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AFRL: Adaptive Federated Reinforcement Learning
for Intelligent Jamming Defense in FANET

Nishat I Mowla, Nguyen H. Tran, Inshil Doh, and Kijoon Chae

Abstract: The flying ad-hoc network (FANET) is a decentralized
communication network for the unmanned aerial vehicles (UAVs).
Because of the wireless nature and the unique network proper-
ties, FANET remains vulnerable to jamming attack with additional
challenges. First, a decision from a centralized knowledge base is
unsuitable because of the communication and power constraints
in FANET. Second, the high mobility and the low density of the
UAVs in FANET require constant adaptation to newly explored
spatial environments containing unbalanced data; rendering a dis-
tributed jamming detection mechanism inadequate. Third, taking
model-based jamming defense actions in a newly explored environ-
ment, without a precise estimation of the transitional probabilities,
is challenging. Therefore, we propose an adaptive federated rein-
forcement learning-based jamming attack defense strategy. We
developed a model-free Q-learning mechanism with an adaptive
exploration-exploitation epsilon-greedy policy, directed by an on-
device federated jamming detection mechanism. The simulation re-
sults revealed that the proposed adaptive federated reinforcement
learning-based defense strategy outperformed the baseline meth-
ods by significantly reducing the number of en route jammer lo-
cation hop counts. The results also showed that the average accu-
racy of the federated jamming detection mechanism, leveraged in
the defense strategy, was 39.9% higher than that of the distributed
mechanism verified with the standard CRAWDAD jamming attack
dataset and the ns-3 simulated FANET jamming attack dataset.

Index Terms: Federated learning, flying ad-hoc network, jamming
attack, on-device AI, reinforcement learning.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) are becoming increas-
ingly popular as various challenging tasks can be accom-

plished by them in the three-dimensional space [1]–[4]. Because
of the high degree of mobility of UAVs, there are many chal-
lenging applications such as border surveillance [1], relaying
network [2], and disaster monitoring [3], where UAVs can be
deployed for achieving better efficacy. A flying ad-hoc network
(FANET) is a decentralized communication network formed by
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UAVs to mitigate the challenges faced by a fully infrastructure
based UAV network [5]. Typically, in a FANET, the UAV nodes
communicate among themselves over a shared wireless medium
and transfer data to the base-station independently when they
are in the communication range with a base station infrastruc-
ture [4]. The base station can alternatively be a multi-access
edge computing (MEC) server. Because of the shared nature of
the wireless medium used for communication in FANET, UAV
nodes remain particularly vulnerable to wireless jamming at-
tack, as shown in Fig. 1.

Essentially a jamming attack prevents devices from commu-
nicating by disrupting the reception of communications at the
receiver using as little transmission power as possible [1], [3].
A jamming attacker model may follow a constant radio signal
transmission (i.e., a constant jammer model), alternate between
sleeping and jamming (i.e., a random jammer model), or trans-
mit a radio signal as soon as it senses activity on the channel
(i.e., reactive jammer model) [6]. To counter such jamming at-
tacks, competition strategies, spectral retreat and spatial retreat
based defense mechanisms are mainly considered [1], [4], [6].
In the competition strategy, the communicating nodes compete
against the jammer by adaptively perceiving the threat level. The
communicating nodes increase the transmission power used by
the legitimate radio devices and operate at a higher signal-to-
interference-plus-noise ratio (SINR). In contrast, the spectral
retreat-based frequency hopping is performed by the on-demand
change in the frequency to retreat from the channel in which the
jammer is operating. The other option is the spatial retreat-based
defense strategy which operates by evacuating from the jammer
location by moving in random directions upon detecting a jam-
mer in its range. In [7], a two-dimensional anti-jamming mobile
communication scheme is proposed to enable a mobile device to
retreat from a jammed frequency or area. In [8], UAVs are lever-
aged to relay the message of an on-board unit (OBU) to improve
the network communication using reinforcement learning.

In general, the optimal defense strategy against jamming at-
tacks in wireless networks faces various challenges. For exam-
ple, any centralized defense strategy may incur significant com-
munication cost and induce latency in the network. In fact, the
traditional defense mechanisms may not scale to bigger net-
works and result in asynchrony issues in ad-hoc networks [6].
FANET poses some distinct properties which make selecting the
optimal jamming defense strategy additionally challenging. For
instance, unlike the mobile ad-hoc network (MANET) [1], ve-
hicular ad-hoc network (VANET) [4], and some swarm UAV
networks [22], [49], generally FANET has a considerably lower
density of nodes [1], [2]. In particular, nodes in FANET op-
erate in a three-dimensional space while the nodes in MANET
and VANET operating in a two-dimensional space [1], [4]. Be-
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Fig. 1. Jamming Attack in FANET.

sides, the intuition of FANET is to leverage an ad-hoc network
since the nodes can be far away from the conventional ground
base stations. In other words, nodes in the flying ad-hoc net-
work pose an additional challenge of asynchronous commu-
nication with any centralized controller due to several factors
such as low node density, remote deployment of highly mobile
UAVs, and power consumption constraints etc. [5]. As a con-
sequence, it is not always feasible for the UAV nodes to com-
municate with any centralized controller. This property of the
nodes in FANET, thus, makes it more vulnerable to various at-
tacks [1], [2], [4]. Apart from that, the UAVs in FANET can pro-
vide higher coverage [32] than traditional ad-hoc networks (i.e.,
MANET, VANET) because of the enhanced line-of-sight (LoS)
air-to-air and air-to-ground communication. Therefore, the com-
putational and communication service coverages of the UAVs in
FANET is significantly higher than that of the nodes in MANET
and VANET [1], [2], [32].

In recent years, various defense mechanisms have been pro-
posed for UAV-based networks [8]–[10]. In [8], a reinforcement
learning-based approach was proposed against jamming attack
by leveraging the UAV relay in VANET. In [9], a rule-based jam-
ming attack detection mechanism was proposed for UAVs. A
Bayesian game-theoretic approach was proposed for intrusion
detection and ejection in UAV-aided networks [10]. However,
such approaches are not suitable for jamming detection and de-
fense in FANET as it faces the following three major challenges:
• First, the FANET nodes have power consumption con-

straints and because of the low density of the nodes [4],
communication between the UAV nodes and the base sta-
tion is also constrained. Therefore, jamming detection and
defense support from any centralized knowledge base are
challenging.

• Second, UAV nodes have very high mobility and rapid
topology change [1], [2] which makes the FANET archi-
tecture very dynamic in nature. Hence, these nodes re-
quire constant adaptation to unbalanced sensory informa-
tion collected from the newly explored spatial environ-
ments. Therefore, a traditionally distributed mechanism for
jamming detection and defense may not be sufficient to ad-
dress the unbalanced nature of the sensory environments.

• Third, the jamming defense strategy needs to take certain
actions in the newly explored environments for which pre-

cise environmental data are initially unavailable. There-
fore, any model-based jamming defense strategy will not
be suitable given that the transition probabilities and the
rewards are initially unknown. In this case, a model-free
mechanism is essential to learn from the newly explored
environments, and adapt to execute jamming preventive
strategies according to the network dynamics.

A new technique in the artificial intelligence (AI) community
for robust learning in a communications network is the federated
learning algorithm [12], [13], which allows the efficient learn-
ing of unbalanced data besides providing communication effi-
ciency [13], [16]. Moreover, federated learning [12] is specially
designed for device-level training for the mobile devices (e.g.,
smartphones, UAVs, smartglasses, and smartwatches) [12]–
[15]. In the case of the centralized control systems, the jam-
ming attack detection operation is executed solely at the stand-
alone centralized controller [12]–[14]. With the help of feder-
ated learning, a neural network model is trained locally (i.e., on-
device) in any device with the help of a global model’s weight
updates when in range. In fact, the global weight update helps
the local training models, but the final model is created locally.
Thus, local decisions can be executed in the devices without the
constant support of a global model as it is essential for the com-
munication constrained UAVs in FANET. This becomes useful
to take decision in a scenario where a global model is unreach-
able at times.

Moreover, federated learning allows low-level weight updates
from the local devices to be sent and received from the global
model [12], [16]. Therefore, the centralized controller is only
responsible for collecting the weight updates from the local de-
vices and performing federated averaging [12]. This property
of the federated learning can help in extracting the fine-grained
properties of the jamming data instances to significantly re-
duce the effect of the imbalance in the data faced by the UAVs
in FANET. Therefore, the local devices independently perform
jamming detection, and thus, making the control process decen-
tralized [12], [13].

Finally, for any centralized control system as in the case of
centralized learning-based detection [14], huge amounts of sen-
sory data from the local devices need to be sent to the central-
ized controller which overlooks the critical data privacy issues
of the local devices [13]. In contrast, in case of our proposal
based on federated learning, only weight updates are sent to the
global model and thus, effectively preserve the privacy of the
local sensory data [12], [13].

This federated learning-based jamming detection can aid in
developing a model-free jamming defense strategy by setting
positive and negative rewards for a UAV in FANET as it explores
an unbalanced data environment. In this regard, a jamming de-
fense strategy can be tailored with a reinforcement learning ap-
proach as it is model-free [34], [37]. In particular, the reinforce-
ment learning-based jamming defense approach can be adjusted
according to the federated learning-based jamming detection re-
sult. Therefore, in this paper, we propose an adaptive federated
reinforcement learning-based jamming attack detection and de-
fense mechanism for FANET. In essence, the main contributions
of this paper are as follows:
• First, we identify the key issues of applying jamming at-
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tack detection and defense strategy in a FANET architec-
ture. In particular, we identify the key challenges of using
the centralized and traditional distributed mechanisms for
jamming attack detection in FANET, because of the leading
causes of the communication constraints and unbalanced
properties of the sensory data respectively. Furthermore,
we identify the challenges of introducing a jamming de-
fense mechanism in a newly explored environment with no
initial data encountered by the UAV nodes required to adapt
effectively.

• Second, we propose a security architecture of FANET
leveraging a combination of federated learning and rein-
forcement learning. The proposed federated learning mech-
anism enables on-device jamming attack detection to sup-
port a reinforcement learning-based defense strategy. Sub-
sequently, the proposed defense strategy takes the input
from the federated learning model to update a Q-table using
the Bellman equation [35]. Moreover, the optimal defense
paths of the UAVs are selected using an adaptive epsilon-
greedy policy over the combined federated learning and re-
inforcement learning model. As a result, the UAVs perform
efficient spatial retreat from the jamming areas, that are de-
tected beforehand by the federated learning approach.

• Finally, we simulate the proposed architecture and apply
our method to the ns-3 [47] simulated FANET dataset
and the standard CRAWDAD jamming attack dataset [39].
We verify our mechanism with two different cases of a
jamming attack network environment. Then, we simu-
late a set of jamming and non-jamming communication
cells in which spatial retreat-based decisions can be made
by on-device agents. The simulation results showed that
the detection model achieved a higher performance gain
(82.01%) in terms of the average accuracy than the dis-
tributed model (49.11%). Moreover, the jamming defense
strategy supported by the detection model showed that
the number of hop counts of the jammer locations cov-
ered could be significantly reduced by applying the adap-
tive federated reinforcement learning-based defense strat-
egy while selecting optimal paths to the destination. We
also show that an appropriate epsilon value can be selected
on the basis of the federated learning accuracy gain to
achieve higher reward values with fast convergence.

The rest of this paper is organized as follows. Section II
overviews the related works of distributed machine learning and
jamming attack detection and defense mechanisms. Section III
introduces the system model of the proposed adaptive feder-
ated reinforcement learning-based jamming detection and de-
fense strategy. Section IV presents the performance of our sys-
tem model. Finally, Section V concludes the paper with some
remarks and possible future directions.

II. RELATED WORK

In this section, we discuss the related works of distributed
machine learning mechanisms. Then, we review the jamming
attack defense mechanisms based on competition strategy, spec-
tral retreat, and spatial retreat.

A. Distributed Machine Learning

Distributed machine learning is the new trend to allow a flexi-
ble learning paradigm in a communication network. In the liter-
ature, various cluster and data center-based distributed learning
algorithms have been proposed [12]. In [19], a distributed train-
ing mechanism of locally trained models with an iterative aver-
aging technique was proposed. However, most of these mecha-
nisms fail to address the unbalanced and non-IID properties of
the data. In [20] and [21], distributed learning mechanisms with
a focus on communication efficiency were developed. In [24],
the asynchronous distributed forms of the stochastic gradient de-
scent (SGD) algorithm are discussed. Recently federated learn-
ing techniques were proposed to address the efficient learning of
the unbalanced and non-IID properties of the data [12]. Essen-
tially, federated learning enables on-device learning to reduce
both the data privacy issues and the communication costs [13],
[16].

In [17], a federated reinforcement learning approach was pro-
posed, considering the privacy requirements of the data and the
models by building a Q-network for each agent with the help of
other agents, without directly transferring the data or the knowl-
edge from one agent to another agent. In [18], a lifelong fed-
erated reinforcement learning architecture was proposed as a
knowledge fusion algorithm with evolutionary transfer learning
in order to improve a shared model deployed in the cloud for
cloud robots’ navigation aid.

B. Competition Strategy

The idea of the competition strategy is to compete against the
jammer by adjusting of the digital networks coding and trans-
mission power of communication in the lower layers. Stronger
error-correcting code can be used to increase the likelihood of
the packets successfully being decoded [6], [23]. However, this
mechanism can reduce the overall throughput with a relatively
low information rate. Another technique is to use increased
transmission power levels (i.e., higher transmission power than
the jammer), which also means expanding the radio coverage
patterns for radio devices leading to interference with other de-
vices [6]. Moreover, competition strategies become resource-
intensive and may not be suitable for resource-constrained net-
work architectures such as FANET.

C. Spectral Retreat

Spectral retreat or frequency hopping is the mechanism of an
on-demand change in frequency [6], [22] when a jammer is de-
tected using the same frequency for disrupting the communica-
tion. However, the mechanism becomes particularly challenging
with ad-hoc networks as reliably coordinating multiple devices
switching to a new network channel faces the usual challenges
of distributed computing such as asynchrony, latency, and scal-
ability issues [6], [8]. A possible alternative is the coordinated
spectral retreat. Upon the detection of the absence of neighbors
on the original channel, a device node probes the next channel to
check whether the neighboring nodes are still nearby. If beacons
are detected, the device node can inform the other device nodes
by switching back channels. However, the overall coordination
process can be challenging when the network scales [6].
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D. Spatial Retreat

Spatial retreat-based jamming defense strategy enables re-
treating the device nodes from the jammer locations [6] to re-
store communication. Spatial retreat can also be evaded by using
directional antennas [25], [26]. With directional antennas, data
can be transmitted and received only in one particular direction
through beamforming where the beamformer (i.e., transmitter)
adjusts the phase and amplitude of the transmitter signal for its
successful communication with the receiver. In particular, sec-
tored antennas, placed at an angle forming a geometric sector
shaped radiation pattern, are proved to help improve the con-
nectivity of wireless networks [25]. Since beamforming is per-
formed by steering an array of antennas to transmit radio signals
in a specific direction, the adaptive beamforming techniques can
be considered as a subset of the directional antenna-based mech-
anisms Therefore, the legitimate communicating nodes may by-
pass the adverse effect of the jammer node by the use of direc-
tional antennas and adaptive beamforming [27]–[29]. In [30],
an adaptive beam nulling technique is proposed for jamming at-
tack mitigation in multi-hop ad-hoc networks as a spatial fil-
tering procedure. The mechanism performs periodic measure-
ments of the radio frequency environment to detect the direction
of arrival (DoA) of jamming signals and then suppresses the sig-
nals. In [31], distributed adaptive beam nulling was proposed to
survive against jamming attack in the 3D UAV mesh networks
by spatially filtering out signals coming from a certain direc-
tion. The potentials of optimal deployment and path planning
have been discussed in [32] to address inter-cell interference
and obstacle-awareness. However, to the best of our knowledge,
they have not been considered as spatial retreat based jamming
defense strategies for UAVs in FANET.

Spatial retreat mechanisms have been proposed in the litera-
ture by various game-theoretic analysis of an aerial jamming at-
tack on a UAV communication network. A pursuit-evasion game
between the jammers and the legitimate device nodes was pro-
posed in [33] for optimal jamming defense strategy computa-
tion. In [9] and [10], an intrusion detection and ejection frame-
work against lethal attacks in a UAV network was proposed us-
ing a Bayesian game-theoretic methodology. One problem with
game-theoretic mechanisms is that the solutions are reactive.

Thus far, some proactive solutions have been proposed using
a reinforcement learning-based methodology to evacuate from
jammed regions [7], [8]. In [7], a hot-booting deep Q-network
based 2-D mobile communication scheme is proposed by apply-
ing deep convolutional neural network and macro-action tech-
niques to accelerate learning in dynamic situations by exploit-
ing experiences in similar scenarios. In [8], UAVs are used to
relay OBU messages to other road-side units (RSUs) with a bet-
ter radio transmission condition if the serving RSU is heavily
jammed.

While proactive solutions are promising for jamming attack
defense strategy selection, most of these mechanisms are cen-
tralized, which makes them a limiting constraint for highly mo-
bile networks such as FANET. In [11], we proposed a federated
learning-based jamming detection mechanism for FANET along
with a Dempter–Shafer theory-based client group prioritization
technique. The goal was to federate the detection of jamming
attacks over several UAV nodes in the FANET with the help of

global weight updates computed from a prioritized client group,
thus enabling a decentralized detection mechanism. In this pa-
per, we extend [11] to enable an adaptive defense strategy during
a jamming attack, on the basis of a collaboration between the
federated learning and the reinforcement learning mechanisms.

III. PROPOSED ADAPTIVE FEDERATED
REINFORCEMENT LEARNING-BASED DEFENSE

STRATEGY

The dynamics of the global model, local model, and the Q-
learning model work in five detailed steps: A. Parameter estima-
tion, B. UAV client execution and upload, C. MEC server model
averaging and execution, D. UAV client download, and E. UAV
agent Q-table update and execution as shown in Fig. 2. In ad-
dition, there are four major components that execute these steps
namely, 1. UAV network environment, 2. sensory data, 3. UAV
client, and 4. the MEC server as shown in Fig. 2. A detailed
discussion of the major components and the steps is provided in
the later sub-sections.

A. Parameter Estimation

In the proposed federated architecture for FANET, each UAV
client conducts parameter estimation (as shown in Fig. 2), from
the UAV network by collecting the sensory data. The parameter
estimation is done by using the sensory data composed of the lo-
cal networking features, such as the received signal strength in-
dicator (RSSI), and packet delivery rate (PDR) in order to gener-
ate a set of feature vectors. Hence, this process generates a set of
feature vectors xi and its label yi (i.e., jammer and non-jammer
classes) forming a single data instance or data point. Given that
Dk is the set of indexes of the data points with client index k
and pk = |Dk|, pairs of (xi, yi), i = 1, · · ·, pk are yielded for
the local pk data points as a fraction of the global p data points
(lines 4–5 in Alg. 1). Thus, pk consists of the dataset of client k
whereas p consists of all the clients’ dataset.

B. UAV Client Execution and Upload

In Fig. 2, the local UAV client k trains a local model by split-
ting the data pk into B batches. For each local epoch, a subset b
of batch B is trained via updating the local weight as follows,

w = w − η∆(w ; b). (1)

Here, ∆(w; b) is the change in the weight w for the mini-batch
b multiplied by the learning rate η. η∆(w; b) is subtracted from
the w to compute the new weight (i.e., w in the left-hand side of
the equation) for the local model. Accordingly, the learning rate
η specifies how much of the change in the weights will be used
to update the new weight. Thus, (1) signifies that the weight w is
updated locally before being uploaded to an MEC server (lines
6–10 in Alg. 1).

C. MEC Server Model Averaging and Execution

A global model at the MEC server of the security archi-
tecture (as shown in Fig. 2) initializes the global weight.
For each m round for client k, wk

m+1 is updated by the
ClientUAV Execution(k,w) (lines 24–30 in Alg. 1). Local
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Fig. 2. Proposed adaptive federated reinforcement learning-based jamming defense strategy.

client updates as wk
m+1 is received at the MEC server and used

to improve the global model leveraging the federated averaging
algorithm by computing a weighted average of the local updates
received from the local UAV clients as follows,

wm+1 =

K∑
k=1

pk

p
wk
m+1 . (2)

In (2), for a total of K clients, wm+1 is the global weight after
m rounds over all the p data points (line 28 in Alg. 1). The loss
function of client k on the local dataset pk is defined as follows,

Lk(w) =
1

pk

∑
i∈pk

fi(w), (3)

where,
fi(w) = f(xi, yi;w). (4)

fi(w) is a function for xi which is the ith feature paired with
the label yi and the global weight w. Based on the above formu-
lation, the global loss function minimization problem is derived
as follows,

min
w∈Rd

L(w) =

K∑
k=1

pk
p
Lk(w). (5)

D. UAV Client Download

The MEC server returns the global weight w (lines 29–30
in Alg. 1). This global weight w can now be downloaded by

the UAV clients to be used in their local training (as shown in
Fig. 2). This enables a globally verified update to aid the local
training by incorporating global knowledge, while the individ-
ual local clients also learn iteratively. This helps in generating
a model that is suited to their local surroundings as well. The
model generated by a local UAV client then senses the environ-
ment as it moves into newly explored spatial environments to
detect the presence of a jammer.

After the jamming detection, the UAV client needs to apply
a jamming defense strategy to restore stable communication.
As discussed before, there are three major defense strategies,
namely, the competition strategy, spectral retreat, and spatial
retreat [6]. Because of power consumption constraint, the ap-
plicability of competition strategy is challenging for the UAVs.
Moreover, an increased power level means a larger radio cover-
age pattern for radio devices that simultaneously increases the
likelihood of collisions and unintentional interference with the
legitimate radio devices [1], [4]. In contrast, the spectral retreat
based strategies are challenging with ad-hoc networks as the re-
liable coordination between multiple devices that switch to new
channels faces asynchrony and scalability issues [6]. Moreover,
the spectral retreat based defense strategies can incur significant
latency due to the network scalability that leads to an unsta-
ble phase consisting of old and new channels [4], [6]. The third
major strategy of spatial retreat is suitable for mobile networks
and is particularly practical for highly mobile UAVs. Neverthe-



MOWLA et al.: AFRL: ADAPTIVE FEDERATED REINFORCEMENT LEARNING ... 249

less, the spectral retreat strategy still faces partition issues [6]
for nodes that always need to be connected. As the UAVs in
FANET maintain minimal communication and are aided by the
on-device jamming detection local learning model, the partition
issue does not apply to the FANET scenario.

Hence, we propose a spatial retreat based jamming defense
strategy that leverages the federated learning-based on-device
jamming detection to retreat from the jammer locations. More-
over, the UAVs applying the jamming defense strategy need to
take certain spatial retreat actions in the newly explored envi-
ronments for which precise environmental data are initially un-
available. Hence, any model-based jamming defense strategy
will not be suitable.

In this regard, we propose a jamming defense strategy based
on a model-free reinforcement learning model [34], [37] partic-
ularly designed for the UAVs in FANET. As the transition prob-
abilities and the rewards are initially unknown by the UAVs in
FANET, we applied a Q-learning algorithm that learnt the newly
explored environments and chooses spatial retreat-based routes
adaptively. Meanwhile, the federated learning-based jamming
detection approach enables adopting an epsilon-greedy policy
of the reinforcement learning model for selecting the jamming
defense strategies. Thus, the federated learning-based jamming
detection model and the reinforcement learning-based jamming
defense strategy maintain a mutualistic relation. In other words,
the reinforcement learning-based model acts as a model-free de-
fense strategy of the UAVs which adapts to the newly explored
environments (lines 15–17 in Alg. 1). Moreover, for evolving
the defense strategies with newly available information, the fed-
erated learning-based model acts as an as evolutionary detection
model (line 18–22 in Alg. 1).

E. UAV Agent Q-table Update and Execution

Q-learning is an off-policy, model-free reinforcement learn-
ing algorithm that seeks the best action to take given the current
state [36]–[38]. It enables the adaptation of the Q-value itera-
tion algorithm in a situation where the transition probabilities
and the rewards are initially unknown [35]. The main benefit
of applying a Q-learning function (as shown in Fig. 2) is that it
allows learning from actions that are outside the current policy
(e.g., allowing random actions). Moreover, the precise estima-
tion or the use of an exact environmental model is not needed,
thus making it model-free [34], [37]. Thus, Q-learning learns a
policy that maximizes the total reward. In the case of our adap-
tive federated reinforcement learning model as shown in Fig. 2,
we used the Q-learning model to learn from the newly explored
environment, based on the trial-and-error experience enhanced
by the federated learning-based jamming detection accuracy for
setting up the optimal policy. In this regard, a UAV client re-
ceived a negative reward if it moved closer to a jammer location
detected by the federated learning-based on-device jamming de-
tection model. These rewards were then incorporated in the Q-
table used by the UAV client where the actions were the physical
relocation from one location (i.e., current state) to another loca-
tion (i.e., next state) in the aerial space. Then, an epsilon-greedy
policy was used to balance between the exploration and the ex-
ploitation opportunities of the reinforcement learning model on
the basis of the achieved federated learning accuracy.

At each UAV agent, a Q-table was initialized to 0 values for
each state-action pair Q(St, At) in the local UAV agent, where
St = (st, st+1, · · ·) was a sequence of states from t to ∞ and
At = (at, at+1, · · ·) was a sequence of actions from t to ∞.
Here, a state-action pair corresponded to one state at a specific
location of the UAV in the aerial environment and a possible ac-
tion to physically move from the current state (i.e., current loca-
tion) to the next state (i.e., next location) until the UAV reaches
the goal state (i.e., destination) from the source. Hence, the set
of states St represented the position of the UAV nodes in the
communication cells. Consequently, the set of actions At rep-
resented the movement from one communication cell to another
cell (line 12 in Alg. 1).

For the UAV agent’s decision making, we saved the average
accuracy of the model by using the local weight w (line 13 in
Alg. 1). The updated Q-table enabled taking a defense strategy
by selecting a state-action pair that maximized theQ-value. The
Bellman equation to update the Q-value could be derived as fol-
lows [35],

Q(St, At)←Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)

−Q(St, At)]
(6)

In (6), the learning rate, α is initialized to represent how quickly
or slowly the model will learn. A discount factor, γ is set to
indicate the immediate or delayed response. More specifically,
a discount factor γ close to 0 indicates a delayed reward and
a value close to 1 indicates an immediate reward. Meanwhile,
Rt+1 ∈ {1,−1} indicates the reward at time t + 1 calculated
from the federated learning-based detection model with local
weight w, for a change in the discrete state-action pairs (lines
14–15 in Alg. 1). In this case, a negative reward (i.e., −1) indi-
cates that a jammer is detected whereas a positive reward (i.e., 1)
indicates a non-jamming environment is detected. Moreover, (6)
returns the Q-value for an action a taken in the current state St

that eventually maximizes theQ-value, Q(St+1, a) of the future
state at time t + 1. Therefore, the difference between this max-
imum Q-value, Q(St+1, a) and the current Q-value, Q(St, At)
at t+ 1, was taken to update Q(St, At) (line 16 in Alg. 1). The
Q-value was updated for n number of iterations as follows,

Qn(St, At)→ Q∗(St, At), n→∞, (7)

where, Q∗(St, At) is the converged Q-value [36] after n num-
ber of iterations at time t (line 17 in Alg. 1). To choose an adap-
tive federated reinforcement learning model, the local detector’s
jamming detection accuracy was compared to a certain threshold
value (δ) (line 18 in Alg. 1). If the accuracy of the local model
was higher than δ, an epsilon-greedy policy value ε (initialized
to 0.5), was reduced by a random measure (rand(0, 1)) derived
by a random function generating a value between 0 and 1. Then,
the derived model was used to select a feasible spatial retreat
defense route to the destination. Otherwise, the ε value was in-
creased by the random measure, and the derived model was used
to select a feasible spatial retreat defense route to the destination
(lines 19–22 in Alg. 1). The epsilon value (ε), ranged between
0 and 1, was used to balance between the exploration and ex-
ploitation opportunities of the reinforcement learning model. A
value of ε closer to 1 indicated that more exploration would be
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Algorithm 1: Adaptive federated reinforcement learning-
based jamming defense trategy in FANET

1 ClientUAVExecution(k,w):
2 Initialize ε
3 Initialize detection threshold δ
4 Pre-process pk
5 Extract pk feature set (xi, yi)
6 b← split data pk into batches of size B
7 for each local epoch e from 1 to E do
8 for b ∈ β do
9 w ← w − η∆(w ; b)

10 return w to server
11 UAVAgentExecution:
12 Q(St, At)← 0
13 Accuracy = Detection with w
14 for each change in state and action pair do
15 Rt+1 ← {1,−1}
16 Q(St, At)←

Q(St, At)+α[Rt+1+γmaxaQ(St+1, a)−Q(St, At)]
17 Q∗(St, At)← Qn(St, At), n→∞
18 if Accuracy > δ then
19 ε = 0.5− rand(0, 1)
20 Select state-action pair based on model with ε
21 ε = 0.5 + rand(0, 1)
22 Select state-action pair based on model with ε
23 MECExecution:
24 Initialize w0

25 for each round m=1,2,· · · do
26 for each client k do
27 wk

m+1 ← ClientUAVExecution(k,w)
28 wm+1 ←

∑K
k=1

pk

p wk
m+1

29 w ← wm+1

30 return w

allowed and the random next actions would be taken. In con-
trast, a value of ε closer to 0 indicated that more exploitation
would be allowed and the next actions would be taken on the
basis of the best Q-value. For the proposed federated reinforce-
ment learning-based jamming defense, if the federated average
accuracy was lower than a threshold δ, then we increased the ep-
silon value to allow more random next actions (i.e., more explo-
ration). However, if the federated average accuracy was higher
than that of the threshold δ, then we decreased the epsilon value
as described above to bias more on the Q-table updates and take
the next decision on the basis of the best Q-value (i.e., more
exploitation). Thus, an adaptive exploration-exploitation based
reinforcement learning model was selected.

The defense strategy for FANET relies on two major com-
ponents, namely the MEC server and the UAV client. The UAV
agent is the defense strategy module of the UAV client to execute
certain spatial retreat actions. Therefore, the client is consid-
ered as the agent when it performs the reinforcement learning-
based spatial retreat. Fig. 3 shows the detailed workflow of the
proposed adaptive federated reinforcement learning mechanism.
Essentially, a global model runs in the MEC server which is

Local 
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Federated 

averaging

UAV client

MEC

Q-learning 

model

UAV agent

Global model

Local model

Knowledge 
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Spatial retreat

( , )

,

Epsilon policy

Fig. 3. Proposed workflow of the adaptive federated reinforcement learning.

updated by the federated averaging algorithm. The consequent
global weight updates, wm+1 after each round m, are stored
in a knowledge base of the MEC server for record-keeping (as
shown in Fig. 2). The global model sends the updated global
weight wm+1 after m rounds, as the current global weight w to
the local model, when the UAV client is within the communi-
cation range. A local model runs in the UAV client to support
local jamming attack detection by an on-device local detector.
The local model also periodically sends an updated local weight
of ∇wk to the global model. The local detection derived from
the local model is used to set the rewards, Rt+1 at time t + 1
for each change in state st+1 with action at+1. The generated
reward matrix R is then used to update the Q-table of the UAV
agent. An updated Q-table trained by the Q-learning is then
sent to the epsilon value-based policy maker. The epsilon value-
based policy maker checks the detection accuracy received from
the local detector based on which the epsilon value is adjusted as
discussed before. Hence, a reinforcement learning model with
the adjusted epsilon value is selected to perform spatial retreat
by adaptive exploration and exploitation. Thus, the spatial re-
treat approach enables choosing alternative paths to the desti-
nation by spatially retreating from the jammed spaces. In the
next section, we extensively evaluate the proposed mechanism
and verify the benefits of the proposed federated reinforcement
learning-based defense strategy.

IV. PERFORMANCE EVALUATION

The experiment was divided into two parts. The first part
was the performance evaluation of the federated learning-based
jamming detection model. The second part was the performance
evaluation of the spatial retreat-based defense strategy leverag-
ing Q-learning and the supporting federated learning-based jam-
ming detection mechanism.
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A. Experimental Settings

A 64-bit, Intel i7-47900 CPU @ 3.60-GHz processor and
8.00-GB RAM simulation environment was used to train the
detection model. We simulated a FANET topology in the
ns-3 [47] with three-dimensional (3-D) mobility model in the
ad-hoc setting, communicating over the WiFi physical standard
802.11n [42]–[44]. We have considered all the three main levels
of jamming, i.e., constant jammer, random jammer and reactive
jammer [6], [25], [48] where one-third of the total jamming data
instances belong to each of these three jamming levels, respec-
tively. Besides, we have also collected and trained our model
on data instances with different levels of jammer power ranging
between−90.00 dBm to−100.97 dBm in our ns-3 based exper-
iment. A jammer node was introduced with constant, random,
and reactive radio frequency (RF) jamming signals that inter-
fered in the communication between three UAV nodes and one
server node over the 3-D UAV ad-hoc Gauss-Markov mobility
model [45], [46]. We extracted 3000 instances with six features
each consisting of signal to noise ratio (SNR), noise, received
signal strength indicator (RSSI), throughput, data rate, and mod-
ulation and coding scheme (MCS) value. Apart from that, for
further verification of our proposal, we validated the proposed
mechanism on the standard public dataset of the CRAWDAD
jamming attack in a wireless vehicular ad-hoc network [39].
The dataset provides the RSSI and PDR features of jammed
and non-jammed wireless vehicular ad-hoc networks. We pre-
processed the dataset to extract 3000 instances with 100 fea-
tures each. The features consisted of 50 RSSI readings and 50
PDR readings taken over a period of time. The communica-
tion technology that we considered for the dataset is wireless
and therefore, is also applicable for FANET. Additionally, the
features used were RSSI and PDR, as in the case of FANET
for interpreting jamming scenarios. The dataset contains traces
of 802.11p packets, collected in a rural area located on the pe-
riphery of Aachen (Germany) in 2012, with the presence of a
radio frequency jamming signal with constant, random, and re-
active jamming patterns. We have used one-third of the total
jamming instances from constant, random, and reactive jam-
ming instances respectively. The jamming power of the dataset
ranged from−10 dBm to−100 dBm. However, it is noteworthy
to mention that the dataset was pre-processed to create a patho-
logically unbalanced dataset [12] by generating an unbalanced
proportion of the classes to particularly address the unbalanced
sensory environment of the UAVs in FANET.

We formulated a binary class problem [16] for both the
datasets, where the two classes were labeled as jammer and
non-jammer classes with 50% training and 50% testing dataset
respectively. We pre-processed the dataset to have one set of
20% jammer and 80% non-jammer instances and another set
of 80% jammer and 20% non-jammer instances. The accuracy
from these two sets was then averaged to yield the average ac-
curacy of the pathologically transformed unbalanced dataset.

Moreover, a local Q-learning model is initialized with a Q-
table with 0 values. For the Q-learning model, a learning rate (α)
and discount factor (γ) of 0.9 and 0.8 were initialized respec-
tively. For the evaluation of the federated reinforcement learn-
ing model, the epsilon value was initially set to 0 to indicate a
full exploitation of the Q-table values for the defense strategy

selection. For the evaluation of the adaptive federated reinforce-
ment learning model, the threshold (δ) of the federated learning
accuracy was set to 0.5 tested with varying epsilon value accord-
ingly.

B. Simulation Result of Federated Learning Model for Jamming
Attack Detection

For the federated learning-based jamming attack detection,
a three-layered neural network model was generated where the
first layer was the flattened layer that converted the input fea-
tures to a vector. Next, there were two fully connected dense lay-
ers with the rectified linear unit (ReLU) and softmax functions
respectively. Adam optimizer was used with a learning rate of
0.001. The model and the dataset were distributed and trained
over six local client instances and one global instance for the
federated learning of the jamming attack detection.

The global model was updated by the federated averaging
technique to derive a weighted average of the received lo-
cal weights after several rounds of communication. Hence, we
conducted a comparison analysis between the federated learn-
ing model and the base-line traditional distributed learning
model [13] over 10 rounds of communication. The main dif-
ference between the base-line distributed learning model and
the federated learning model exists in the assumptions made re-
garding the local dataset’s properties [12], [13]. In particular,
the goal of the distributed learning model is to parallelize com-
puting power while the goal of the federated learning model ini-
tially aims at training on heterogeneous datasets. Both the dis-
tributed learning model and the federated learning model train
a model on multiple servers. Nevertheless, a general assump-
tion in the distributed learning model is that the local datasets
are identically distributed, and the classes are roughly the same
size [12], [13]. In contrast, in the federated learning model the
datasets can be heterogeneous, and the classes are allowed to be
unbalanced. Therefore, in the case of distributed learning model,
a central server usually averages the updates of the average gra-
dients collected from the local clients which could then alter-
natively download an updated model from the central server.
However, in the federated learning model, weight updates are
sent to the MEC server other than more generalized average gra-
dients to allow better local learning from a much lower level
of the neural networks [13]. Fig. 4 shows the comparison be-
tween the distributed learning model and the proposed feder-
ated learning model for the jamming detection over 10 rounds
of communication after 25 epochs each averaged over 10 sam-
ples. Here, Fig. 4(a) shows the performance of the ns-3 [47]-
simulated FANET dataset and Fig. 4(b) shows the performance
of the CRAWDAD ad-hoc network dataset.

In the ns-3-simulated FANET dataset, as shown in Fig. 4a, the
distributed learning model and the federated learning model ex-
hibited an average accuracy of 30.40% and 34.35% respectively
after round 1. However, after round 10, the distributed learning
model’s average accuracy increased to 58.91%, whereas the fed-
erated learning model’s average accuracy increased to 85.98%.
In the case of the CRAWDAD ad-hoc network dataset, as shown
in Fig. 4(b), the distributed learning model and the federated
learning model exhibited an average accuracy of 39.38% and
46.28% respectively after round 1. However, after round 10,
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Fig. 4. Comparison between the distributed model and the proposed feder-
ated model for jamming detection in terms of average accuracy: (a) Ns–3
simulated FANET unbalanced dataset and (b) CRAWDAD ad-hoc network
unbalanced dataset.

the distributed learning model (45.63%) was significantly out-
performed by the federated learning model (79.16%). As can
be seen, over the several rounds of communication, the perfor-
mance of the distributed learning model remained lower than
that of the proposed federated learning model. This was because
the distributed model applied a generalized global average gra-
dient that could not adjust to the unbalanced data provided in the
local client. In contrast, the proposed federated learning model
enabled the recognition of each instance on the basis of the fine-
grained individual weight updates other than a more general-
ized average gradient. This ensured that the underlying weights
performed better as they could learn from a considerably lower
level of the neural network model. As a result, the overall perfor-
mance gain became significant with an increase in the number
of communication rounds. Moreover, in the publicly available
dataset, as shown in Fig. 4(b), the performance of the distributed
learning model remained quite unstable as it encountered real-
world features in an unbalanced data environment. Fig. 5 shows
the comparison of the average running time of the local dis-
tributed learning model and the federated learning model for the
local jamming attack detection over the 10 rounds of commu-
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Fig. 5. Comparison of the average local running time between the distributed
learning model and federated learning model.

nication. The average running time for the distributed learning
model and the federated learning model are 8.02 s and 8.03 s
over the 10 rounds of communication respectively. While the
jamming attack detection performance of the proposed federated
learning model (with average accuracy of 82.01%) is much bet-
ter than that of the distributed learning model (with average ac-
curacy of 49.11%), the average running time for both the learn-
ing techniques are almost similar. This clearly shows that the
federated learning-based model can achieve much better perfor-
mance while incurring no additional running time. Note that,
the federated learning model is specially designed for commu-
nication networks that have a diverse range of communication
constraints. In other words, one of the main advantages of the
federated learning model for FANET is that minimal wireless
communication can be maintained between the MEC server and
the other communicating nodes. Since continuous connectivity
is not required for the federated learning, there are also no syn-
chronization issues that reduce the overall complexity and con-
trol signaling between the MEC server and the UAV nodes in
FANET. Moreover, since the learning is federated between the
UAV nodes and the MEC server, the system can be considered
not to be fully centralized. Besides, it is to be noted that the
MEC server only receives the weight updates from the periph-
eral nodes other than raw data which reduces the burden on the
wireless communication channel bandwidth and complex mod-
ulation by another factor.

C. Simulation Result of Spatial Retreat-based Defense Strategy

To evaluate the spatial retreat-based defense strategy, we con-
sidered a topology of 25 discrete communication cells (as de-
picted in Fig. 6) where a UAV traveled from a starting point (i.e.,
source) to an endpoint goal (i.e., destination) laid down in a 3-D
space. In Fig. 6, the N tagged cells are the cells where there is
a non-jammer present and the J tagged cells are the cells where
there is a jammer present. The x-axis and the y-axis represent
the spatial coordinates of the communication cells. The number
of jammers is increased from a single jammer to ten jammers
located around the 25 communication cells. The starting point
is initialized at communication cell 0, and the goal is initialized
at communication cell 24. For the experiment, we considered
the following two use-cases:
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Fig. 6. Experimental scenario of network topology consisting of 25 communi-
cation cells: (a) Case 1 topology and (b) Case 2 topology.

• Case 1: Shorter distance between the source and destina-
tion as shown in Fig. 6(a). In Case 1, the UAV requires 5
hop counts from the source to the destination. Three jam-
mers are placed in the UAVs path at cell 6, cell 12, and
cell 18.

• Case 2: Longer distance between the source and destina-
tion as shown in Fig. 6(b). In Case 2, the UAV requires 9
hop counts from the source to the destination. Three jam-
mers are placed in the UAVs path at cell 3, cell 4, and cell 9.

The adaptivity of the proposed method in reacting to jam-
ming attacks can be visualized by Figs. 7 and 8. Figs. 7 and
8 show the evaluation of the Q-learning cumulative score (i.e.,
reward) of the UAV agent after a certain number of iterations
for Case 1 and Case 2, respectively. By definition, a reward is
a numeric feed-back that evaluates the performance of certain
action [17], [34]. As mentioned before, in our scenario, the
UAV agent receives a negative reward (i.e., −1) if it detects
a jammer and a positive reward (+1) if a non-jamming envi-
ronment is detected. Fig. 7 shows the performance for Case 1
over 3000 iterations for the proposed federated reinforcement
learning-based defense strategy (federated RL) with an increas-
ing number of en-route jammers from the minimum of one jam-
mer to the maximum of ten jammer locations. The performance
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Fig. 7. Comparison of random policy and federated RL with increasing jammer
locations in Case 1.
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is compared with that of the random policy. The random pol-
icy represents the Q-learning strategy to find the best route from
the source to the destination [40]. The proposed adaptive feder-
ated reinforcement learning is built on top of the random policy
algorithm by supporting it with the knowledge of the jammer
detection and the epsilon greedy policy. Figs. 7 and 8 show a
comparison between the random policy and the proposed fed-
erated reinforcement learning mechanism without the epsilon-
greedy policy (i.e., ε set to 0 ). This means that full exploitation
of the federated RL mechanism is performed and an evaluation
of the impact of the federated learning-based jammer detection
knowledge for a UAV agent under attack with increasing num-
ber of jammers can be clearly drawn. As shown in Fig. 7, note
that the convergence is achieved considerably faster when more
knowledge about the jammer locations is provided to the rein-
forcement learning model by the federated detection in Feder-
ated RL. For example, the Q-learning score for the random pol-
icy converged after 2000 iterations. In contrast, the Q-learning
score converged after 1000 iterations for the proposed federated
RL models that were trained with jammer detection knowledge
of 4 to 10 jammer locations. The federated RL model with 1
jammer location detected, 2 jammer locations detected and 3
jammer locations detected converge at 2000 iterations, 1500 it-
erations, and 1500 iterations, respectively.

Fig. 8 shows the Q-learning cumulative score comparison
over 3000 iterations for Case 2. Similar to that in Case 1, the
proposed federated RL model with an increased number of jam-
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mer locations detected, converged considerably faster than that
of the random policy which converged after 1800 iterations. The
Q-learning score converged after 1500 iterations for the 3 jam-
mer locations detected to 10 jammer locations detected cases
under the proposed federated RL model. Meanwhile, the feder-
ated RL model with 1 jammer location detected, and 2 jammer
locations detected converged at 1700 iterations and 1650 iter-
ations, respectively. The phenomena occurred as the proposed
federated RL was provided with additional information about
the surrounding environment by the federated jamming detec-
tion mechanism that enabled the Federated RL to narrow its de-
cision paths rapidly. Moreover, in the case of a shorter path as
in Case 1, the random policy took a longer time to converge, as
it experienced more path options than the longer path during its
training, as in Case 2.

As shown in Figs. 7 8, as we increase the knowledge of the
jammer detection to the federated reinforcement learning model,
the average cumulative reward decreases as it does not explore
all the different paths to the destination. Therefore, we apply
an adaptive epsilon-greedy policy to adjust between the explo-
ration and exploitation opportunity of the agent. In order to per-
form the adaptive federated reinforcement learning, an adaptive
exploration-exploitation based reinforcement learning model is
developed where the epsilon value was adjusted according to the
average accuracy of the federated averaging model.

Fig. 9 shows the performance of the three average accuracy
states, low federated accuracy, medium federated accuracy and
high federated accuracy with the corresponding epsilon values
of 0.9, 0.5, and 0.1 for both Case 1 and Case 2, respectively
given all the ten jammer locations are present. Hence, if the
model had low federated accuracy, we allowed the model to take
more random decisions to reach at convergence. In contrast, if
the model had high federated accuracy, we allowed the model to
take fewer random decisions and rely more on the Q-table val-
ues to take the next action. As shown in both Case 1 and Case 2,
an epsilon value of 0.1 converged faster than that for an epsilon
value of 0.5 and 0.9. In Case 1, the model with an epsilon value
of 0.1 converged after 1400 iterations, whereas the model with
an epsilon value of 0.5 converged after 1800 iterations, and the
model with an epsilon value of 0.9 almost never converged as it
continued to take more random actions. Similarly, in Case 2, the
model with an epsilon value of 0.1 converged after 1500 itera-
tions, whereas the model with an epsilon value of 0.5 converged
after 2000 iterations and the model with an epsilon value of 0.9
hardly converged by relying mostly on random actions than the
best Q-value-based actions. However, note that the model with
an epsilon value of 0.5 reached a higher reward value in both
Case 1 (5400) and Case 2 (4600). Therefore, a good trade-off
is to take an epsilon value close to 0.5, as higher rewards could
be achieved with fast convergence. Therefore, for the proposed
adaptive federated reinforcement learning-based jamming de-
fense strategy, if the federated accuracy of the jamming detec-
tion was lower than a certain threshold value δ (i.e., less than
0.5), we selected an epsilon value that was slightly higher than
0.5. Conversely, if the federated accuracy of the jamming de-
tection was higher than the threshold value δ (i.e., more than
0.5), we selected an epsilon value that was slightly lower than
0.5 to enable a higher reward score with fast convergence while

exploiting the Q-values.
The threshold of the detection accuracy was selected arbitrar-

ily to be 0.5 as a rule of thumb. The intuition behind select-
ing such a threshold is backed-up by a several reasons. First,
as shown in Fig. 9, there are various disadvantages to using a
high or a low federated accuracy as a threshold since it has se-
vere consequences on the epsilon value. If the detection accu-
racy threshold is set to lower federated accuracy, the epsilon
value would need to be increased which will reduce the over-
all exploitation and heavy exploration will not allow the average
reward to converge thoroughly. In contrast, if the detection accu-
racy threshold is set to high federated accuracy, the epsilon value
will tend to be very low. As a result, the proposed approach will
converge early without enough exploration and that will lead to
lower average reward value. Therefore, we select a mid-range
federated accuracy value (i.e., 0.5) to ensure sufficient explo-
ration and exploitation opportunities. As shown by the medium
federated accuracy (i.e., red dotted line) in the figure, a medium
federated accuracy with an epsilon value of 0.5 converges well
and also achieves a high average reward score. Second, the goal
of the proposed mechanism is to work well even when the de-
tection accuracy is low. Therefore, given the jamming detection
doesn’t achieve high accuracy, as it is highly likely in a real-
world scenario with an unbalanced data environment, we do not
want the model to continuously perform random exploration due
to higher threshold for the detection accuracy. In fact, high ran-
dom exploration is unsuitable for the proposed scenario since
it will not be an efficient approach for learning the jamming
Q-table as the algorithmic convergence will be hard to attain.
Besides, the average reward will be low due to the lower ex-
ploitation of the Q-table caused by heavy exploration. In such a
scenario, a threshold accuracy value of around 0.5 allows to bal-
ance between the exploration and exploitation resulting in stable
convergence and high average reward value. This is also con-
firmed from our experiment shown in Fig. 9 to be more suitable
for our scenario.

Next, we perform the test phase of the trained Adaptive fed-
erated RL model by evaluating the spatial retreat paths selected
with an increasing number of jammer locations. We compared
the performance of our trained adaptive federated RL model
with the best-selected route by the random policy, a centralized
Dijkstra’s algorithm [41] without any knowledge of the jammer
locations and a centralized Dijkstra’s algorithm with a central-
ized global knowledge of all the jammer locations as our base-
line methods. The Dijkstra’s algorithm (or Dijkstra’s shortest
path first algorithm) finds the shortest paths between the nodes
in a graph based on the edge costs. For the Dijkstra’s algorithm
without knowledge of jammer locations, we set the edge weights
to 1 to indicate that all the edges are considered equal to one an-
other. For the Dijkstra’s algorithm with the global knowledge of
the jammer locations, we set the edge weights between a non-
jammer location and a jammer location to 100 while the other
edge weights remain 1. The epsilon value of the adaptive fed-
erated RL is set to 0.4 considering that the federated detection
of the jamming attack is acceptable. Fig. 10 shows the differ-
ent routes taken by the different models from the source to the
destination in a 3-D space in Case 1. The random policy and Di-
jkstra’s algorithm (without the knowledge of jammer locations)
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Fig. 9. Comparison of cumulative reward for different epsilon value and level
of federated detection accuracy: (a) Cumulative reward in Case 1 and (b)
cumulative reward in Case 2.

chose the best route from the source to the destination through
the communication cells C6, C12, and C18. The jammer loca-
tions were placed in 10 communication cells incrementally as
shown by the numbers in red boxes. When jammer locations
were placed at C6, C12, and C18, the proposed adaptive fed-
erated RL and the weighted Dijkstra’s algorithm chose the fol-
lowing route: Source to C1, C7, C13, and C19 to the destination.
When jammer locations were places at C11, C16, C17, and C23,
it did not affect the path of the adaptive federated RL model and
the weighted Dijkstra’s algorithm as the jammer did not fall in
its selected path. When jammer locations were placed at C7 and
C13, adaptive federated RL and the weighted Dijkstra’s algo-
rithm alternatively took the following route: Source to C1, C2,
C8, C14, and C19 to the destination. Upon detecting the jammer
location at C8, the adaptive federated RL and the weighted Di-
jkstra’s algorithm chose the following route: Source to C1, C2,
C3, C9, C14, and C19 to the destination. Fig. 11 shows the
different routes taken by the three models from the source to the
destination in a three-dimensional space in Case 2. The random
policy selected the best route from the source to the destination
through the following communication cells: Source to C5, C10,
C15, C20, C21, C22, and C23 to the destination. The Dijkstra’s

Adaptive federated RL (No jammer detected)

Dijkstra’s algorithm (without knowledge)

Random policy

Jammer

Adaptive federated RL (Jammer detected)

Weighted Dijkstra’s algorithm (with knowledge)

Fig. 10. Routes taken by the random policy, Dijkstra’s algorithm (without
knowledge), adaptive federated RL (with no jammer detected), adaptive
federated RL (with jammer detected), and weighted Dijkstra’s algorithm
(wiht knowledge) in Case 1.

Adaptive federated RL (No jammer detected)

Dijkstra’s algorithm (without knowledge)

Random policy

Jammer

Adaptive federated RL (Jammer detected)

Weighted Dijkstra’s algorithm (with knowledge)

Fig. 11. Routes taken by the random policy, Dijkstra’s algorithm (without
knowledge), adaptive federated RL (with no jammer detected), adaptive
federated RL (with jammer detected), and weighted Dijkstra’s algorithm
(with knowledge) in Case 2.

algorithm (without knowledge of the jammer locations) chose
the best route from the source to the destination through the fol-
lowing communication cells: Source to C1, C2, C3, C4, C9,
C14, and C19 to the destination. Technically, both the routes
were equivalent in terms of distance and resulted because of
the random selection by the random policy and the Dijkstra’s
algorithm (without knowledge of the jammer locations). When
no jammer locations were detected, the adaptive federated RL
and the weighted Dijkstra’s algorithm also chose one of these
two paths, i.e., source to C1, C2, C3, C4, C9, C14, and C19
to the destination. When jammer locations were detected at C3,
C4, and C9, the adaptive federated RL and the weighted Dijk-
stra’s algorithm chose the following route: Source to C1, C2,
C7, C8, C13, C14, and C19 to the destination. When jammer
locations were detected at C7 and C8, the adaptive federated RL
model and the weighted Dijkstra’s algorithm chose the follow-
ing route: Source to C1, C6, C11, C12, C17, C18, and C19 to the
destination. When jammer locations were detected at C12, and
C13, the adaptive federated RL model and the weighted Dijk-
stra’s algorithm alternatively chose the following route: Source
to C1, C6, C11, C16, C17, C18, and C19 to the destination to
avoid the jammer locations. It is noteworthy to mention that, in
a jamming scenario the adaptive federated RL can operate even
if the centralized global system cannot be reached. However, the
weighted Dijkstra’s algorithm would require to communication
with the centralized system to get the route decision. In addition,
for the weighted Dijkstra’s algorithm a complete global knowl-
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edge of the jammer locations in the network is required in the
centralized system to compute the best route prior to the flight
of the UAV. Moreover, a centralized jamming detection may not
be accurate from the unbalanced data in the UAV spatial envi-
ronment. From the above description, it can be seen that the
adaptive federated RL performs equally as well to the baseline
weighted Dijkstra’s algorithm, which is supported by the global
knowledge, while on-device decisions can be performed by the
UAVs in the unbalanced data environment.

Table 1 summarizes the overall performance of the proposed
adaptive federated RL model compared with the random pol-
icy, Dijkstra’s algorithm (without knowledge) and the weighted
Dijkstra’s algorithm (with knowledge of the jammer locations)
for a node under attack with up to a total ten en-route jammer
locations. The success rate was calculated by the total number
of hop counts without a jammer location present over the total
number of hop counts averaged over 11. In other words, there
were 10 episodes where a new jammer is introduced up to a total
of 10 jammers and 1 episode with no jammer present. The aver-
age hop count is the total number of hops taken from the source
to the destination averaged over the 11 episodes. The average
number of iterations to reach convergence indicates the average
number of times the algorithm’s parameters are updated and the
average cumulative reward is the total Q-learning score received
by the model averaged over all the episodes.

In Case 1, as the number of jammer locations are increased
from 0 to 1, 2, and 3, the number of jammer hops covered by
random policy and Dijkstra’s algorithm (without knowledge)
was also increased by 1, 2, and 3 hop counts respectively, as
the jammers fell in their selected route. However, the number of
jammer locations covered by the adaptive federated RL model
and weighted Dijkstra’s algorithm remained 0, as they chose a
route with no jammer locations present. When the total number
of jammer locations was increased from 4 to 10, the total num-
ber of jammer locations covered by the random policy and the
Dijkstra’s algorithm (without knowledge) remained constant at
three, as the hop counts for the random policy and Dijkstra’s
algorithm (without knowledge) were the same five communica-
tion cells. However, the total number of hop counts from the
source to the destination for the adaptive federated RL model
and the weighted Dijkstra’s algorithm increased from 5 to 7 and
7 to 8 as the total number of jammer locations was increased
from 7 to 8 and 9 to 10, respectively.

The proposed adaptive federated RL and the weighted Dijk-
stra’s algorithm was aided with the detection of the jammer loca-
tions in its route (i.e., the optimal route to the destination) There-
fore, the two algorithms select an alternative route other than the
same optimal route selected by the random policy to reach its
destination. However, it is noteworthy to mention that the alter-
nate route for the UAVs is the feasible and near-optimal route
to reach its destination. Thus, the success rate of the adaptive
federated RL and the weighted Dijkstra’s algorithm increased to
100% and 100%, respectively. In contrast, the success rate of the
random policy and the Dijkstra’s algorithm reduced to 50.91%
and 81.82%. However, the average number of hop counts for the
random policy and the Dijkstra’s algorithm (without knowledge)
in Case 1 is 5 and 5, respectively. Nevertheless, because of the
jammer locations, the proposed adaptive federated RL and the

Table 1. Performance comparison of the adaptive federated RL with random
policy, Dijkstra’s algorithm (without knowledge), and weighted Dijkstra’s

algorithm (with knowledge).
Algorithm Case 1 Case 2

Success rate (%)
Random policy 50.909 81.818

Dijkstra’s algorithm (w/o knowledge) 50.909 72.727
Weighted Dijkstra’s algorithm (with knowledge) 100 100

Adaptive federated RL 100 100
Average number of hop count

Random policy 5 9
Dijkstra’s algorithm (w/o knowledge) 5 9

Weighted Dijkstra’s algorithm (with knowledge) 6.273 9
Adaptive federated RL 6.273 9

Average number of iterations to reach convergence
Random policy 2000 1800

Adaptive federated RL 1800 1700
Average cumulative reward

Random policy 5820 4710
Adaptive federated RL 5626 4657

weighted Dijkstra’s algorithm takes an alternate longer path for
which their average hop count were 6.273 and 6.273, respec-
tively. However, in terms of the average number of iterations
required for convergence, the adaptive federated RL (1800) is
lower than the random policy (2000). Moreover, the average
cumulative reward of the adaptive federated RL (5626) is also
close to the random policy (5820) as it adjusts between the ex-
ploitation and exploration opportunity of the model. Therefore,
in the Case 1 scenario, it can be observed that there is a 3.33%
decrease in the average cumulative reward while a convergence
is reached 200 iterations earlier by our proposed adaptive feder-
ated RL model in comparison to the random policy.

In Case 2, as the number of jammer locations are increased
from 0 to 3, the number of jammer hops for the Dijkstra’s al-
gorithm (without knowledge) increased from 0 to 3 after which
it remained constant at 3, as jammer locations were not in its
selected route anymore. However, after the total number of jam-
mer locations was increased from 3 to 6, the number of jammer
hops covered by the random policy also increased from 0 to 3
as the jammer locations fell into its selected path. After six jam-
mer locations, the number of jammer hops for random policy
and Dijkstra’s algorithm (without knowledge) steadily remained
at 3, as the jammer locations were placed in the other cells. In
contrast, the number of jammer locations covered by the adap-
tive federated RL model and the weighted Dijkstra’s algorithm
remained 0 for all the 10 jammer locations detected. Thus, the
success rate of the random policy and the Dijkstra’s algorithm
reduced to 81.82% and 72.73%. In contrast, the success rate
of the adaptive federated RL and the weighted Dijkstra’s algo-
rithm increased to 100% and 100% respectively. However, the
average number of hop counts for the random policy, Dijkstra’s
algorithm (without knowledge), and adaptive federated RL as
the alternate routes taken by the adaptive federated RL also con-
sisted of 9 hop counts. In fact, the weighted Dijkstra’s algorithm
also consisted of 9 hop counts. As we increase the distance from
the source to the destination in Case 2, the total number of hop
counts for the proposed mechanism and the random policy be-
come the same (i.e., 9 hop counts) for the increasing number
of jammer locations. This is because there are more available
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alternate routes and all of these alternate routes have the same
number of hop counts due to the larger distance from the source
to the destination. However, in terms of the average number of
iterations required for convergence, the adaptive federated RL
(1700) is lower than the random policy (1800). Moreover, the
averageMoreover, the average cumulative reward of the adaptive
federated RL (4657) is significantly close to the random policy
(4710) as it exploits the adaptive epsilon-greedy policy. As a re-
sult, in Case 2, there is a 1.12% decrease in the average cumula-
tive reward while a convergence is reached 100 iterations earlier
by our proposed adaptive federated RL model in comparison to
the random policy.

V. CONCLUSION

In this paper, we proposed an adaptive federated reinforce-
ment learning-based jamming defense strategy in FANET con-
sisting of UAV nodes. Then, an epsilon-greedy policy-based
Q-learning spatial retreat jamming defense strategy was pro-
posed on the basis of a federated learning-based jamming de-
tection mechanism. We showed that the proposed adaptive
federated reinforcement learning-based approach enabled per-
forming better spatial retreat defense strategies. For doing so,
the proposed mechanism leverages an efficient federated jam-
ming detection mechanism to locate and retreat from the jam-
mers in a newly explored environment. The supporting federated
detection mechanism provided environment-specific knowledge
about the jammer locations to the Q-learning module to con-
verge its Q-learning score faster and adapt the exploration-
exploitation property of the model. In the future, we will con-
sider a global model for the Q-learning architecture to further
federate the defense strategy.
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