
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020 455

A Deep-Q Learning Approach to Mobile Operator
Collaboration

Athanasios Karapantelakis and Elena Fersman

Abstract: Next-generation mobile connectivity services include
a large number of devices distributed across vast geographical
areas. Mobile network operators will need to collaborate to
fulfill service requirements at scale. Existing approaches to multi-
operator services assume already-established collaborations to
fulfill customer service demand with specific quality of service
(QoS). In this paper, we propose an agent-based architecture,
where establishment of collaboration for a given connectivity
service is done proactively, given predictions about future service
demand. We build a simulation environment and evaluate our
approach with a number of scenarios and in context of a
real-world use case, and compare it with existing collaboration
approaches. Results show that by learning how to adapt their
collaboration strategy, operators can fulfill a greater part of the
service requirements than by providing the service independently,
or through pre-established, intangible service level agreements.

Index Terms: Agent-based architectures, deep reinforcement
learning, mobile networks, 5G, 6G.

I. INTRODUCTION

MOBILE communication technologies are continuously
evolving, driven by new types of services and demand for

higher data rates. To address these requirements, fifth generation
mobile networks (5G) allocated and optimized use of higher
frequency bands, and proposed a redesign of the core and radio
access network [1].

Even though 5G is still in its later development stages and in
early deployment, rapid development of data-driven processes
for automation, such as machine learning (ML) and artificial
intelligence (AI), has already instigated discourse on the vision
and requirements of next generation networks (6G) [2]. One key
area of focus is ubiquitous connectivity, requiring collaboration
of multiple mobile network providers [3], [4].

Roaming, a technology introduced in 2G networks, allows
mobile subscribers to use another public land mobile network
(PLMN) to access connectivity services when they are out
of coverage of their home PLMN, providing a technical
solution to the ubiquitous connectivity issue. However, the way
roaming is currently supported limits its applicability in context
of a multi-service communications network. First, roaming
agreements are setup manually between operators, and have
multiple years lifetime [5]. In addition, it is common among

Manuscript received May 4, 2020; revised October 8, 2020; approved for
publication by Periklis Chatzimisios, Guest Editor, November 9, 2020.

The authors are with the Machine Design department, School of industrial
engineering and management, Royal Institute of Technology (KTH) and
Ericsson AB, email: {athkar, fersman}@kth.se.

A. Karapantelakis is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2020.000032

operators to use lower quality of service (QoS) for roaming
mobile subscribers [6]. This practice makes use of roaming
questionable for next-generation “mission critical” services,
which have strict QoS requirements on the mobile network (e.g.
low latency, guaranteed bitrate, high-availability, etc.) [7].

Beyond roaming technology, 5G has evolved the architecture
of mobile networks to support concurrent operation of multiple
services with different QoS requirements. Network slicing is a
virtual networking architecture, which allows multiple services
to operate in isolation from each other on the same mobile
network infrastructure [8]. A service is supported by one or
more network slices, which can be deployed accross multiple
operators, in what is known as multi-domain orchestration.
Several approaches exist in the literature ranging from research
projects to commercial solutions [9]. A common denominator
for these approaches is the rigid nature of collaborations that
remain the same during the lifetime of a service.

In this paper, we propose an approach that uses machine
learning to predict future service demand. Based on this
prediction, we suggest the optimal operator collaboration
scheme to fulfill the service demand. In this way, operator
collaboration schemes can change dynamically within the
service lifetime. From a user perspective, the service key
performance indicators (KPIs) remain fulfilled. We demonstrate
that this approach yields benefits to both operators and service
consumers, over the state of the art of fixed collaboration
structure and current business practice of isolated service
provisioning.

Paper Outline: Section II reviews related works, while
Section III describes the theoretical formulation of our
approach. In Section IV we present a system based on concepts
introduced in the previous section, and in Section V we evaluate
it against the state of art using a real-world use case from the
automotive industry. Section VI concludes with a recapitulation
of the work done and future research directions.

II. RELATED WORK

A. Importance of Operator Collaboration for 5G Services

In the extensive literature produced in the past, several
use cases and case studies on 5G services identified the
importance of establishing collaborations between operators as
prerequisite for scaling these services to fulfill requirements of
their customers.

Specifically, in the automotive domain, collaboration between
operators was identified as one of the barriers for the growth
of vehicle remote operation (teleoperation), and automated
platooning use cases [10]. In the example reported in [11],
multiple operators in Japan, collaborated to successfully launch

1229-2370/19/$10.00 © 2020 KICS

456 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

a rich communications services (RCS) platform, used for
enhanced mobile messaging services.

Several more examples that draw similar conclusions on
the value of operator collaboration for service success and
scalability exist from case studies in healthcare [12], smart
cities [13], mobile payments [14], but also e-health and e-
government applications [15].

B. Approaches to Multi-Operator Collaboration

In section I we referred to multi-domain network orches-
tration as one of the approaches that could be used for tech-
nical realization of operator collaboration. The fact that network
slicing heavily relies on virtualization technologies, such as
network function virtualization (NFV) and software defined
networking (SDN), allows for rapid allocation of network
resources to services. There exist several frameworks that group
these resources to services, accross multiple operators [9].
However, the question of when and how should operators collab-
orate is not addressed by these frameworks, which already
assume a fixed, oftentimes hierarchical resource allocation deci-
sion structure.

Some relevant literature for multi-operator collaboration is
based on the architectural concept of network sharing. The
third generation partnership project (3GPP) has proposed a
network sharing architecture where many network operators
share the same radio access network and optionally, nodes
of the core network [16]. Based on this architecture, several
research approaches proposed methods for managing these
collaborations from establishment, to operation and eventual
tear-down. Ghazzai et al. suggested a process for eliminating
redundant base stations in a shared network while maintaining
the QoS [17]. Shafwat et al. proposed a method for roaming
between radio base stations of multiple operators in order
to reduce overall power consumption [18]. Finally, Shah et
al. described a negotiation protocol between mobile network
operators for sharing of network resources within small-cell
networks [19].

A common denominator of the aforementioned approaches
is their reactive nature, meaning that the described solutions
are triggered after an event is observed. The solutions are also
focused on different domains than service fulfillment. Specif-
ically [17] and [18] focused on energy savings, whereas [19]
did not describe the reason for initiating the trade of network
resources, but rather the trade protocol itself.

C. Deep Q-Learning as an Approach for Multi-Operator
Collaboration

We have found a gap in the state of the art for determining
which operators should collaborate based on predicted service
demand. Specifically, reinforcement learning (RL) has been
successfully used in the past for learning optimal collaboration
strategies between groups of agents based on observations
of an environment [20], [21]. RL is supported by a reward
and penalty-like system that forces an agent to consider both
immediate and long term benefits of its decisions. An agent
takes actions in an environment, which is interpreted into a
reward and a representation of the state, which are fed back into
the agent [22].

Environment

Agent
Action α

State s

Deep Q-

network

(DQN)

Q(s,) x ∀

∈Ax

Reward r

Fig. 1. Deep-Q Reinforcement Learning Loop. In every step, the model predicts
the Q-values for all actions given a state. During model training, in some
cases and according to an exploration-exploitation policy (such as epsilon-
greedy policy described in subsection III.F), the action with highest Q-value
is chosen (exploitation), while in others a random action is chosen to identify
whether it yields better results (exploration).

In our case, we consider a software agent that makes
collaboration decisions for operators in a geographical area
(i.e. in an environment), based on observed patterns of service
demand. Based on feedback received regarding how much of
the service demand was actually fulfilled from the proposed
collaboration (reward) over time, the agent gets better at
predicting the future service demand, and eventually establishes
operator collaborations proactively to meet this demand.

In RL-terms, the goal of the agent is to choose the best
action (set of collaborating operators in our case), out of a set
of possible actions (i.e. out of all possible combinations of
collaboration between the operators). Q-learning is a popular
RL algorithm, wherein an agent tries to identify the optimal
action selection policy that maximizes the expected total future
reward r. Constituents of this selection policy are the “Q-
Values". Each Q-Value captures an expected future total reward
that an agent in state s can receive by executing an action α. The
goal is therefore to find the Q-Value with the maximum expected
total future reward.

In classical Q-learning, a two-dimensional matrix of Q-values
is created over time. The rows are possible actions, whereas the
columns are states. Once complete, an agent in any state will be
able to choose the action with the highest Q-Value. In context
of our study, Q-learning has certain limitations:
• If the state space is too large, the learning process becomes

inefficient.
• It is difficult to transfer knowledge between environments

to reduce learning time, unless the environments are very
similar.
For the above reasons, we opted to use Deep-Q RL. Using

this approach, a neural network is trained in every step of the RL
algorithm, instead of using a matrix [23]. This neural network
is also able to make better predictions about the service demand
in the future, as it is trained with more data. Fig. 1 illustrates a
Deep-Q RL loop.

Based on our evaluation (see section V), the Deep-Q neural
network (DQN) we trained, can support up to 40 operators
in the same geographical area. Additionally and given an
already-trained DQN, transfer learning can be used to reduce

KARAPANTELAKIS et al.: A DEEP-Q LEARNING APPROACH TO MOBILE ... 457

Environment

Service demand
Operator 2 cell

Agent

Action with highest Q-value:
which operators should

collaborate

State:
mapping

of cell

topology

and

demand

Reward:
service

fulfillment

minus cost of

collaboration

DQN
State

Q-values for
all possible
actions

Legend
Operator 1 cell
Operator 3 cell

Fig. 2. Deep-Q RL loop in context of this study.

learning time when deploying the Deep-Q algorithm to another
environment.

III. OVERVIEW OF APPROACH

A. Introduction

In this section, we describe the RL loop in greater detail. We
start by defining key parameters of the environment and action
space. We continue by presenting the algorithm for calculating
the reward and describing the serialization of the environment
state. Both serialized state and reward are sent to the agent
in response to an action. We continue to describe the Deep-Q
learning algorithm and its parameters and conclude by outlining
our assumptions and delimitations of our approach.

B. Environment Parameters

Fig. 2 illustrates the Deep-Q RL loop used for training a DQN
to select the optimal collaboration strategy.

The environment is a rectangular geographical area split in a
number of smaller, equally sized rectangles, which we refer to
as “blocks”. Blocks may contain a cell site providing cellular
service access to mobile devices in the area (also known as
User Equipment, or UE). Cell sites consist of one or more cells
that could belong to different operators. In reality, it is not
uncommon for multiple operators to share the same cell site
location (for example share the same radio tower and sometimes
even the cabinet underneath). A cell is parameterized by its
owner identifier (i.e. an operator, which has a unique global
identifier1), throughput and bandwidth. Throughput is the actual
amount of data traffic that is transferred through a cell, from
and towards mobile devices attached to this cell and during the
course of a single iteration. Bandwidth is the maximum amount
of data traffic that can be transferred through a cell. Cells are
stationary in the environment.

An environment also contains mobile devices, which may
move between blocks from one iteration of the simulation to the
next. Mobile devices generate throughput, provided that they
are attached to a cell. In addition, they have a service identifier

1One example of such a unique global identifier is Public Land Mobile
Network Identifier - PLMN id, standardized in [24].

that identifies whether they belong to a service with QoS
requirements or they are best effort type of devices, generating
background mobile traffic.

Mathematically, an environment E consisting of i rows and j
columns of blocks bi,j can be described as follows:

Ei,j = {b1,1, b1,2, ..., b1,j , b2,1, ..., bi, j} : i, j ∈ N. (1)

Each block bx,y with x, y ∈ N belonging to environment E is
parameterized by zero or more cells:

bx,y = {c1, ...cn} : |bx,y| ≥ 0. (2)

Each cell has static parameters including bandwidth (bw) and
its operator owner. In addition a cell is parameterized by the
number of actual mobile subscribers connected to it; a parameter
specific to a state. As UE is mobile, this number can change
from iteration to iteration. Assuming a state sm belonging to
state space S = {s1,sk}, a cell cz belonging to a block bx,y
can be parameterized as follows:

cz = {opidcz , bwcz , UE_listcz |sm} . (3)

In the environment, UE is represented by a unique identi-
fier2, the service they belong to (QoS-sensitive use-case or
background traffic generated by other services), the amount of
throughput they generate and their location (which block they
are currently located at). Every UEi belonging to the set of UE
in the environment has the following parameters:

UEi = {serviceUEi , idUEi , thrUEi |sm, bx,y|sm} . (4)

Every use case also has a service level agreement (SLA),
which defines the QoS requirements about the service offered.
In the context of this study, SLA defines a level of guaranteed
throughput, thrSLA, that all mobile devices belonging to the use
case require.

C. Action Space

In context of this study, an action describes the agent’s
decision that defines how operators should collaborate. The
decision may include any combination of operators or even
individual operators in cases where the agent decides that
collaboration will not yield higher future reward.

The size of the action space depends on the number of
operators present in the environment. For example, assuming
the setup in Fig. 2, size of action space is 7. In general,
the size of action space increases exponentially by (2N − 1),
where N is the number of operators in the environment. This
includes the cases where operators provide the service without
any collaboration.

D. Calculation of Reward

In order to calculate the reward for the agent’s action, we
introduce the “service demand” metric. For a given state sx ∈ S,
service demand is fraction of the served throughput of all QoS-
aware service UE (“service UE”), by the total throughput service
UE could generate. For the notation used in the algorithm, the
reader may refer to subsection III.B.

2In a real environment, a typical UE identifier can be the globally-unique
International Mobile Subscriber Identity, or IMSI, however in the simulation,
we assign unique integers

458 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Algorithm 1 Calculate reward for state sx ∈ S
Initialize list of all UE UElist = {UE1, ...UEN}
Initialize total_thr, served_thr to 0
for block bx,y in environment Ei,j do

if block bx,y contains cells then
for cell cz in block bx,y do

Initialize cell_thr to 0
for UEk in UE_listcz|sx do

cell_thr = cell_thr + thrUEk

if serviceUEk
belongs to a use case and does not

generate background traffic then
if (cell_trh + thrUEk

) ≤ bwcz then
served_thr = served_thr + thrUEk

end if
total_thr = total_thr + thrUEk

Remove UEk from UElist
end if

end for
end for

end if
end for
for UEk in UElist do

if serviceUEk
belongs to a use case and does not generate

background traffic then
total_thr = total_thr + thrUEk

end if
end for
reward = served_thr

total_thr − cost_collab
return reward

Algorithm 1 iterates all blocks in the environment and,
for those blocks that contain cells, it calculates the amount
of throughput generated from service UE. For the purposes
of this study, we consider that all service UE is generating
throughput equal to that described in the SLA (thrSLA - see
subsection III.B for its definition). This throughput is stored as
“served throughput”. If the data traffic of all UE attached to a
cell exceeds the bandwidth of the cell or if the UE is not covered
by the SLA (“background UE”), then the throughput created by
these UE is not stored as served throughput. In any case, all
data traffic generated from all service UE, is stored as “total
throughput”. This metric accounts for both UE attached to cells
or UE that are not attached to a cell. This may be the case when
UE is in blocks where there is no coverage from the operator or
operators currently providing the service.

As algorithm 1 illustrates, the reward function is the ratio of
“served throughput” divided by “total throughput”, minus a cost
of collaboration. The reason for adding a cost of collaboration is
partly due to the fact that otherwise, all operators would always
collaborate between them to cover maximum service demand as
possible. Another part of introducing cost is due to the impact
collaborations have on the revenue of the operators, as revenue
for service will be shared among multiple operators.

In context of this paper, we consider the cost to be minimal if
every operator covers the same amount of service demand. For
example, assuming two collaborating operators, if each of the
two operators covered 50% of service demand there would be

no cost. Otherwise, the cost would increase as percentages of
coverage divergence. An exemplary formula that we use for our
own simulation (see section IV) is illustrated in equation (5).

cost_collab = wcollab ·
SDmax − SDmin

SDmax + SDmin
. (5)

In (5), we assume that SDmax is the largest service fulfillment
amount among participating operators, whereas SDmin is the
smallest. These service fulfillment amounts can be calculated
using the information described in equations (1) to (4) in
subsection III.B. All SD values are normalized from 0 to 1. The
wcollab is a discount factor that, based on the use case, can be
set to values closer to 1 or closer to 0, depending on how much
gravitas the collaboration coefficient has in the calculation of the
reward function.

Using this reward function design, we favour collaborations
with, to the extent possible, equal operator participation. This
type of collaborations will be more likely to be accepted by
operators in reality, as it provides for a clearer cost structure
than uneven participation.

E. State Serialization

In every iteration, the environment’s status is serialized as a
state and communicated to the agent. The size of the state space
depends on the number of blocks. In the example illustrated in
Fig. 2, there exist 117 blocks.

For each block, demand is calculated in terms of throughput.
Specifically, in each block we aggregate throughput of all UE
that belong to the QoS aware service and are located in that
block. We also make the assumption that information about the
location of the cells as well as the operator that owns the cells
are known to the agent a priori, as this is static information that
is unaffected by the different states in the simulation.

F. DQN Algorithm

The main challenge of Deep Q-learning is maintaining policy
stability 3. The first issue is the non-stationarity of target values.
In supervised learning, the target (i.e. the output part of training
data - Q values in our case) remains static during the training
process. However, in RL, target changes in every iteration,
as DQN’s performance improves. Another issue is the close
correlation of subsequent states and actions, which could result
in DQN not only forgetting earlier experiences4, but to risk
overfitting as new experiences are closely related to each other.

Mnih et al. proposed experience replay and target neural
network in order to increase stability of DQN, by addressing the
two aforementioned issues [23]. Experience replay is simply a
buffer that stores past experiences. It also creates mini-batches
of a random number of stored experiences used in every iteration
to train the DQN. A target network stores fixed Q-values. The
target network is not trained, but is periodically updated after
some iterations (usually thousands), by copying weights of the
DQN to the target network. The DQN algorithm we use in this

3Policy is the function the agent uses to choose next action. In context of this
study, the policy output is realised by a forward-pass of the DQN.

4An experience is a training data point for DQN, and includes the current state,
action taken, as well as the reward and new state provided by the environment
(see Fig. 1).

KARAPANTELAKIS et al.: A DEEP-Q LEARNING APPROACH TO MOBILE ... 459

Algorithm 2 DQN for operator collaboration
Initialize replay buffer to M ≥ minibatch sample size N
Initialize value network (DQN) Qθ, target value network Qθ′
with random weights
for iteration = 1 to K do

Select action αt =
{

max(Qt(α)) with P = 1− ε
random action(α]) with P = ε

Execute αt and observe reward rt, state st+1

Store experience (st, αt, rt, st+1) in replay buffer
if Replay buffer has enough experiences AND for every
Ttrain then

Sample random minibatch of N transitions from replay
buffer
for every (si, ai, ri, s

′
i) in N do

Set target yi =
{

ri if s
′
i is terminal

ri + γ ·maxα′Qθ′(s
′
i, α
′)

end for
Train Qθ with loss function (y −Qθ(s, α))2
if loss ≤ threshold then

return Qθ
end if

end if
for every Tupdate do

Update weights of Qθ′ with those of Qθ: θ′ ← θ
end for

end for
return Qθ

study is based on a DQN with target network and experience
replay and is illustrated in Algorithm 2.

In every iteration t, a new action α is chosen in accordance
to an epsilon-greedy policy. The algorithm either chooses a
random action α from a set of actions A with probability 1 -
ε, or does a forward pass of the DQN, given a state st in order to
select a new action α, with probability ε. In this way, exploration
is balanced with exploitation, in order to avoid situations where
an under-trained DQN provides bad predictions.

The action is sent to the environment, which calculates a
reward and serializes the next state st+1 before sending them
back to the agent (see section III.B for description on how
the reward and state are created). The experience, meaning the
quadruplet (st, at, rt, st+1), is stored in the replay buffer.
Subsequently a minibatch is pulled from the replay buffer. The
target network is used to calculate the targets for every state in
the minibatch. The reader should note that the size of the replay
buffer is at least equal to the minibatch sample size, and that the
replay buffer is circular, i.e. older experiences are removed to
make room for newer experiences.

The DQN is trained using data from the minibatch and a
minibatch gradient descent algorithm, but with a loss function
that involves the calculated target values from the target
network. If the loss function reports a loss value below
a threshold, the algorithm converges and returns the DQN,
otherwise the process continues until iterations reach a ceiling
K. At this point the DQN is returned. The reader should note
that proper training of DQN is done by monitoring the loss
function and that K is used as a safeguard for the training to

SUMO

Simulation log

Environment adaptor

OpenAI operator

collaboration

environment App

HTTP POST

sanitized mobility

model

Tensorflow

DQN

OpenStreetMap

HTTP POST

[state, reward]

HTTP POST

[action]

OpenCellID

Location of
cell towers

Road network

Fig. 3. Simulation environment.

not continue ad infinitum. In practice, this means that a user of
the system would need to set K to a large value that would allow
for convergence of DQN with acceptable loss prior to iteration
K being reached.

G. Delimitations and assumptions

In this study, we make assumptions with regards to the
environment. These assumptions were made in order to reduce
complexity of the simulation and therefore simulation time.
Specifically, we assume that all cells use similar radio access
technology and have the same coverage as well as throughput
capacity.

Furthermore, when it comes to traffic being generated from
the mobile devices, we assume that there exist two types:
background traffic and use-case traffic. The latter is the data
traffic that is governed by an SLA and is used in the reward
calculation, however the former impacts the total available
bandwidth of the cells.

Also, the impact of signal fading to throughput (e.g. due
to multi-path propagation, weather effects, obstacles, etc.)
is not taken under account. We also assume that the cells
provide the same coverage, which can be parameterized for
every use-case. In the future we plan to support heterogeneous
radio access technologies that have different capacity and
range characteristics, but also take into account fading due to
geographical morphology.

IV. SIMULATION ENVIRONMENT

A. Architecture and System Description

Fig. 3 illustrates the architecture of the simulation environ-
ment developed for this study. In the context of this study, we
assume that in the environment, service demand is generated by
vehicles in road networks. Therefore, every vehicle is a UE.

In order to simulate road traffic, we use SUMO [25], a vehicle
traffic simulator. SUMO uses data from OpenStreetMap [26]
in order to realistically model vehicle traffic on a real road
network. Therefore the first task is to use SUMO in order to
simulate mobile traffic. As vehicle traffic is not affected by

460 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

(a)

(b) (c)

Fig. 4. Method for augmenting road and cell tower location data: (a) Exemplary
scenario map, (b) extracted SUMO road network and cell location, and (c)
environment definition as a 38x44 block matrix.

radio cell tower coverage, we run the simulator offline. In order
to find the location of the radio towers in the same area from
where mobility is simulated, we use OpenCellID [27], a publicly
available database. Fig. 4 illustrates the process which is used by
the environment adaptor to create the environment model. First
OpenStreetMap is used to import a map in SUMO, which in
turn extracts information about the road network (see Fig. 4(b)).
Then, OpenCellID is also used to designate the location of the
cells in the area where the road network was extracted (see also
Fig. 4(b)).

Subsequently, SUMO is executed on the extracted road
network and produces a log file with the number of vehicles
present on every block across the road network for every
simulation step.

This mobility data together with the location of the cell
towers are imported to the Environment Adaptor which uses
the information to create the environment description. The
demand is generated by multiplying the amount of throughput
every vehicle generates with the number of vehicles. The traffic
generated by every vehicle depends on the type of use case.
The Environment Adaptor sends the environment description
to OpenAI Gym [28], a framework that we used to create the
environment-agent RL loop. A custom environment application
was developed to compute the reward at each step of RL loop,
and send it together with the updated environment state to the
agent. The agent itself is also implemented in OpenAI, and
trains a DQN implemented as a convolutional neural network
using tensorflow machine learning framework [29].

B. Use Case and Scenarios Description

For purposes of this paper, we define a vehicle teleoperation
use-case, which we previously described in [30]. In this use-

Table 1. Parameters of DQN algorithm for the teleoperation use case

Parameter Name Value
Training policy ε-greedy (0.1)
Discount factor γ 0.99
Replay buffer size M 1000
Target network update Tupdate 800 iterations
DQN training Ttrain 100 iterations
Minibatch size N 32
Cost of collaboration wcost 0.5
Type of DQN, target network Multi-layer perceptron
Number of hidden layers 4
Type of layers Convolutional 2D
Activation function ReLu

Table 2. Parameters of environment

Parameter name Value
Uplink per UE 11.3 Mbps
Downlink per UE 0.3 Mbps
Number of UE 67 (Urban), 35 (Rural), 18 (Highway)
Cell bandwidth 50 Mbps Uplink, 100 Mbps downlink
Number of operators 4 (Urban), 5 (Rural), 4 (Highway)

case, self-driving vehicles are remotely monitored by a vehicle
controller who can intervene if necessary (for example in case
a vehicle encounters an obstacle that the onboard system cannot
overcome). Table 1 illustrates the parameters of the DQN
algorithm for the teleoperation use case. Section IV.D motivates
the architectural choice of number and type of layers of the
DQN.

In addition to the DQN parameters, we defined several
parameters of the RL environment (see Section III.B). Table 2
shows some of these parameters. As far as UE-generated
data traffic characterization is concerned, the use case has
vehicles sending high quality video to the controller but
also receiving vehicle control traffic and some “keepalive"
messages. The uplink data rate (i.e. data traffic transmitted
from UE) is therefore much larger than the downlink (data
transmitted to UE). For each cell, we assumed use of Long
Term Evolution (LTE) technology and 100 MHz spectrum, with
carrier aggregation (CA) of 5 carrier components (CC) of 20
MHz each, each channel having 100 Mbps downlink and 50
Mbps uplink. We also assume that the bandwidth of the cell
is not exclusively allocated to the teleoperation service.

On the contrary, only one dedicated channel is used, while
other channels are allocated to other types of services (e.g.
mobile broadband, mission critical communication, machine-to-
machine communication, etc.). These services are considered
background traffic.

We modeled three different scenarios, an urban, a rural and
a highway scenario, from different geographical locations. The
purpose behind choosing these scenarios was their inherently
different characteristics, as every scenario differs in terms
of vehicle number and distribution in the environment, total
volume of background traffic, as well as vehicle travel speed
(for example in the highway scenario the vehicles travel much
faster than in the urban scenario).

For the purposes of our simulation we consider as teleoper-
ated vehicles buses and trucks. We have used Google Maps
to identify the frequency and traffic schedules of the buses
and information from an automotive partner to identify the

KARAPANTELAKIS et al.: A DEEP-Q LEARNING APPROACH TO MOBILE ... 461

Fig. 5. Highway scenario, Ventura freeway and pacific coast highway outside
of Los Angeles, California, United States Fig. 6. Highway scenario, source map from OpenStreetMaps

Fig. 7. Rural scenario, Pequannock Township, New York State, United States Fig. 8. Rural scenario, source map from OpenStreetMaps

Fig. 9. Urban scenario, Taito City (part), Tokyo, Japan Fig. 10. Urban scenario, source map from OpenStreetMaps

traffic schedules of trucks. Using OpenCellID, we pinpointed
the geographical position of radio base stations in the three
different environments. OpenCellID also contained information

regarding the cell owner, in terms of home network identifier
(HNI) number. We only chose to place those radio base stations
with LTE technology (also known as e-Node B’s or eNBs)

462 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Table 3. Parameters of simulation

Parameter name Value
SUMO total steps 21600
SUMO steps per DQN iteration 3600
Times of DQN forward-pass 6
Sampling rate for evaluation (“simulation cycle") 108

and not previous generations, as they were the only ones that
could fulfill the uplink data traffic requirements presented in the
previous paragraph.

Table 2 shows the parameters set for these scenarios. When
it comes to number of UE, the requirement towards SUMO was
that at any point in time the same number of vehicles specified
above should run in the road network. Therefore, for every
vehicle that leaves the simulation space, another one should
enter the circuit. Regardless of the constant number, the vehicles
themselves could be located in different places of the map at
different iterations, as long as those places were covered by
roads. In the future we plan to support a variable number of
vehicles, for example, based on the time of day. Figs. 5 to
10 illustrate the cell topology, cell owner, road network and
location of chosen scenarios.

C. Simulation Parameters

Table 3 illustrates the parameters used for conducting our
experiments detailed in section V.

One aspect of the simulation we considered is the relation
of steps in the SUMO simulator to the steps in the RL
loop. Specifically, the SUMO simulator updates vehicle traffic
every second (“step length"), however, this is too short for
the RL algorithm to train and suggest a new action. If this
was the case, then it would theoretically be possible for the
collaborations between operators to change every second, which
is not realistic. We therefore decided that a step in the RL
loop would correspond to a simulation time of an hour, i.e.
3600 simulator steps. In real deployment scenarios, this step
can be even larger, for example a week worth of measurements.
For the purposes of this paper, we felt that an hour strikes a
good compromise between a realistic scenario and simulation
convergence time. Operators in many cases bill by the hour,
and can create pricing plans they are already familiar with from
mobile broadband connectivity services.

The mapping of one hour to one RL iteration raises another
issue, regarding the training of the neural network: if the neural
network is trained at a specific point in time every hour, then
it is not going to learn about how the demand fluctuated in the
environment during the hour. It will therefore be unable to make
an accurate prediction about the future state. Our solution to the
problem was to provide all 3600 data-points as reported state,
i.e. input vectors to the neural network.

D. Simulator performance

In context of this study, we conducted some experiments to
fine-tune the performance of the simulator, as the time spent in
every step had an important effect on the overall convergence
of the RL loop. Specifically and as Table 4 shows, most of the
time was spent training the neural network, the authors tuned the
hyper-parameters of the neural network to save as much training

Table 4. Simulation Execution time for scenarios presented in Figs. 5–10

Scenario
SUMO traffic
model

Neural network
Training time
per Step

Number
of steps
to converge

Total
simulation
time

Rural 1m 25s 1.2 s 5400 1hr 50m
Urban 4m 44s 1.2 s 12500 4hr 15m
Highway 2m 12s 1.2 s 8400 2hr 51m

Table 5. Deep-Q Model hyperparameter tuning: accuracy versus complexity

Number of layers
(parameters per layer) Accuracy

Average training
time per step

4 Dense (9959) 0.86 5.42 s
5 Dense (12427) 0.89 6.32 s
6 Dense (15112) 0.88 8.02 s
4 Convolutional (6459) 0.84 1.2 s
5 Convolutional (9532) 0.86 1.96 s
6 Convolutional (12423) 0.87 3.12 s

time as possible without affecting the precision of the model.
The measurements were performed on a computer with 32GB

of random-access memory (RAM), running Ubuntu Linux
16.04, with a graphics processing unit (GPU) of 8GB of
GDDR5x memory and 1.6 GHz base frequency and a 4-core
central processing unit (CPU) with 3.6GHz base frequency. All
software components described in Fig. 3 were running in the
same computer, therefore there were no network delays between
the environment adapter and OpenAI. Tensorflow was running
in accelerated (GPU) mode, making use of GPU vendor’s API.

Given a standard average time for training the neural network
in every step and irrespective of the use case, the main
differentiator between the use cases was the number of steps
required for the neural network training to converge. As
convergence we define the moment in the process of training
the model, where further training does not increase its accuracy,
but on the contrary may have a negative effect.

We observe that the total time needed to properly train the
model is driven by the complexity of the use case. In Section
V.C.2, we also described another way to reduce the simulation
time using transfer learning.

The environment part of the RL loop is implemented in
Python, using the OpenAI Gym API. It interfaces with another
Python application, which uses Tensorflow Keras API to create
and train a DQN. One of the early challenges we faced was
the long training time for the DQN in every step of the RL
algorithm. The original design of the neural network had
four fully-connected layers (Dense in Tensorflow terminology),
which were replaced by four Convolutional layers, which were
not fully-connected and therefore computationally lighter.

As Table 5 illustrates, this change resulted in the greatest
improvement in amount of time in relation to the model
accuracy. The same figure illustrates that adding more layers
of the same type did not affect the accuracy of the model by a
significant amount. To measure accuracy we divide the number
of correct predictions by the total number of predictions. We
use this metric throughout this study as a measure of model
performance.

KARAPANTELAKIS et al.: A DEEP-Q LEARNING APPROACH TO MOBILE ... 463

V. EVALUATION

A. Overview of Experiments

In order to evaluate the proposed solution, we have designed
a number of experiments.

The first experiment investigates the performance of the
system by computing reward per step for the three use cases
discussed in Subsetction IV.A. This is compared with state
of the art and specifically operator-selfish (i.e. independent
provisioning of services with no collaboration with another
operator) and fixed collaboration (e.g. roaming) scenarios. For
every scenario, we executed the simulation in SUMO for
21600 steps, with random vehicle starting positions. In order
to plot performance, we added functionality to the agent to
sample the sumo data points by batches of 108 and extract
performance values by averaging the data points in those
batches (see subsection V.B for an explanation of performance
metric). We name this sampling activity “simulation cycle". For
each simulation run, the RL DQN was executed 6 times,
changing the collaboration of operators if necessary.

The second experiment examines the scalability of the
proposed RL algorithm to support a greater number of vehicles
and larger geographical areas, and to explore the limits of what
can be supported.

Finally, the third experiment investigates the portability of
the solution. Specifically we take advantage of a machine
learning technique called transfer learning, and we show that
the solution can be transferred to similar environments, wherein
the algorithm can converge much faster, as it takes advantage of
what has already been learned.

B. Performance Assessment

In this section, we describe the results of performance
evaluation of our proposed solution and compare them against
the state of art. As mentioned in section II, currently
operators offer communications services on their own (“selfish"
approach), or using pre-determined collaborations (either the
traditional roaming approach, or in 5G, using a multi-vendor
service orchestration approach). As service performance we
define the ratio of fulfilled service demand versus total service
demand (service demand is defined in subsection III.D). Service
performance is quantified in a normalized scale from 0 to 1.
Zero means no service demand fulfilled, whereas one means
total service demand was fulfilled.

Before our experiments, we trained the a DQN model
using Deep-Q RL approach presented in Section III.B, until it
converged (i.e. the accuracy of the model plateaued - see also
table 4). We then proceeded evaluate service demand for the
three scenarios presented in section IV.B for three different types
of collaboration models, which we also refer to as “strategies".
Specifically, we evaluated against the following:
• A selfish strategy, wherein we consider that the communica-

tion service is delivered by one operator. For each scenario
we select the operator that offers the most capacity and
coverage.

• A fixed collaboration strategy, where we consider that the
communication service is delivered by multiple operators,
and vehicles can attach to a different operator in case of lack

0 50 150 200100

Simulation cycles

0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e

Performance of operator strategies for highway scenario

Selfish

Roaming

Dynamic (DQN)

Fig. 11. Evaluation of operator strategies for the highway scenario.

0 50 150 200100

Simulation cycles

0

0.2

0.4

0.6

0.8

P
e
rf

o
rm

a
n
c
e

Performance of operator strategies for rural scenario
1

Selfish

Roaming

Dynamic (DQN)

Fig. 12. Evaluation of operator strategies for the rural scenario.

of coverage and/or capacity of their current operator. In case
of our experiments and for every scenario, we chose the two
operators providing the best combination of broader coverage
and higher capacity in each scenario.

• A dynamic collaboration strategy, where, a pre-trained DQN
constantly chooses the most suitable collaboration approach
to maximize service fulfillment while ensuring fairness for
the operator (in other terms, maximizing the reward function
presented in Section III.B).
Fig. 11 illustrates the comparison for the highway scenario.

The Y-axis reports a normalized indication of the performance
on a normalized scale of 0 to 1, whereas the X-axis is the step
number.

The highway scenario is characterized by high dynamic
vehicle traffic flows, but also has limited cellular coverage in
certain locations. As an example, the large turn in the middle of
the map is covered by only one operator (see Fig. 6). We observe
that even though performance fluctuates during the simulations
by 20% regardless of the strategy followed, the dynamic strategy
generally works better. This is due to the predictability of the
route in this scenario, as vehicles on highways such as the one
simulated in this study have a predetermined route along the
highway with few opportunities to change course. Therefore,
the DQN network over time becomes better at predicting future
demand of communications services.

Fig. 12 illustrates the evaluation of the operator strategies
in the rural scenario. Contrary to the highway scenario, where

464 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

0 50 150 200100

Simulation cycles

0

0.2

0.4

0.6

0.8

P
e
rf

o
rm

a
n
c
e

Performance of operator strategies for urban scenario
1

Selfish

Roaming

Dynamic (DQN)

Fig. 13. Evaluation of operator strategies for the urban scenario.

Table 6. Average percentage increase using dynamic collaboration (DQN)
approach over legacy approaches.

Scenario Percentage increase using DQN
Urban, selfish 12.17 %
Urban, roaming 2.34 %
Highway, selfish 169.12 %
Highway, roaming 29.37 %
Rural, selfish 94.94 %
Rural, roaming 18.81 %

LTE coverage was poor in a few areas of the map, in this
scenario, there exist more areas with no coverage, especially
the residential areas towards the left of the map (see Fig. 7).
This is reflected in the performance values, which are generally
worse than those of the highway scenario. Another observation
is that in this scenario, there is greater dispersion of operator
cells in the map, each operator seemingly covering a different
geographical area. In this scenario, the dynamic approach offers
better performance - mainly in terms of enabling operators to
collaboratively cover different areas of the map.

The urban scenario is illustrated in Fig. 13. This scenario is
characterized by a dominant operator covering the largest area
of the map with ample capacity. The dynamic strategy in this
case provides marginal but still noticeable improvements over
the roaming strategy.

Table 6 illustrates the average percentage increase that
dynamic collaboration has over legacy approaches in all three
scenarios. We observe a benefit from anywhere between 2% to
29% with regard to roaming scenario, and from 12% to 169%
w.r.t. the selfish scenario.

C. Deployment in production networks

In this section, we evaluate the scalability and portability
of our approach. This is important from the perspective of
deploying this solution in production networks.

C.1 Scalability

From evaluating the simulation performance on the three use
cases, we identified that traffic simulation is a small part of the
overall simulation time - the rest is spent on training of the DQN
(see table 4). While we investigated the role the configuration
of the DQN in terms of number and type of hidden layers has
on the model accuracy and training time, these investigations

0 10 20 30 40

Number of operators

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

A
c
c
u
ra

c
y

Accuracy of DQN model for number of operators

Fig. 14. Accuracy of model for different number of operators participating in
the simulation scenario.

were limited to studying the use cases themselves, which were
limited to a small number of mobile network operators. In
reality, there can be situations where a much larger number
of operators exists, especially considering the fact that many
operators rent network infrastructure from others (mobile virtual
network operators - MVNOs). The number of MVNOs globally
increased 61% between 2010 and 2018, and currently there exist
more than 1300 MVNOs worldwide [31].

Therefore, considering that the traffic simulation part is
not the bottleneck, we investigate the impact the number of
operators has on the accuracy of the DQN model. The number
of operators also affects the action space which increases
exponentially. For this experiment, we used the urban scenario
as illustrated in Fig. 9, and we split the total 116 cells randomly
and equally among hypothetical operators, starting from 2 up to
40. The range is considered to cover all potential cases in any
area in the world based on the numbers presented in [31].

The experiments revealed small fluctuations in the accuracy
of the model but no significant degradation (see Fig. 14).
Therefore, the number of operators does not affect the
performance of the proposed system, ergo, this solution could
also be relevant for future potential collaborations between
MVNO.

C.2 Portability

Another important aspect of the proposed approach, is its
rapid potential deployment and use in production networks.
One area to optimize to facilitate this, is the reduction of the
DQN training time. As mentioned in Section IV.D, it is possible
to apply transfer learning 5 in order to transfer the optimal
collaboration strategies learned in one scenario to another, thus
reducing the time needed for training.

For our experiments, we used the DQN trained in the rural
scenario as baseline for training of the urban and highway
scenarios. Table 7 shows the results of the experiment.

5In machine learning, transfer learning is the process of transferring
knowledge gained via training of one model to another – the assumption being
that the task of both models is related. It is very popular for Convolutional
Neural Networks (CNNs)-based models, such as the one used in our solution.

KARAPANTELAKIS et al.: A DEEP-Q LEARNING APPROACH TO MOBILE ... 465

Table 7. Simulation execution time for scenarios presented in section IV.B.
Hidden layers of rural scenario are used as baseline.

Model Accuracy Training time
Urban 0.822 4h 11m
Rural 0.625 1h 35m
Highway 0.801 2h 49m
Urban & baseline 0.798 3h 04m
Highway & baseline 0.774 2h 10m

We observe a reduction training time for the urban scenario
of 26% when using rural model as baseline, without significant
loss in accuracy. In case of the highway scenario, the reduction
is 23%.

When taking into account the large geographical areas
mobile network operators cover today and the likelihood
that the solution would need to be deployed hundreds of
times in different geographical areas in reality, then the
benefits mentioned above are compounded by the number of
deployments and therefore have an even greater significance.

VI. CONCLUSION

In this paper, we have presented a solution based on deep-
Q RL, for enhancing collaborations between operators to fulfill
as much service demand as possible in a geographical area. In
our experiments, we have shown a 2% to 169% improvement
over the state of art of selfish service provisioning or pre-
determined, static operator collaboration approaches. We have
also shown that it is possible to scale the solution to large
number of operators, which is relevant to a growing MVNO
market. Finally we observed that as knowledge is accumulated
from one environment, it can be transferred to another and lessen
the time to deploy the solution anywhere from 23% to 26% .

In future work, we plan to introduce policies to the agents,
as many operators have limitations with regards to which
other operators they can collaborate with or not, but also have
different agendas (e.g. prefer to serve larger amounts of mobile
broadband mobile subscribers than enterprise customers). To
this end, we plan to treat every operator as an agent with its own
policy function and collaboration constraints, in a multi-agent
RL loop. Finally, we also plan to attenuate the number of UE in
the scenarios in order to simulate realistic traffic situations (e.g.
heavy, light traffic, etc.).

REFERENCES
[1] M. S. et al., “5G: A tutorial overview of standards, trials, challenges,

deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35,
pp. 1201–1221, June 2017.

[2] L. Zhang, Y. Liang, and D. Niyato, “6G visions: Mobile ultra-broadband,
super internet-of-things, and artificial intelligence,” China Commun.,
vol. 16, pp. 1–14, Aug 2019.

[3] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,
“Towards 6G networks: Use cases and technologies,” IEEE Commun.
Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.

[4] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, Oct. 2019.

[5] OECD, “International Mobile Roaming Agreements,” No. 223, 2013.
[6] BEREC, “BEREC Opinion on the functioning of the roaming market, as

input to the Commission’s evaluation,” Tech. Rep. BoR (19) 101, body of
European regulators for electronic communications (BEREC), June 2019.

[7] N. A. Mohammed, A. M. Mansoor, and R. B. Ahmad, “Mission-critical
machine-type communication: An overview and perspectives towards
5G,” IEEE Access, vol. 7, pp. 127198–127216, 2019.

[8] D. Soldani, “5G beyond radio access: A flatter sliced network,” Mondo
Digitale, vol. 17, pp. 1–20, Feb. 2018.

[9] R. Guerzoni et al., “Analysis of end-to-end multi-domain management
and orchestration frameworks for software defined infrastructures: An
architectural survey,” Trans. Emerging Telecommun. Technol., vol. 28,
pp. 1–19, Sept. 2016.

[10] A. Karapantelakis and J. Markendahl, “The role of mobile network
operators in intelligent transport systems: Situation analysis, challenges
and suggested approach,” Regional ITS Conference, Los Angeles, Tech.
Rep., Oct. 2015.

[11] GSMA, “Operator collaboration brings major RCS coverage to the
Japanese market,” whitepaper, GSMA, Sept. 2018.

[12] L. Andrés, The internet of things in health, social care, and wellbeing.
PhD thesis, KTH (Royal Institute of Technology), School of Information
and Communication Technology, 2017. QC 20180828.

[13] A. Ghanbari, A. Laya, and J. Markendahl, “Value creation and coopetition
in M2M ecosystem - The case of smart city,” in Proc. IEEE PIMRC, Sept.
2016.

[14] J. Markendahl, Mobile network operators and cooperation: A tele-
economic study of infrastructure sharing and mobile payment services.
PhD thesis, KTH (Royal Institute of Technology), School of Information
and Communication Technology, February 2011. QC 20110121.

[15] J. J. P.-A. Hsieh, A. Rai, and M. Keil, “Understanding digital inequality:
Comparing continued use behavioral models of the socio-economically
advantaged and disadvantaged,” MIS Quarterly, vol. 32, pp. 97–126, 2006.

[16] 3GPP, “3rd generation partnership project; Technical specification group
services and system aspects; Network sharing; Architecture and functional
description,” Technical Specification (TS), Tech. Rep. 23.251, July 2020.

[17] H. Ghazzai, E. Yaacoub, and M. Alouini, “Multi-operator collaboration
for green cellular networks under roaming price consideration,” in Proc.
VTC, 2014.

[18] M. A. Safwat, “Framework for multi-operator collaboration for green
communication,” IEEE Access, vol. 6, pp. 850–865, 2018.

[19] S. Shah, S. Kittipiyakul, Y. Lim, and Y. Tan, “Multi-operator small cells
collaboration using simultaneous bilateral negotiation,” in Proc. IEEE
ECTI-CON, 2018.

[20] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. IMLS
ICML, 2018.

[21] A. Papangelis, Y. Wang, P. Molino, and G. Tür, “Collaborative
multi-agent dialogue model training via reinforcement learning,” Arxiv.
abs/1907.05507, 2019.

[22] D. Soldani and S. Illingworth, 5G AI-enabled automation, pp. 1–38. Wiley
Online Library, May 2020.

[23] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[24] 3GPP, “3rd generation partnership project;Technical specification group
core network and terminals;numbering, addressing and identifica-
tion;(Release 16),” Technical Specification (TS), Tech. Rep. 23.003, Sept.
2020.

[25] “German aerospace center (dlr): Sumo - simulation of urban mobility.”
https://sumo.dlr.de (Date last accessed 5-May-2020).

[26] “Openstreetmap.org.” https://www.openstreetmap.org/ (Date last accessed
5-May-2020).

[27] “Unwired labs: Open cellid.” https://opencellid.org (Date last accessed
5-May-2020).

[28] “Openai Gym.” https://gym.openai.com (Date last accessed 5-May-2020).

[29] “Tensorflow.” https://www.tensorflow.org (Date last accessed 5-May-
2020).

[30] R. Inam et al., “Feasibility assessment to realise vehicle teleoperation
using cellular networks,” in Proc. IEEE ITSC, 2016.

[31] A. Rasmussen, “The state of mvno in 2018 – more than 1,300 active mvnos
in 79 countries.” http://www.weconnectthailand.com/news/the-state-of-
mvno-in-2018-more-than-1300-active-mvnos-in-79-countries/ (Date last
accessed 5-May-2020).

466 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Athanasios Karapantelakis is a Master Researcher
in Artificial Intelligence at Ericsson and an Industrial
Doctoral candidate at Royal Institute of Technology
(KTH), Stockholm, Sweden. He received his B.Sc.
degree in 2005 in Computer Science from University
of Crete, Greece, and his M.Sc., Lic.Eng. degrees
from KTH in Sweden. Athanasios has co-authored
over 65 patent families and over 15 peer-reviewed
scientific conference publications. At Ericsson, he
held various engineering-related positions, from
software design to systems architecture and research.

Elena Fersman is a Research Director in Artificial
Intelligence at Ericsson. She is responsible of a
team of researchers located in Sweden, USA, India,
Hungary and Brazil. She is a docent and an adjunct
professor in Cyber-Physical Systems specialized in
Automation at the Royal Institute of Technology in
Stockholm. She holds a Ph.D. in Computer Science
from Uppsala University, a Master of Science in
Economics and Management from St. Petersburg
Polytechnic University and did a postdoc at the
University Paris-Saclay. At Ericsson, she had various

positions ranging from product management to research leadership. Elena is a
member of the Board of Directors of RISE Research Institutes of Sweden. Elena
has co-authored over 50 patent families.

