication data from
and to the aggregator and interworks with the TSA in the TEE
via the SMC instruction. The agent secures the REST API-based
communication by establishing the HTTPS connection with the
aggregator. The TZ driver in the REE executes the SMC instruc-
tion when the agent attempts to acquire evidences on the sensing
data from the TSA.

VII. TRUSENSE PROTOCOL

A. Attestation Key Distribution

An attestation key is an asymmetric, non-migratable signing
key to identify a device uniquely. This key must be signed by
a trusted party (e.g., a chip manufacturer or a platform vendor)
and its certificate also comes along with the attestation key. The
key role of the attestation key is to sign a measurement value
of the TCB components when a party (e.g., aggregator) requests
an evidence of the platform integrity. For example, a measure-
ment value signed by an attestation key can be used to verify it

48 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021

Fig. 3. The UML sequential diagram of the trusted sensing protocol.

cryptographically with a corresponding certificate in the party.
If the attestation key is compromised, an attacker can imperson-
ate a genuine device that owns the leaked key so that it should
be securely managed.

Typically, a device manufacturer fuses a device-specific key,
which is a device root key (DRK), into secure area in an AP
at the first stage during the production process [20]. Moreover,
only a privileged software module like a trusted application in
the Secure world can access the DRK. It indicates that the suc-
cessful verification of the attestation value implies the evidence
of performing the sign operation in the Secure world. The de-
vice manufacturer creates a DRK certificate including the cor-
responding public key of the DRK and signs with the device
manufacturer’s private key. The TruSense device keeps the cer-
tificate in the internal storage and sends it along with sensing
data to the aggregator in order that the aggregator verifies the
evidence of the trusted sensing data.

TruSense adopts the aforementioned secure management of
the DRK. Since this management of the DRK meets the require-
ments of the attestation key, TruSense utilizes the DRK as the
attestation key (G4).

B. Periodic Trusted Sensing Protocol

To guarantee the trustworthiness of sensing values, we design
a periodic trusted sensing protocol with the REST APIs and use
the HTTPS protocol to secure the communication between the
TruSense device and the aggregator. Fig. 3 is the UML sequence
diagram of the proposed protocol.

HTTPS connection establishment. An agent running in a
TruSense device initiates and establishes a secure connection
over the HTTPS protocol. During the establishment process, the
agent verifies the GAE’s certificate with the certificate authority
(CA) certificate. If the certificate verification is successful, an
HTTPS connection is established. Next, the aggregator authen-

ticates the TruSense device with identifiers such as a shared se-
cret, an X.509 certificate, etc. As a consequence of this process,
the agent receives a cookie for keeping the authentication state
from the aggregator. The agent sends communication data with
the cookie for the aggregator’s session management.

Nonce request. The agent requests a nonce to the aggrega-
tor to keep the freshness of the signature and prevent the replay
attack. The aggregator generates a random value (nonce) and
keeps it into a session variable so as to verify the signature later.
Next, the aggregator returns the nonce to the agent.

Trusted sensing value retrieval. Upon receiving the nonce,
the agent invokes the SMC instruction with the nonce via the
kernel in the Normal world. From this point, the control flow
is switched to the Secure world. First, the TA obtains a sensing
value (sensing_value) from a sensor dedicated to the Se-
cure world. In turn, the TA signs the TCB measurement, the
sensing value, and the nonce with the attestation private key
(PRdev). Lastly, the TA returns the sensing value and the sig-
nature to the agent, and the agent transmits them along with the
device’s certificate (cert) to the aggregator.

The parameters passed to the sign operation have the specific
meanings for security guarantee. The measurement value of the
secure OS indicates that the intact trusted OS running in the
Secure world retrieves a sensing value from a sensor only ac-
cessible from the Secure world. Moreover, the sign operation
with the private key under the direct control of the Secure world
guarantees that the signature was generated in the Secure world,
because the private key is only accessible in the Secure world.

Sensing value verification. After receiving the signature and
the sensing value from the TruSense device, the aggregator veri-
fies cert from the agent that contains the attestation public key
(PUdev). After that, the aggregator verifies the signature with a
known-good measurement value of the secure OS and the at-
testation public key (G7). If the verification succeeds, the ag-
gregator inserts the sensing value into the database. Finally, the
aggregator returns the result of the sensing value verification to
the TruSense device.

The successful verification means that a sensing value from
a sensing board is obtained by the intact secure OS (i.e., the
known-good measurement value) and came from an identifiable
and legitimate sensing board (i.e., the attestation public key cor-
responding to the TruSense device).

VIII. IMPLEMENTATION

TruSense device. We created our own TruSense device for
the trusted sensing using a TrustZone-enabled AP. This board
equips an ARM Cortex-A8 1 GHz processor, a WiFi module, a
JTAG port, a battery connector, an LED indicator of the Secure
world, a sensor connector based on UART, and so on.

Figs. 4(a) and 4(b) show the frontside and backside of the
sensing board, respectively. Fig. 4(c) represents the TruSense
device that connects with a GPS and a battery. This board can
also connect with other UART-connected sensors (e.g., a finger-
print and a camera). The size of the current TruSense device can
be minimized more by removing parts (e.g., a JTAG port and a
serial port) only used for the debugging purpose.

PARK et al.: DESIGN AND IMPLEMENTATION OF TRUSTED SENSING FRAMEWORK ... 49

(a) (b) (c)

Fig. 4. The description regarding the pictures above goes here: (a) The front side of the sensing board, (b) the back side of the sensing board, and (c) the
GPS-connected sensing board.

Fig. 5. The screenshot of the aggregator cloud service running in the GAE.

We ported two OSes into the Secure and Normal worlds. The
secure OS running in the Secure world is Genode 15.02 [19],
an open source microkernel-based OS. To achieve our goals,
we customized core of Genode to manage the measurement of
TCB components like Genode. We also added a Genode driver,
uart, that reads sensing values from sensors via the UART
interface. The rich OS running in the Normal world is Linux
2.6.35. An application running in the Normal world communi-
cates with the aggregator in the GAE via the HTTPS protocol
and the Genode OS by running the SMC instruction.

Aggregator cloud service. To deploy the aggregator in the
cloud, we chose GAE, which is a productive, flexible platform-
as-a-service (PaaS) by Google. Like other PaaSes, it supports
several popular programming languages and databases. We
implemented the aggregator with the Node.js and the MySQL
database delivered by the GAE. Fig. 5 is the screenshot of the
aggregator cloud service to show the sensing data aggregated
from the GPS-connected sensing boards.

Limitation. Without the support of the chip vendor, it is in-
feasible to construct the RTM and the persistent secure stor-
age in an AP. Thus, we assume that the RTM and the persis-

tent secure storage reside in the AP. To realize this assumption,
the trusted boot in our implementation starts from the 2nd boot
loader instead of the RTM. We also hard-code the DRK, which
is supposed to be placed in the persistent secure storage, in the
image of the secure OS.

IX. EVALUATION

In this section, we evaluate the TruSense device from the
aspect of the performance overhead, power consumption, and
TCB size.

Usually, the TEE deployment contributes to the REE’s perfor-
mance overhead because some privileged operations cause a trap
to the TEE. However, since our TruSense device is dedicated to
perform the trusted sensing, the secure OS in our TruSense de-
vice does not need to trap them. Therefore, only the SMC in-
struction causes a trap to the TEE so that the performance impact
on the REE is negligible. Moreover, the data copy overhead be-
tween the REE and the TEE also leads to the TEE environment’s
performance overhead. To avoid this performance impact, we
use shared memory to hand over data to the other side. Since
there is no copy operation between both worlds, we can avoid
the performance impact due to data transfer. Because of the rea-
sons, we do not evaluate the performance impact on the REE
regarding world switching and data copy.

Another evaluation factor of the ARM TrustZone based de-
vice is the power consumption due to the introduction of the
secure OS. He Sun et al. proposed a trusted one-time password
(OTP) [21] using ARM TrustZone and a Freescale i.MX53 de-
velopment board, which embeds the same AP as the TruSense
device. In [21], they mentioned that the power consumption re-
garding world-switching goes up a little bit. Since the TruSense
device and the Trust OTP device equip the same AP, they have a
similar tendency to consume the power during world-switching.
Therefore, we do not evaluate this factor in this paper.

A. Selection of Cryptographic Algorithm

Typically, it is well known that ECC is more efficient than
RSA from the processing time and power consumption stand-
point. Table 2 shows the result of the processing time and power
consumption based on RSA (2048-bit) and ECC (secp256k1) in
our TruSense device. As shown in Table 2, the ECC sign op-
eration is approximately 4.4 times faster and 3.09 times more

50 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021

Table 2. Elapsed time and power consumption of core operations. Avg. of 100
runs.

Comparison Key pair generation Sign
factors RSA ECC RSA ECC

Elapsed time (ms) 5,140.4 11.4 72.0 16.2
Power consumption (mW) 1,251.47 5.50 20.32 6.56

power-efficient. In the case of the key generation, the elapsed
time of ECC outperforms one of RSA by approximately 450
times. Typically, the RSA key generation is less efficient due to
its operation mechanism; that is, the RSA key generator must
find two large random prime numbers. If it does not match
this property, the RSA key generator continues to use a random
number generator until the generated keys become large random
prime numbers. This process leads to the nondeterministic key
generation time and the high power consumption.

Despite the RSA’s inefficiency, in some cases the TruSense
framework has to introduce the RSA algorithm inevitably. For
example, a cloud tenant can introduce a hardware security mod-
ule (HSM) for the strong key protection in the cloud. A HSM-
manufacturer [22] charges extra payments in order to add the
ECC algorithm into the HSM. In this case, the cloud tenant
should use the RSA algorithm to reduce operating costs.

To overcome the RSA’s weakness, reducing the key size of
RSA can be a good option. According to algorithms, key size
and protocols report (2018) [23], using 80-bit encryption (i.e.,
1024-bit RSA key) may be appropriate to keep data secret for a
very short space of time. The sensing data meets the condition
for the use of the short key size because it has the short lifetime
for sensing data transfer from the TruSense device to the ag-
gregator. Even though the RSA key generation leads to perfor-
mance overhead, it is tolerable because it is rarely executed only
in the first phase. We represented the performance enhancement
of using the 1024-bit RSA key pair in our previous work [6].

B. Selection of Maximum CPU Frequency

The minimum and maximum CPU frequencies of the sensing
board are set at 400 MHz and 1 GHz, respectively. Generally,
the lower clock frequency has the benefits of lower power con-
sumption. According to this rule, it is likely appropriate to set
the maximum CPU frequency as lower as possible because the
low power consumption is one of the important metrics for IoT
devices. However, it is correct in the case of running an I/O-
bound workload. Fig. 6 and Table 3 illustrate the power con-
sumption of the ECC cryptographic operations by varying clock
frequency. As expected, the sensing board running at 1 GHz fin-
ishes the cryptographic operations earlier as well as shows lower
power consumption. Therefore, we set the maximum CPU fre-
quency at the AP’s highest one (1 GHz). The dynamic frequency
scaling of the sensing board adjusts the maximum frequency, de-
pending on the workload.

C. Performance Comparison with Hypervisor-based Trusted
Sensing

In our previous work [6], we proposed TGVisor, a hypervisor-
based trusted geolocation framework using the TPM for the
cloud environment. In this subsection, we compare both trusted

Table 3. Sum of the power consumption (mW) of the operations regarding the
AP clock speed. Sum of 100 runs.

Clock speed Key pair generation Sign
400 MHz 743.27 840.74

1 GHz 549.65 655.78

sensing frameworks from the perspective of the performance
and TCB size. Table 4 shows the comparison of both trusted
sensing frameworks.

Key generation. The execution time in TruSense is
5, 140.4 ms, while one of TGVisor is 7, 794.4 ms. To generate
an RSA key pair, an RSA key generator uses a random num-
ber generator. TruSense leverages a jitter-based random number
generator, a virtual file system plugin where only the TEE is ac-
cessible. On the other hand, TGVisor calls TPM_Random that
generates 1-byte random value using the true random number
generator inside the TPM. Because a TPM 1.2 module used in
TGVisor uses the old-fashioned mechanism like the Low Pin
Count bus, the performance degradation by the TPM’s RNG is
inevitable. Thereby, the larger the RSA key size is, the more
severe the performance impact on the key generation process is.

Sign with TPM. Since TruSense does not embed the TPM,
we cannot measure this factor. On the other hand, TGVisor takes
437.0 ms to sign a GPS value with the TPM_Quote2 operation,
which is a TPM sign operation to sign platform configuration
register (PCR) values with an RSA private key placed in the
TPM. Due to the same reason to the TPM key generation, the
TPM’s low performance causes the long latency of the TPM sign
operation.

Sign without TPM. The execution time of TruSense is
72.0 ms, whereas one of TGVisor is 90.0 ms. There is only a
slight, negligible difference, depending on instruction set archi-
tectures (ISAs) where TruSense and TGVisor are implemented.
Thus, we conclude that the performance of the main processors
of TruSense and TGVisor (i.e., 1 GHz of an ARM Cortex-A8
and 2.3 GHz of an AMD Turion P520) make this slight differ-
ence (18 ms).

TCB size. The TCB size is one of the key factors of a secu-
rity system to show how secure it is. Generally, a system can
benefit from the small TCB size because it has the small at-
tack surface. To count the LoC of target OSes, we use CLoC
[24]. The TCB size of TruSense and TGVisor is 27, 539 LoC
and 8, 311 LoC, respectively. This LoC difference is due to the
characteristic of the TEEs, Genode and XMHF [25]. Genode is a
general-purpose, secure OS for the Secure world, while XMHF
is a security-purpose, lightweight hypervisor. That is, XMHF
does not contain features for the general hypervisor such as re-
source management so that it can have the small TCB.

X. CONCLUSION AND FUTURE WORK

The trusted sensing framework is an essential feature to main-
tain a mission-critical IoT environment securely. To build up the
trust of the IoT environment, we designed and implemented the
end-to-end trusted sensing framework for the IoT environment
and showed the feasibility of our approach. We also evaluated
and compared our framework with the hypervisor-based trusted

PARK et al.: DESIGN AND IMPLEMENTATION OF TRUSTED SENSING FRAMEWORK ... 51

(a) (b)

Fig. 6. Power consumption of 100 runs regarding the ECC cryptographic operations: (a) ECC key generation and (b) ECC sign operation.

Table 4. Performance comparison of trusted sensing-related operations between ARM TrustZone and hypervisor.

Factors TEE type Description
TrustZone Hypervisor

ISA ARM AMD x64 Used ISA
Key generation 5,140.4 7,794.4 Generate a RSA-2048 key pair in the TEE (ms)

Sign operation w/ TPM - 437.0 Sign a GPS value with a RSA-2048 private key present inside the TPM (ms)
Sign operation w/o TPM 72.0 90.0 Sign a GPS value with a RSA-2048 private key generated in the TEE (ms)

TCB size 27,539 8,311 The line of code (LoC) of the TCB

sensing framework.
One challenging problem of our work is that there is no con-

sideration regarding a key management scheme for the IoT en-
vironment, which consists of billions of IoT devices and cloud
services. With the CA-based key management scheme, the CA
can pose a single point of failure and result in a bottleneck for
handling many key management operations. As future work,
we will introduce a blockchain-based key management system
to meet requirements such as the self-management property for
the IoT environment.

REFERENCES
[1] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu, “Towards trustworthy

participatory sensing,” in Proc. USENIX HotSec, Aug. 2009, p. 8.
[2] H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for

trusted sensors,” in Proc. ACM MobiSys, June 2012, pp. 365–378.
[3] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward trustworthy

mobile sensing,” in Proc. ACM HotMobile, Feb. 2010, pp. 31–36.
[4] M. Bartock et al., “Trusted geolocation in the cloud: Proof of concept

implementation,” Publication NISTIR, vol. 7904, Dec. 2015.
[5] C. Shepherd, R. N. Akram, and K. Markantonakis, “Establishing mutually

trusted channels for remote sensing devices with trusted execution
environments,” in Proc. ACM ARES, Aug. 2017, pp. 1–10.

[6] S. Park, J.-J. Won, J. Yoon, K. H. Kim, and T. Han, “A tiny
hypervisor-based trusted geolocation framework with minimized TPM
operations,” J. Systems Software, vol. 122, pp. 202–214, Dec. 2016.

[7] European Telecommnucations Standards Institute (ETSI), “Techni-
cal specification. Cyber security for consumer internet of things,”
[Online] Available: https://www.etsi.org/deliver/etsi_ts/103600_103699/
103645/01.01.01_60/ts_103645v010101p.pdf, 2019.

[8] Google, Google app engine, [Online] Available: https://cloud.google.com/
appengine/docs/, 2019.

[9] J. Oh, J. Park, S. Park, and J. J. Won, “Taaas: Trustworthy authentication

as a service based on trusted path,” in Proc. IEEE CLOUD, June 2016,
pp. 27–34.

[10] K. Lewis, Truck-tracking solution protects cargo with IoT and blockchain,
[Online] Available: https://www.ibm.com/blogs/internet-of-things/
iot-tracking-solutions-blockchain/.

[11] IBM, IBM Blockchain, [Online] Available: https://www.ibm.com/
blockchain/.

[12] IBM, Watson Internet of things, [Online] Available: https://www.ibm.
com/internet-of-things.

[13] CISPA, Scyther tool, [Online] Available: https://people.cispa.io/cas.
cremers/scyther/. 2019-7-30.

[14] S. Weiser and M. Werner, “SGXIO: Generic trusted i/o path for intel sgx,”
in Proc. ACM CODASPY, Mar. 2017, pp. 261–268.

[15] Intel, Intel(R) Software Guard Extensions SDK Developer Reference for
Windows OS, [Online] Available: https://software.intel.com/sites/default/
files/managed/41/58/sgx-sdk-developer-reference-for-windows.pdf,
2017.

[16] D. Challener, K. Yoder, R. Catherman, D. Safford, L. V. Doorn, A Practi-
cal Guide to Trusted Computing. IBM Press, 2007.

[17] Trusted Little Kernel, [Online] Available: http://nv-tegra.nvidia.com/
gitweb/?p=3rdparty/ote_partner/tlk.git;a=tree.

[18] Open Portable Trusted Execution Environment, [Online] Available: https:
//www.op-tee.org/, 2018.

[19] Genode - Genode Operating System Framework, [Online] Available:
https://genode.org/.

[20] Samsung Electronics, KNOX Platform Security, [Online] Available: https:
//developer.samsung.com/tech-insights/knox/platform-security.

[21] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming
smartphones into secure one-time password tokens,” in Proc. ACM CCS,
Oct. 2015, pp. 976–988.

[22] nCIPHER, nShield Connect HSMs, [Online] Available: https://www.
ncipher.com/products/general-purpose-hsms/nshield-connect.

[23] ECRYPT-CSA, Algorithms, key size and protocols report (2018),
[Online] Available: http://www.ecrypt.eu.org/csa/documents/D5.
4-FinalAlgKeySizeProt.pdf.

[24] CLOC, Count Lines of Code, [Online] Available: http://cloc.sourceforge.
net.

[25] A. Vasudevan et al., “Design, implementation and verification of an exten-

52 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 1, FEBRUARY 2021

sible and modular hypervisor framework,” in Proc. IEEE SP, May 2013,
pp. 430–444.

Sungjin Park received the B.S. degree from Inha University in 2002, the M.S.
degree from POSTECH in 2005, and the Ph.D. degree in Computer Science,
Korea Advanced Institute of Science and Technology (KAIST), South Korea in
2017. He is a Senior Researcher at the Affiliated Institute of Electronics and
Telecommunications Research Institute (ETRI). His research interests include
cloud computing and system security.

Jaemin Park received the B.S. degree from Handong Global University in 2004,
and the M.S. and Ph.D. degrees from KAIST, South Korea in 2006 and 2019
respectively. He is a Senior Researcher at the Affiliated Institute of ETRI. His
research interests include cloud computing and network security.

Jisoo Oh received B.S. and M.S degrees from the Electrical and Computer En-
gineering, Sungkyunkwan University, in 2013 and 2015 respectively. She is a
Senior Researcher at the Affiliated Institute of ETRI. Her research interest in-
cludes software exploitation.

