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Malicious Relay Detection Using Sentinels: A
Stochastic Geometry Framework
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large loT networks [2].
In this paper, we consider a hierarchical wireless network ar­

chitecture, a typical setup in loT, in which a group of loT devices
connects to an access point (AP) through another wireless node
known as a gateway or relay. The clustering of nodes results
in relays becoming higher value targets since a relay can eas­
ily disrupt the communication of all the devices it serves. The
attack model assumes that the compromised relays may either
alter, drop or artificially craft data packets. We adopt the sen­
tinel based security scheme proposed in [3] to detect such data
integrity attacks initiated by loT relays. Sentinels are special
passive nodes, sniffing data packets transmitted by both loT de­
vices and relays, by exploiting the broadcast nature of wireless
transmissions. The proposed detection system is based on hav­
ing sentinels compare the MAC layer payloads transmitted by
the devices and their associated relays, which should be iden­
tical because the relays are only forwarding the loT packets.
Taking the wireless communication characteristics of the trans­
missions into account (e.g., possible outages due to bad chan­
nel conditions and interference), the sentinels detect relays en­
gaged in such malicious activity with the desired probability.
Unlike [3], [4], which assume known channel parameters, here
we take a stochastic geometry approach to analyze the detection
performance.

A. Related Work

A cross-layer approach to the detection of malicious relays in
a two-hop wireless network was presented in [5], but its oper­
ation assumed that some devices forward the same information
through two different relays. In [6], a channel-aware scheme
for selective forwarding attack detection is proposed, but it has
the drawback of high missed detection probability in case only a
small fraction of packets are dropped by a malicious node. De­
tection of false data injection attacks by a malicious relay via
physical layer techniques was presented in [7], [8]. In [7], the
detection scheme operated at the modulated symbol level, but
the detection performance degraded significantly in scenarios
where the end-to-end channel gain between the source and the
final destination is small. In [8], a Bayesian test approach at the
packet level is proposed, but the performance is unsatisfactory
when the relay corrupts only a small fraction of bits.

In [9], the use of received signal strength indicator readings
was proposed for the detection of selective forwarding attacks.
However, this method relied on a sophisticated localization al­
gorithm for estimating the distances among nodes. The use of a
checkpoint node along the forwarding path was proposed in [10]
for the detection of selective forwarding attack. This scheme,
however, requires major changes to existing wireless sensor
network protocols, including implementation of one-way hash
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I. INTRODUCTION

W IRELESS communication networks comprising many
interconnected nodes are vulnerable to disruption or cor­

ruption of vital information by malicious nodes present in the
network. Securing these networks can be very difficult because
the attack surface can be enormous. Any device in the network
can be a potential entry point via exposed serial ports, physical
tampering, hard-coded keys and credentials, insecure wireless
communications and applications. The data contained in the
network may be sensitive or valuable, entailing huge potential
gains for the attacker that hinders data transmission, steals in­
formation and/or modifies data.

Conventionally, security schemes are developed mostly for
the upper layers of the network, with a focus on cryptography­
based methods. For example, data integrity can be ensured by
message authentication codes or digital signatures. However, the
low hardware complexity and energy consumption requirements
of loT devices pose a challenge to adopt computationally ex­
haustive algorithms [1]. Additionally, the management of secret
keys often requires complex protocols and architectures, render­
ing the cryptography-based methods difficult to implement in
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Abstract: Next generation wireless networks are under high risk
of security attacks due to increased connectivity and information
sharing among peer nodes. Some of the nodes could potentially be
malicious, intending to disrupt or tamper sensitive data transfer in
the network. In this paper, we present a detailed analysis of the sen­
tinel based data integrity attack detection of malicious relays using
a stochastic geometry framework. We assume a practical channel
model for each wireless link and apply a stochastic geometry ap­
proach to interference modeling. Two detection schemes depend­
ing on the level of connectivity between sentinel devices are pro­
posed: isolated and co-operative detection. For both schemes, at­
tack detection probability is derived as a function of important net­
work parameters, and the minimum density of sentinels to achieve
a given detection probability is calculated. It will be shown that a
reasonable attack detection probability can be achieved even when
the sentinel node density is much lower than the relay node density.
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functions and the exchange of ACK packets with timing infor­
mation.

An overhearing-based approach to malicious node detection
was proposed in [11], where each node is expected to report
the packet forwarding ratio for its neighbors. This approach,
however, results in heavy computational load on the network re­
sources, as every device continuously monitors the information
exchanged with neighboring nodes. In [12], a similar approach
was adopted, and nodes were assumed to monitor their two-hop
neighbors. A watchdog technique for data integrity attack detec­
tion was presented in [13], but it does not consider packet loss
due to channel noise, and also suffers from the heavy computa­
tionalload as each node is expected to monitor its neighboring
node. In [14], the destination detects Byzantine attacks by ob­
serving certain signals containing side information, which can­
not be altered by the malicious relay. We remark that an impor­
tant distinction between our sentinel based malicious detection,
and previous works based on watchdog approach [11]-[13], is
that the sentinel based detection scheme does not require any
changes to standard wireless/loT protocols: The task of moni­
toring and reporting malicious behavior is entrusted only to se­
cure sentinel nodes which are placed appropriately by the net­
work designer.

In [15], a malicious relay detection scheme, operating in the
absence of a reference signal at the receiver, was presented for
an amplify-and-forward relay network. This scheme exploited
the knowledge of channel characteristics, but the system was
analyzed only in an asymptotic setting with an extremely large
number of symbols required for detection. In a similar amplify­
and-forward relay setting presented in [16], a novel approach
to detect the malicious relays engaged in false information for­
warding in the presence of unreliable CSI is proposed. However,
not all types of false forwarding and dishonest CSI feedback at­
tacks can be detected, especially when there is no direct link
between the source and the destination.

The overhearing/watchdog-based relay detection schemes in
the above-mentioned papers either did not consider the outage
characteristics or assumed fixed received interference and sig­
nal powers to calculate the outage probability. In fact, the per­
ceived signal powers and the interference from concurrent trans­
missions at the sniffer nodes (sentinels) depend on the network
geometry. A significant difference in our scheme is its ability
to model the network geometry to accurately capture the out­
age characteristics. This is achieved through the use of stochas­
tic geometry modelling which has been successfully adopted
in heterogeneous [17]-[19] and 10T/machine-to-machine relay
networks [20]-[22]. For example, the optimal partitioning of
spectrum resources into loT devices and relay nodes to maxi­
mize the density of supported loT devices has been addressed
in [20]. The analysis of resource scheduling strategies at the
relay nodes has been studied in [21]. A multi-hop data aggrega­
tion scheme to minimize the energy density of an loT network
has been proposed in [22].

Stochastic geometry has also been used in a number of pa­
pers studying physical layer security. In [23], secure communi­
cation in a cognitive radio network, in the presence of randomly
distributed eavesdroppers has been studied. Based on various
channel knowledge assumptions at the transmitter, transmission
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protocols have been designed to achieve secure transmission.
In [24], [25], interference from the secondary users of a random
cognitive radio network is exploited as artificial noise to improve
the secrecy throughput of the primary network. In [26], two se­
crecy improvement techniques namely, creating guard zones and
adding artificial noise have been comparatively analyzed using
stochastic geometry. In [27] the secrecy performance of a pri­
mary network overlaid with an RF energy harvesting secondary
loT network has been studied. Assuming that the secondary net­
work is solely powered by the ambient RF energy harvested
from the transmissions of the primary network, the optimal de­
ployment density for the secondary network for maximal en­
ergy harvesting has been calculated under secure communica­
tion constraints. As discussed, the earlier works on stochastic
geometry focused on beamforming design [28], [29] to improve
secrecy in various scenarios and proposed useful optimizations
secrecy. In this paper, we focus on another aspect of secure
communications, which is message integrity.

Our proposed scheme complements cryptography-based ap­
proaches as an additional defense mechanism, because the lim­
ited processing capabilities of resource-constrained devices may
not be relied upon to support a desired level of security. Addi­
tionally, cryptography-based detection of data integrity attack
has the limitation that it cannot locate the malicious relay node
in multi-hop networks [30].

B. Contributions

This paper proposes a stochastic geometry framework to ana­
lyze the detection probability of data integrity attacks launched
by relays in an loT network. In particular, the locations of the
devices, relays, APs, and sentinels are represented as point pro­
cesses with certain densities. Stochastic geometry modeling al­
lows us to calculate the interference and signal power distri­
butions and thus to derive the outage probability of each link
averaged over the space of all network realizations.! Then, the
minimum density of sentinels which ensures a certain detection
probability is calculated. The analysis is performed for two de­
tection models, named based on the degree of communication
among sentinels: isolated detection and co-operative detection.
Further details on the system model are provided in the follow­
ing section.

The distinguishing features of our proposed scheme, and the
resulting analysis are as follows.

1. Our model considers a practical scenario where different
wireless links in the network may have different packet
error probabilities depending on their channel conditions.
As such, some transmissions may be unsuccessful, and the
probability of sentinels capturing a certain packet is a func­
tion of the network geometry.

2. Unlike the majority of physical layer security schemes, our
model does not assume known channel parameters or node
locations for the design. Thanks to the use of stochastic ge­
ometry, the obtained results are the averages over the space
of all possible network realizations. Thus, the presented

1The outage in device-to-relay and relay-to-AP links refer to a failed decoding
attempt, whereas in device-to-sentinel and relay-to-sentinellinks, it is the failure
of the associated sentinel(s) to sniff and decode the packet.
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with So even though So is not necessarily the nearest sen­
tinel to these devices. Such an association rule is necessary
for the sentinel to overhear both the device's and its asso­
ciated relay's transmissions of a particular data packet.

2. Co-operative Detection: If the sentinels can communicate
with each other in the detection process, the detection per­
formance improves. It is assumed that the transmitted de­
vice and relay packets are captured by a sentinel whenever
the observed signal-to-interference ratio (SIR) exceeds a
required value. Then, the device and relay versions of the
sniffed packets with the identical sequence number and
source ID are compared among sentinels to verify data in­
tegrity. Cooperative detection is able to detect packet mod­
ifications by the relay even when disjoint sets of sentinels
capture a packet transmitted from a device and the same
packet forwarded by the relay. In such a scenario, isolated
detection would fail. It should be noted that instead of
transmitting the whole sniffed packet for comparison, sen­
tinels can compute and share only the checksums of MAC
payloads, along with the source ID and sequence numbers
to label the checksums. This would reduce the signaling
overhead and allow a more robust error correction scheme
for sentinel transmissions.

We assume that the APs (relays) schedule their linked relays
(devices) by assigning each relay (device) a different time slot,
i.e., time division multiple access (TDMA). Hence, no more
than one relay (device) can transmit within an association re­
gion of each AP (relay) in the same time slot. While we per­
form the analysis for a certain frequency channel, the analysis
applies in the same way to other orthogonal frequency channels.
In-active and transmitting loT devices are labeled separately in
Fig. 1. Note however that, multiple relays (devices) within dif­
ferent APs' (relays') association regions can transmit concur­
rently, thus causing mutual interference. The resulting spatial
point processes of concurrently transmitting devices and relays
are denoted by <P'D and <P'R, where <P'D C <P D and <P'R C <P R.
We denote the effective density of transmitting devices by AD <5D

Fig. 1. A wireless loT relay network with sentinel nodes. Note that only the
association regions of relays are displayed. A similar Poisson Voronoi tes­
sellation is formed by APs, and sentinels (in isolated detection).

communication theoretical results serve as a baseline for
the design of future sentinel based detection schemes.

3. The proposed detection scheme imposes no additional bur­
den on the resource-constrained loT devices and relays,
but rather passively monitors them for anomalies through
the passive sentinel nodes. The network operator is notified
only when an anomaly is detected. While adding sentinels
comes with additional hardware and maintenance costs, as
will be shown through analysis, a respectable attack de­
tection probability can be achieved even when the sentinel
node density is much lower than the relay node density.
This is a critical advantage over other schemes, which typ­
ically require additional computations on the part of loT
devices.

4. The probability of false alarm in our detection scheme is
negligible. We remark that a false alarm occurs only in
the unlikely scenario where the packet cyclic redundancy
check (CRC) fails to detect errors in the decoded packet
(after error correction), even though the decoded packet is
in error. Therefore, the false alarm probability in our detec­
tion scheme can be made negligible by using a sufficiently
long CRe. This is distinct from previously proposed detec­
tion schemes which trade probability of missed detection
against the probability of false alarm.

II. SYSTEM MODEL

A. Network Model

Consider a wireless loT network where loT devices connect
to the APs only via wireless decode-and-forward relays. The
locations of devices, relays, APs and sentinels are assumed
to follow four independent homogeneous spatial Poisson point
processes (PPPs), <PD = {Dd, <PR = {Rd, <PA = {A}
and <P8 = {Sd with densities AD, AR, AA and A8 respec­
tively (Fig. 1). Each device is associated to its nearest relay and
each relay is linked to its nearest AP, which also perceives the
strongest average received power. Therefore, the spatial tessel­
lation formed by the association regions of relays and access
points can be characterized as two independent Poisson Voronoi
tessellations [31]. The boundaries of relay association regions
are shown in Fig. 1 by solid blue lines. Each relay listens to the
devices within its own association region. Similar association
regions are formed for linking relays to the APs, but this is not
displayed in Fig. 1 for clarity. The sentinel association depends
on the type of detection model employed.

1. Isolated Detection: In this model, the sentinels are unable
to communicate with each other (excluding the initial as­
sociation region setup) and have to detect the attacks in­
dividually. Therefore, a sentinel must overhear the trans­
missions of both a relay and other devices associated with
this relay, in order to assess the malicious activity of this
relay cluster. For maximal detection performance, each re­
lay shall be associated with the sentinel which receives the
relay's transmission with the highest average signal power.
All the devices linked to a particular relay are monitored
by the same sentinel. For instance, if the sentinel located
at So is the nearest sentinel to the relay located at Ro, all
devices linked to this relay at Ro would also be associated
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where EX --+ y is the outage probability from X to Y and I y is
the aggregate interference received at Y.

2 Provided that ADbD ::; AR and ARbR ::; AA, to ensure a considerable cap­
ture probability. This means, no more than a single device (relay) is transmitting
within the association region of a relay (AP).

and relays by AR <5R where <5D and <5 R are the fractions of devices
and relays, respectively, which transmit in a time s10t.2 It is fur­
ther assumed that the devices and relays transmit in orthogonal
channels, therefore, no device-to-AP or relay-to-relay interfer­
ence is present.

B. Channel Model

The transmitting devices and relays transmit with powers de­
noted by PD and PR respectively. The propagation model ac­
counts for the path loss attenuation and large scale fading. For
any transmitter located at X and receiver at Y, the path attenu­
ation from X to Y is given by IIY - XII-a, where IIY - XII
is the distance between X and Y, and a denotes the path-loss
exponent. The fading power gain from X to Y is denoted by
hy,x. We assume that {hy,x }'s are unit mean exponential ran­
dom variables (Rayleigh fading), independent across {X} and
{Y}s and transmission cycles. Received signals can be decoded
only if they are received with SIR above a certain threshold 71.
I.e., for a transmitting node at X E {<I> D u <I> R}, the probability
of its intended receiver at Y E {<I> R U <I>s U <I> A} successfully
capturing its packet is,

tialslkeys, exposed serial ports, insecure wireless communica­
tions and applications, and physical tampering. Furthermore,
the limited processing capabilities of loT devices render the
use of strong cryptography-based authentication and integrity
checks uncommon, thus allowing the compromised relay node
to tamper with the data packets undetected. In the absence of an
appropriate attack detection mechanism, the adversary may in­
ject malicious commands or false data, deny critical data trans­
missions for a prolonged duration, and even use the compro­
mised relay node as an entry point to reach the susceptible parts
of a cyber-physical system. In line with these potential risks,
our attack model assumes that the compromised relay nodes ei­
ther i) alter, ii) drop or iii) artificially craft data packets prior to
relaying. The sentinels aim to detect the presence of a malicious
relay node engaged in any of the three integrity attacks.

1. Altering the payload: The relay modifies the payload prior
to transmission. The sentinels detect such attacks if they
can successfully capture the corresponding packets (iden­
tical source ID and sequence number) transmitted by the
loT device and the relay.

2. Dropping packets: The relay intentionally drops some of
the received packets instead of forwarding them to the AP,
and also tampers with the sequence numbers such that the
AP receives packets with consecutive sequence numbers.
Note that, if the sequence numbers are not modified, the
AP notices the missing sequence numbers. For instance,
after correctly forwarding packets with sequence number
1, ... , i, the compromised relay may drop the (i + 1)'st
packet, and forward the (i+ k)'th packet with the tampered
sequence number of i + k - 1 for k = 1,2, .... Such
an attack can be detected if the sentinels can capture and
compare any of the (i + k)' th packet from the device, and
the packet labeled with sequence number i + k from the
relay.

3. Crafting packets: The compromised relay may craft a
packet with spoofed source/destination ID and sequence
number to test the presence, functionality or the accuracy
of intrusion detection systems. If the source/destination ID
and sequence numbers of the forged packet do not match
the expected headers by the AP, then the attack can be read­
ily detected by the AP. To avoid detection by the AP, the
relay has to attach an appropriate source ill and the subse­
quent sequence number for that source, then send it to the
AP as if it originated from an loT device. The sentinels
can detect such forged packets if they can capture both
the forged packet and the corresponding authentic packet
transmitted by the device, whose source ID and sequence
number match that of the forged packet.

Note that all three types of integrity attacks can be detected if
the sentinels capture at least two packets, one transmitted by the
device and another from the relay whose source ID and sequence
number match that of the device. Due to the proximity of a de­
vice to its associated relay induced by the Poisson Voronoi tes­
sellation of the relays, there would be a weak correlation in the
signal power from a device and its associated relay perceived at
the typical sentinel. Nevertheless, this correlation would be lim­
ited because the device can still be located anywhere within the
Poisson Voronoi cell with a uniform probability distribution, and

(1)_ p (Pxhy,xllY - XII-a )
1 - EX --+ Y - r I

y
?: 71 ,

C. Attack Model and Detection

The threat model and the sentinel based detection model are
discussed in the following. Then, the attack detection probabil­
ity is formulated as a performance metric.

It can be safely assumed that a unique source ill (e.g., MAC
address) and a sequence number are associated with packets
transmitted from each loT device. The MAC layer also adds
cyclic redundancy check (CRC) bits to the packet before passing
it to the physical layer for error control coding and modulation.
For a given packet transmission from device D j to relay R;, if
the CRC fails at R; due to interference and noise, then R i does
not send back an acknowledgment to D j , and the packet with
the same source ID, sequence number and payload has to be
re-transmitted by D j until an acknowledgment is received from
R i . Each relay node first demodulates and decodes the received
physical layer signal using a suitable error control and/or correc­
tion scheme. Upon successfully decoding the packet, the relay
keeps the source ID and sequence number in the header, adds its
own ill, and passes the data to the physical layer for error control
coding and modulation. Similarly, if CRC fails at the AP when
decoding the packet transmitted by the relay R i , the AP does not
send an acknowledgment, demanding a re-transmission from the
relay R;. Acknowledgment packets are small and encoded with
a robust error correction scheme so that they are received error­
free.

The relays can be compromised due to several vulnerabilities
including but not limited to default, weak or hard-coded creden-
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C(AX, Ay, 77, a) := 1 - EX --+ Yo

x exp (-7fAyr2 ) rdr, (6)

Theorem 1. Laplace transform of the interference distribution
at the typical receiver is

(4)lyo = L PxhYo,xIIXII-"'·
XE<Px\Vyo

Proof' The proof is given in Appendix A.
When a = 4, the results in Theorem 1 can be further simpli­

fied as follows.

Corollary 1. If a = 4,

Llyo (s) = exp {-7fAXVsPX [~- A(7fAYVSPX )]} , (7)

co

where C", (e) = J 1+B d; t a / 2 and p is Rayleigh distributed with
1

parameter (27fAy )-1/2.

co

= 27fAyJexp {-7fAX lEp [p2C", (W"'p-"')]}
o

Llyo (s) = exp {-7fAXlEp [p2C", (sPxp-"')]} , (5)

and the capture probability at this typical receiver is,

receivers <I>y of density Ay, is located at the origin. As per the
association rule of transmitter/receiver pairs, the association re­
gion of this typical receiver can be defined as a Poisson Voronoi
cell [31],

VYo = {X E JR2 : IIX - Yoll s; IIX - Yill, 'v'Yi E <I>y\{Yo}}.
(3)

Let the interfering transmitter process <I>x \ VYo be a homoge­
neous PPP with density AX outside the association region of
the typical receiver. Also let X 0 E <I>x n VYo be the location
of a tagged (marked) active transmitter of the typical receiver,
uniformly distributed in VYo 3. Given constant transmit powers
of Px and U.d unit mean exponential channel fading gains of
hyo ,x for all X E <I>x, the received interference power at Yo is

The following Theorem characterizes the Laplace transform of
the distribution of lyo and the capture probability at a typical
receiver.

(2)

D. Effects ofRe-transmissions on the Detection Performance

As stated above and in line with conventional MAC protocols,
re-transmissions are triggered until the appropriate acknowledg­
ment packet is received in both device-to-relay and relay-to-AP
links. When a transmission is repeated, the sentinels can cap­
italize on multiple opportunities to sniff the packet, improving
the detection performance. For instance, if a relay node requests
a re-transmission from its associated device before tampering
with the data and relaying, it is sufficient for the sentinels to
capture the malicious packet by the relay and either one of the
transmitted packets from the device. Thus, (1 - ED --+ s) in (2)
would have to be replaced by a higher probability, measuring
the event that sentinels capture at least one of the device trans­
missions. However, we argue that the malicious relays may be
smart enough not to request re-transmissions when they intend
to alter the payload. To minimize the risk of being detected, a
compromised relay may choose not to request re-transmissions
for the packets whose source and sequence ID matches the ma­
licious packets that it injects. Similarly, the compromised re­
lay may choose not to transmit the malicious packet more than
once if acknowledgment is not received from its associated AP.
Therefore, the detection probability metric should not account
for re-transmissions.

In this section, using stochastic geometry, we derive the out­
age probabilities for all four wireless links: device-to-relay
(ED--+R), relay-to-AP (ER--+A), device-to-sentinel (ED--+S) and
relay-to-sentinel (E R --+ s). For the outage analysis, we condition
on a typical receiving node and its tagged transmitter. Then,
we express the received interference distribution and thus the
probability of outage conditioned on the locations of this trans­
mitter/receiver pair. Finally, we integrate the conditional outage
probability over the distance distribution of the typical transmit­
ter/receiver pair to obtain the average outage probability.

also because the channel gains are independent. Motivated by
this argument, the detection probability of an attack is assumed
to be the product of the probabilities of successfully capturing a
typical device and a typical relay packet, or

III. OUTAGE ANALYSIS

where ED --+ sand ER --+ S are the outage probabilities when de­
coding a device and relay transmission, respectively.

A. Communication Links: Device-to-Relay and Relay-to-AP

Since the same node association rule applies for device-to­
relay and relay-to-AP wireless links, here we develop a The­
orem which characterizes the received interference distribution
from PPP distributed transmitters, when the typical transmitter
(device or relay) is scheduled to transmit to its nearest receiver
(relay or AP respectively). Then, using this Theorem, the cap­
ture probabilities of device-to-relay and relay-to-AP links can
be obtained thanks to the PPP approximation on the locations of
active transmitters.

Without loss of generality, let us assume that the typical re­
ceiver at Yo, selected among the homogeneous PPP distributed

C(AX, Ay, 77, 4) := 1 - EX --+ Yo

co

= 27fAy Jexp {-7fAxyfiir2 [~- A(7fAyyfiir2
)]}

o
x exp (-7fAyr2 ) rdr, (8)

where A(·) is the auxiliary function given in terms of trigono­
metric functions and integrals,

A(x) = Ci(x) sin(x) + [~ - Si(X)] cos(x),

31> x is a PPP with density Ax outside VYo' and not aPPP inside VYo because
it has a single point at Xo in VYo'
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with

co

Jcost
Ci(x) = - -t-dt and

x

x

Jsint
Si(x) = -t-dt.

o

where p is Rayleigh distributed with parameter (27fAR) -1/2.

Then, the outage probability for the device-to-relay link is

The accuracy of (10) and (12) for the outage probability are ver­
ified through Monte-Carlo simulations in Section V.

(12)

(14)
L.ID-+S(S) = exp (-7fAD6DP~s~Kc,,),

L.IR-+s(S) = exp (-7fAR6Rpls~Ka).

where Kc" = 27f/[asin(27f/a)].
Likewise, the received interference distribution at the typical

sentinel, when decoding device and relay packets respectively
would be,

with C(.) given in Theorem 1 for general a, and in Corollary 1
for a = 4. Note that we use equality sign (=) rather than ap­
proximately equal sign (~) to indicate the approximation due to
the modeling of UPP of type II as a PPP, in order to reserve the
approximately equal sign for other approximations that we uti­
lize in the upcoming sections. The PPP approximation has been
thoroughly verified in the simulations as well as in other papers,
e.g., [22], [35].

Similarly, the interfering relay process can be approximated
with a PPP of density AR6R outside the association region of
the typical AP. Hence, we can use Theorem 1 to express the
interference distribution and the outage probability for relay-to­
AP link as

B. Security Links: Device-to-Sentinel and Relay-to-Sentinel

It was stated in the previous subsection that the locations of
transmitting devices and relays form UPPs of type II whose
Probability Generating Functional (PGFL) is intractable, and
approximating the UPP of type II with a PPP of equivalent den­
sity can provide a good approximation. We resort to a simi­
lar PPP approximation to calculate the interference received at
a sentinel node. In particular, we approximate the spatial dis­
tributions of actively transmitting devices and relays with ho­
mogeneous PPPs of densities AD6D and AR6R, respectively.
Since there is no rule describing the positions of transmitting
relays and devices relative to the sentinels, the received interfer­
ence distributions at the typical sentinel is straightforward. The
Laplace transform of the interference from homogeneous PPP
distributed transmitters of density AX with Rayleigh fading as­
sumption is known to be (from [36], Eq. (8»,

where p is Rayleigh distributed with parameter (27fAA) -1/2,

and

Proof" The proof is provided in Appendix B.
Note that the capture probability in (6) and (8) does not de­

pend on Px , since all nodes transmit with the same power and
therefore both signal and interference power scale linearly with
Px . The right-hand side of (8) can be calculated numerically by
a Riemann sum over r, or by a Monte-Carlo simulation of the
Rayleigh random variable with parameter (27fAy) -1/2.

The derivations so far have assumed that the interfering trans­
mitters are distributed as a homogeneous PPP. Although <P D and
<P R are homogeneous PPPs, the scheduling of devices by the re­
lays and relays by the APs ensures that no more than a single
device (relay) can be active at a time in an association region
of a relay (an AP). Therefore, the resulting spatial processes of
simultaneously transmitting devices and relays, i.e., <P'D of den­
sity AD6D and <P'R of density AR6R, have at most one point
in each Poisson Voronoi region. Such a spatial distribution is
known as Poisson Voronoi perturbed lattice or user point process
(UPP) and the interference distribution resulting from <P'D and
<P'R are intractable. In [32], the pair correlation function of UPP
has been accurately characterized to approximate UPP to Gini­
bre Point Process or PPP depending on the cell vacancy rate. In
particular, in the case where the Poisson Voronoi cells are heav­
ily loaded with users - with the extreme case being UPP of type
1, implying exactly one user per cell - the UPP demonstrates
pair correlation function similar to that of the Ginibre Point Pro­
cess. On the other hand, if the Poisson Voronoi cells are lightly
loaded with users the user process is called UPP of type II, and
the PPP approximation is more accurate.

In our model of an loT network, the density of transmitting
devices AD6D has to be considerably smaller than the density of
relays AR, and the density of transmitting relays AR6R has to be
considerably smaller than the density of receiving AP density
AA to ensure a reasonable end-to-end success probability. For
example, as will be shown in Section V, assuming a I-to-3 ratio
of user containing cells to empty cells, i.e., AD6D ~ 0.25AR
and AR6R ~ 0.25AA yields an end-to-end success probability
of only 0.46. For higher success probability values, the ratio
of empty cells should be even larger. Therefore, in line with the
idea that UPP of type II can be well approximated to a PPP when
most Poisson Voronoi cells are empty [32], replacing the UPP of
interfering devices (relays) outside the association region of the
typical relay (AP) with a PPP of density AD6D (AR6R) provides
a good approximation to the actual interference from <P'D (<p'R).
The analysis becomes intractable without this approximation
and similar approximations were also used in [33], [22], [34].

Approximating the interfering device process with a PPP of
density AD6D outside the association region of the typical relay,
we can use Theorem 1 to express the interference distribution
and the outage probability for device-to-relay link as
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distribution with an appropriate parameter. If rDS is assumed to
be Rayleigh distributed, r5s is exponentially distributed. We
choose the mean of r5s as

lE [r5s] = lE [r~s + r5R - 2rRsrDR cos 8]

lIAs + AR (17)---+------- 7fAs 7fAR - 7fAsAR '

Fig. 3. Comparison of the cumulative distribution functions of approxi-
mate r6s (distribution given as in (18» and Monte-Carlo calculated r6s'
AD = 10-3 , AR = 2 X 10-4 . The comparison is presented for two dif­
ferent sentinel densities as shown on the figure.

Fig. 2. An illustration of distances between the associated devices, relays and
sentinels.

which follows from the fact that r~s and r5R are exponential
random variables with parameters 1/ (7fAS) and 1/ (7fAR) and 8
is uniformly distributed in [0, 27f). Thus,

(15)~ (A R5R ~K 1)-1
AS 'TJ a + ,

co

(lJ) 27fASJexp ( -7fAR5R'TJ~ K a r 2) exp (-7fAsr2) rdr
a

co

= Jpr (PRhso,RoIISo - Roll-a?: 'TJ I liSa - Roll = r)
I R -+ s

a

where (a) follows from the complementary cumulative distri­
bution function of the exponential random variable hSo,Ro' (b)
from substituting the Laplace transform LIR-+s(S) from (14),
and (c) from evaluating the integral by the change of variables
v +-- r 2 • This result is reasonable as an increased transmit­
ting relay density would result in higher interference, reducing
the capture probability; whereas an increased sentinel density
stochastically reduces the nearest sentinel distance, thus improv­
ing the capture probability.

We now proceed to analyze the capture probability for device­
to-sentinel links, by analyzing the distance distribution between
a sentinel and its associated device. As stated in Section II,
each device is monitored by the same sentinels with its receiv­
ing relay, in order for this sentinel to overhear and compare
the device's and relay's transmission of a particular data packet.
Let us denote the distances between the associated pairs of re­
lay/sentinel and device/relay nodes by rRS, rDR respectively.
Then, the distance between the associated pair of device/sentinel
nodes can be expressed as

B.I Isolated Detection

In the following, we calculate the capture probability for
relay-to-sentinellinks by conditioning on the distance between
the typical sentinel and its associated relay, i.e., liSa - R oII, ac­
cording to the isolated detection scheme. Since the association
between relays and sentinels is such that each relay is linked
to its nearest sentinel, the distance between the typical sentinel
at So E <PS and its associated relay at Ro E <P'R n VSo has
a Rayleigh distribution with parameter (27fAS) -1/2. Then, the
probability that the typical sentinel captures the packet transmit­
ted by its tagged relay at Ro E <P'R n VSo can be calculated by
integrating the conditional capture probability over the distance
distribution of liSa - Roll,

co

~ 27fAsJlE {exp [-;; I R -+ S]} exp (-7fASr2) rdr
a

( 2 2 ) lrDS = rRS + rDR - 2rRsrDR cos 8 2, (16)

where 8 is as shown in Fig. 2. Considering that rRS and rDR are
Rayleigh distributed (nearest Poisson point distribution) with
parameters (27fAs)-1/2 and (27fAR)-1/2 respectively, and the
PDFof8, f(8) = I/(27f) in [0, 27f), the distribution ofrDs can
only be expressed in terms of iterated integrals. For tractability,
we conjecture that the distribution of rDS is similar to a Rayleigh

is the approximate distribution of r5s. The accuracy of this ap­
proximation is verified in Fig. 3 where the cumulative distri­
bution functions of the approximate r5s and Monte-Carlo cal­
culated distance square between the associated device-sentinel
pairs are compared.

Then, the probability that the typical sentinel captures the
packet transmitted by its associated device can be calculated by
integrating the conditional capture probability over the distribu-
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(24)

tion of r5s = liSa - Rol1 2 given in (18),

(i)I-ED -+ s

x ir2 (t)dt
DS

Going through the same steps as in (22), we have the capture
probability of device packets as

(e) _ ( AS )1 - ED -+ S - 1 - exp - 2 •

AD6D77"Ka
IV. PROBLEM FORMULATION and OPTIMIZATION

With the expressions derived above, it is possible to solve
problems such as finding the minimal sentinel density to ensure
a certain detection probability, given other network parameters.
In the following, we formulate and solve Problem 1 for both
isolated detection and co-operative detection schemes.

Problem 1.

min AS
>-'s

B.2 Co-operative Detection

In co-operative detection, the packet transmitted by the typi­
cal relay at R o cannot be detected if none of the sentinels in <I> S

captures the packet transmitted by this relay. Specifically,

(20)

s.t., (1 - ER-+s)(1 - ED-+S) ?: T
AS?: O.

To solve Problem 1, the expressions for (1 - ER -+ s) and
(1 - ED-+S) can be substituted from (15) and (19) for isolated
detection and from (22) and (24) for co-operative detection.

(25)

A. Solution for Isolated Detection

From (15) and (19), one can note that (1 - E~)-+ s) and
(1- E~) -+ s) are both increasing functions of AS. In other words,
the probability that the typical sentinel captures both the tagged
device and relay versions of the packet increases with increas­
ing sentinel density. Therefore, A1 is attained when the first
inequality constraint is satisfied with equality,

(i) (i)T = (1 - ER-+s)(1 - ED-+ S )

_ (A R6R ~ ) -1 [AD6D77~ K a(A1 + AR) ] -1
- A1 77 K a + 1 APR + 1

(22) A1 = - TAR {77~ K a [(Ab6b + A~6~ + 4AD6DAR6R/T

- 2Ab6b6R77~Ka - 2AD6DAR6R
2 2 2 4 2 2 2 )'+ AD6D6R77" K a + 2AD6DAR6R77" K a 2 (26)

+ AD6D77~Ka + AR6R77~Ka + AD6D6R77~K;]}

/ [2(TAR - AR +TAD6D77~Ka)] .

(21)

in which ERa -+ Si denotes the miss-detection probability of the
transmission from the typical relay to sentinel at Si, i.e.,

\lSi E <I>s similar to (1). The right-hand-side of (20) can be
evaluated by using PGFLs,

(e)I-ER -+ s

= 1 -lE II [1 - Pr (PRhsi,R; IISi - Roll-a?: 77)]
SiE<P s R -+ S2

~I-lE II [I_lE{exp(_77IISi;RRollaIR-+Si)}]
SiE<P s

(\))I-lE II [I-exP(-7LAR6R77~KaIISi-Roll)]
SiE<P s

where (a) follows from the complementary cumulative distribu­
tion function of hSi,Ro' (b) from substituting the Laplace trans­
form of I R-+ si at s = 77IISi - Rolla/PR using (14), (c) from
the fact that the expectation of a product over a point process is
a PGFL, thus using the PGFL of a PPP from (A.3) in [37] with
the intensity function A(r) = 27frAs, and the last step from
evaluating the integral by the change of variables v +--- r 2 •

Similarly, the packet transmitted by the typical device at Do
cannot be detected if none of the sentinels in <I> S captures the
packet transmitted by this device,

(23)

B. Solution for Co-operative Detection

Similarly (1 - E~~ s) from (22) and (1 - E~)-+ s) from (24)
are increasing functions of AS. Thus, A1 is minimized when the
first inequality constraint is satisfied with equality. An implicit
solution exists for A1,
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Fig. 5. Capture probability of sentinels over sentinel density, under isolated and
cooperative detection models.
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Fig. 4. Minimum sentinel density required to achieve desired immediate de­
tection probability. The parameters are AD = 10-3 , AR = 2 X 10-4 ,

6D = 0.05, 6R = 0.05, ry = 3, ex = 4.

Table 1. Parameters used in the simulations.

V. SIMULATIONS and DISCUSSION

Based on the solutions of (26) and (27), the minimum re­
quired sentinel density AS to achieve a certain immediate de­
tection probability is shown in Fig. 4. The isolated detection
model is much more sensitive to the detection threshold, i.e., it
requires significantly denser sentinel deployment to achieve a
given detection probability.
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Fig. 6. The comparison of end-to-end transmission success probability
(squares) and immediate detection probability of sentinels (triangles) over
transmitting device density.

Value
10 3 nodes/m2

2 x 10-4 nodes/m2

10-4 nodes/m2

4 x 10-5 nodes/m2

0.05
0.05

3
4

Parameter

A. Numerical Results

In this section, Monte-Carlo simulations are presented to con­
firm the accuracy of the analytical results and to obtain insights
on how system parameters affect the detection performance and
end-to-end success rate of loT transmissions. The parameters in
Table 1 are used for simulations unless otherwise indicated in
the plots.

In Fig. 5, the probability that a packet transmitted by devices
or relays is captured by sentinels is plotted against the sentinel
density. In general, the analytical plots follow the same trend
as the Monte-Carlo plots. The limited discrepancy between the
analytical and simulation plots of the isolated detection scheme
is due to the PPP assumption of interfering nodes, and also due
to the approximation (conjectured in (18» on the distance dis­
tribution between a device and its associated sentinel.

Fig. 6 shows the detection probability of an attack, in com­
parison with the end-to-end success probability of loT pack­
ets, plotted over the density of transmitting devices. As AD6D

increases, the interference in device-to-relay and device-to­
sentinel links also increases, resulting in a lower capture prob­
ability in these links. Therefore, all three plots are decaying as
transmitting device density is increasing. The rate of decay in
sentinel detection probability is higher than that of end-to-end
success probability, suggesting that the detection model is more
sensitive to the interference level when capturing device pack­
ets.

Figs. 7 and 8 illustrate the detection probability of an attack,
in comparison with the end-to-end success probability of loT
packets, plotted over the density of relays and ratio of transmit­
ting relays respectively. Note that as relay density increases,
typical device-to-relay distance decreases, resulting in a bet­
ter capture probability for device-to relay links. On the other
hand, increasing relay density increases the interference caused
by the relays, reducing the capture probability at relay-to-AP
links. The former effect is dominant up until AR ~ 2 X 10-4 ,

whereas the latter dominates for larger AR as can be seen from
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B. Discussion

Fig. 8. The comparison of end-to-end transmission success probability
(squares) and immediate detection probability of sentinels (triangles) over
the ratio of transmitting relays.

As multiple packets are observed by the sentinel, the detection
probability increases dramatically.

The sentinel-based detection is scalable because the task of
each sentinel is simply to compare the transmitted MAC pay­
load from a device in its vicinity with the corresponding pay­
load forwarded by the relay. Even in co-operative detection, the
sentinels only need to exchange certain messages locally, thus
the increasing network area does not translate into a larger num­
ber of exchanged messages between the sentinels. The sentinel­
based detection can also be considered in a multi-hop setting
wherein sentinels compare the MAC payload transmitted by
nodes with the corresponding payload forwarded by the respec­
tive next-hop-nodes in their vicinity. In this manner, the attack
detection for each hop is an independent task, the probability of
which is calculated in this paper.

Our sentinel approach has several advantages over other net­
work intrusion detection systems and techniques [10]-[12].
Firstly, the proposed method does not require any change in the
existing protocols or deployed devices but rather introduces a
new set of sentinel nodes. Since the intrusion detection is per­
formed only at the external sentinel devices, the loT network
is not burdened with computational load or signaling overhead
unlike the prior work.

Secondly, the security of the users would be compromised if
the intrnsion detection system itself is compromised. It can be
safely argued that the passive sentinel devices can be designed
with the latest security technologies (e.g., Trnsted Execution En­
vironment), therefore, they would be less prone to attacks than
any other wireless device in an loT network. Privacy measures
such as imposing hardware limitations on the transmit interfaces
of the sentinel devices can be considered to protect the privacy
of the loT network. Therefore, integrity checking by sentinels
would be a more secure approach than offloading such a critical
task to the network whose integrity is questionable in the first
place. On the other hand, we acknowledge that there will be a
hardware cost (and bandwidth cost for co-operative detection)
of deploying sentinels. Yet, the costs will be limited because
very good attack detection performance can be achieved with
AS < AR.

Thirdly, the false alarm rate in our sentinel based detection
scheme is negligible as it occurs only in the unlikely scenario
where the packet CRC fails to detect errors, even though the
decoded packet is in error. Further, the detection scheme op­
erates at the MAC layer and therefore remains effective even
in scenarios where different wireless links may employ distinct
modulation and coding schemes at the physical layer.

Finally, the other methods commonly relied on known chan­
nel parameters in their analysis which is unrealistic in a large
loT network. Through the use of stochastic geometry, we have
demonstrated the feasibility of our sentinel-based method from a
communication theoretical perspective. It should be noted how­
ever that, the use of stochastic geometry also has a downside.
It only provides system-level insights (e.g., detection perfor­
mance as a function of node densities) for an average network
rather than suggesting precise refinements to a specific network.
Hence, the fine-tuning of other useful parameters (e.g., finding
exact sentinel locations, varying sentinel density based on the
loT network load) are not studied in this paper and will be in-
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the end-to-end success probability plot (black squares). Both the
attack detection probability and end-to-end success probability
consistently decrease with the ratio of transmitting relays due
to increased interference. At low relay densities, the analytical
plot of the isolated detection scheme is less accurate due to the
approximation in (18).

Fig. 7. The comparison of end-to-end transmission success probability
(squares) and immediate detection probability of sentinels (triangles) over
relay density.

The foremost finding of this paper is that using passive sen­
tinel nodes - even when they are much less in number than the
relay nodes - to monitor data traffic in an loT relay network is
feasible from the communication theory perspective. This find­
ing can be observed from Figs. 5-8, where AS < AR leads to
similar performance between the end-to-end success probability
of the network and the attack detection probability of sentinels.
It should also be noted that these Figures display the immediate
detection probability of an attack performed on a single packet.
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vestigated in future work.

VI. CONCLUSION

In this paper, we have proposed sentinel based attack detec­
tion schemes to identify malicious relays that alter, drop or craft
data packets in an loT network. The proposed schemes are well
suited to resource-constrained loT networks and can supplement
higher-layer security mechanisms. We have applied a stochastic
geometry approach to interference modeling, and hence opti­
mized the density of sentinel nodes for given densities of relay
and loT devices, as well as the desired attack detection probabil­
ity. Co-operative detection performance is shown to be signif­
icantly better than that of isolated detection because the packet
modifications can be detected in the co-operative scheme when
the device and relay versions of the same packet are captured
by different sentinels. On the other hand, isolated detection re­
quires no communication among sentinels, except for the initial
association region setup. Minimum sentinel density to achieve
a certain attack detection performance was calculated for both
schemes. It has been shown that the required sentinel density
(especially in co-operative detection) can be much smaller than
the relay density to achieve a detection probability approxi­
mately equal to the end-to-end success probability of the loT
network. This outcome, combined with the fact that sentinels
do not add computational burden to the loT network, confirms
sentinels as viable solutions for preserving data integrity in loT
relay networks.

APPENDIX A
PROOF OF THEOREM I

The intensity function of the interfering nodes is AX out­
side VYo' Transforming into polar coordinates, we have intensity
function of A(r) = 27frAX defined outside VYo, with r denoting
the distance from the origin (or Yo). Let Px, \IX E <I>x denote
the distances between the interfering nodes and their intended
receivers. Therefore, Px's are i.i.d with a nearest Poisson point
distribution, i.e., Rayleigh distribution,

distribution in (4) can be evaluated as follows.

(29)

where (a) follows from the U.d nature of {hyo,x}s and their
Moment Generating Function (MGF), (b) from using the Proba­
bility Generating Functional (PGFL) of the inhomogeneous PPP
<I>x\Vyo with intensity function A(r) = 27frqAx:[(Jr > px)
((A.3) in [37]) and (c) from the change of variables t f- r 2 j p2 •

From (1), the capture probability 1-EX --+ Y can be calculated
by de-conditioning on the typical transmitter/receiver distance
l!Yo - Xoll = r,

l- Ex--+y

co

~ 27fAyJlE [exp ( - ;; lyo ) ] exp (-7fAyr2
) rdr

o

(30)

where (a) follows from the complementary cumulative dis­
tribution function of the exponential random variable hyo,xo
and by substituting the nearest Poisson point distribution
fIIYo-xoll(r) = 27fAye-7f '\'yr

2
, and (b) is because the ex­

pression inside the expected value operator is in the form of
the Laplace transform of the distribution of lyo evaluated at
s = wCtjPx .

(28)

The interfering nodes are outside VYo if and only if they are far­
ther from the origin than they are to their associated receivers
at Yi E <I>y as specified by association rule in (3). Specif­
ically, IIXII > Px, \IX E <I>x\{Xo}. Hence, the inten­
sity function of the interfering nodes defined in JR2 is A(r) =

27frAx :[ (r > Px), where :[ (-) is the indicator function. Using
this intensity function, the Laplace transform of the interference
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