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Collision Prediction for a Low Power Wide Area
Network using Deep Learning Methods

Shengmin Cui and Inwhee Joe

Abstract: A low power wide area network (LPWAN) is becoming
a popular technology since more and more industrial Internet of
things (IoT) applications rely on it. It is able to provide long dis-
tance wireless communication with great power saving. Given the
fact that an LPWAN covers a wide area where all end nodes com-
municate directly to a few gateways, a large number of devices have
to share the gateway. In this situation, chances are many collisions
could occur, leading to waste of limited wireless resources. How-
ever, many factors affecting the number of collisions that cannot
be solved by traditional time series analysis algorithms. Therefore,
deep learning methods can be applied here to predict collisions by
analyzing these factors in an LPWAN system. In this paper, we
propose long short-term memory extended Kalman filter (LSTM-
EKF) model for collision prediction in the LPWAN in terms of the
temporal correlation which can improve the LSTM performance.
The efficacies of our models are demonstrated on the data set sim-
ulated by LoRaSim.

Index Terms: Deep Learning, extended Kalman filter, Internet of
things, LoRa, LSTM.

I. INTRODUCTION

THE Internet of things (IoT) technology is changing our
lives since it has been incorporated in various fields. Exam-

ples of these areas include industrial automation, medical, smart
home, health management, transportation, and emergency re-
sponse to man-made and natural disasters when it is difficult for
humans to make decisions [1]–[4]. IoT and machine-to-machine
(M2M) industry will increase significantly over the next decade
based on multiple independent studies. Recent development of
sensors and new communication technologies support the pre-
dicted trends. Low power wide area network (LPWAN) rep-
resents a novel type of wireless communication that appears
to complement cellular networks and short-range wireless net-
works to meet the diverse needs of IoT applications [5]. LP-
WAN technology offers wide-area connectivity for low-power
and low-data-rate devices that traditional wireless technologies
cannot. Traditional non-cellular wireless technologies such as
ZigBee, Bluetooth, Z-wave, and Wi-Fi are not suitable for con-
necting to large geographical areas since they can only cover a
few hundred meters. Therefore, these technologies cannot meet
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the requirements for many applications for personal health, lo-
gistics, and smart city due to the short range problem [6]. Al-
though these technologies can be extended by dense deployment
of devices and gateways connected using multi-hop mesh net-
working, large deployments are expensive. Cellular networks
such as global system for mobile communications (GSM) and
long term evolution (LTE) provide wide-area coverage. How-
ever, the complexity and cost of the devices are so high that
energy efficiency cannot be achieved. LPWAN technology can
cover tens of kilometers [7] and battery life is up to ten years or
longer.

There are several competing kinds of LPWAN technolo-
gies recently that use a variety of techniques to achieve high
scalability, low power, and long range. Some of the most pro-
nounced LPWAN candidates are SixFox, Weightless, Ingenu,
and long range (LoRa) [8]. In this paper, we study LoRa which
is one of the most widely adopted LPWAN technologies. LoRa
is proposed by Semtech and LoRa Alliance [9]. A LoRa sys-
tem contains end node devices, gateways, network server, and
applications servers and these form a star-of-stars topology as
shown in Fig 1. End nodes transmit data to one or more gate-
ways, then gateways send data to network servers which forward
data to application servers. The reason why LoRa can develop
rapidly is that it achieves flexible long-distance communication
in a low-power and low cost design. This is achieved by us-
ing adaptive data rate chirp modulation technology. LoRa al-
low multiple users to be accommodated in one channel by using
spread spectrum multiple access technique. LoRaWAN is a me-
dia access control (MAC) protocol and is implemented on top
of LoRa. These features have enabled LoRa to attract a large
number of developers to build complete large IoT solutions that
quickly capture the market. Scalability of LoRa is currently an
important part need to be analyzed and be optimized. Data ex-
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Fig. 2. Structure of SSM.

traction rate (DER) and network energy consumption (NEC) can
be used to evaluate the scalability of a LoRa system. Collisions
in the LoRa system have a great impact on DER and NEC [10]
since LoRaWAN MAC protocol is essentially an ALOHA vari-
ant with no collision avoidance provisions. Therefore, collision
prediction can help us to improve and analyze the parameter
settings of LoRa and lay the foundation for intelligent resource
allocation.

Time series prediction has become one of popular research
topics in recent years. Traditional time series prediction meth-
ods predict future trend based on previously sampled values.
Autoregressive moving average (ARMA) [11] algorithm is a
combination of the autoregressive (AR) and moving average
(MA) that predict the next values by constructing a linear func-
tion of values observed and residual errors of prior time steps.
Autoregressive integrated moving average (ARIMA) [11] is an
extension of ARMA which makes prediction using linear func-
tion of differenced observations and residual errors of prior
steps. State space model (SSM) is a ubiquitous tool for mod-
eling time series data [12], [13] that only deals with one step
dependency. This is because an SSM is based on two assump-
tions as shown in Fig 2: The output yt of SSM at time step t
depends on hidden state ht and external input ut with transfer
function g; the hidden state ht only depends on previous one
state ht−1 with transfer function f . However, these methods
only make predictions based on observations and do not take
into account internal influence factors. In this work, we should
consider not only the observations of the number of collisions,
but also the factors affecting collisions should be considered in
order to improve the accuracy of the prediction. Therefore, we
consider machine learning (ML) and deep learning (DL) meth-
ods which can learn the dynamic relationship between factors
and observations effectively.

ML technologies have made breakthroughs in various appli-
cation fields, such as computer vision [14], [15], speech recog-
nition [16], [17], and medicals [18], [19]. Algorithms and mod-
els of ML can learn to make decisions directly from data with-
out having to follow predefined rules. Existing ML algorithms
are generally divided into three categories: Supervised learn-
ing (SL) that learns classification or regression tasks from la-
beled data; unsupervised learning (USL) that focuses on clas-
sifying sample data into different groups with unlabeled data;
and reinforcement learning (RL) [20] that agents interact with
the environment and find the best actions to maximize reward.

Networking applications have also widely used machine learn-
ing algorithms, such as traffic prediction, traffic classification,
resource management, and network adaption [21], [22]. More-
over, DL technologies also have made amazing achievements in
many fields. For instance, convolutional neural network (CNN)
is typically employed for image recognition while recurrent neu-
ral network (RNN) is frequently utilized for processing sequen-
tial data [23]. An RNN model with its non-linear function can
learn more complicated pattern and has flexibility in modeling
and can produce an output at each time step or read an entire se-
quence and then produce a single output. Long short-term mem-
ory (LSTM) [24] and gated recurrent unit (GRU) [25] are spe-
cial RNN that solve the long term dependency by adding several
gates in the cell. These methods can model relationship between
influence factors and number of collisions with non-linear func-
tions. Among these methods LSTM achieves best performance
in several time series data sets [26]–[28]. For the collision pre-
diction issue in this paper, we combine the LSTM and SSM for
prediction task that can improve the performance of LSTM. Our
model takes previous information of traffics in the LoRa sys-
tem and make prediction of number of collisions in the future.
The prediction results with different parameter settings are ex-
amined to find the optimal settings and structure for collisions
prediction.

The organization of this paper is as follows. Related work
for LoRa scalability and collision problem are described in sec-
tion II. Section III briefly explains collisions in LoRa system.
Then our proposed models based on LSTM for collision predic-
tion is presented in section IV. Next, comparisons of conven-
tional models and proposal models are provided in section V.
We then finalize our paper with conclusions in section VI.

II. RELATED WORK

There have been several works that focused on scalability and
collision of LoRa system. In [29], the authors studied how the
number of end nodes and the throughput requirements affect the
scalability of the LoRa system. They built a simulator for evalu-
ating the scalability of a single gateway and their results shown
that when the number of end nodes increases to 1000, the pack-
ets losses rate will be up to 32%. In [30], the authors proposed
a model and present the effect of transmission using the same
spreading factor (SF) and different SF on scalability of LoRa
system. They derived several signal-to-interference ratio (SIR)
distributions in different conditions. The authors of [8] built a
model with a stochastic geometry framework for evaluating the
LoRa system. Their results shown that the coverage probabil-
ity decreases exponentially with the increase of number of end
nodes when transmit using the same SF. The authors of [31] pro-
posed single gateway and multiple gateway simulators for evalu-
ating the scalability of the LoRa system with different parameter
combinations.

On the other hand, there have been several works that com-
mitted to improve the performance of the LoRa system. In [32],
the authors modelled LoRa system with a new topology that lo-
cations of end nodes follow a Poisson cluster process (PCP).
Their work shown that the spectral efficiency and energy ef-
ficiency can be obtained through adjusting the density of end
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nodes around each gateways. In [33], a novel resource allocation
method that using multi-layer virtual cell-based spatial time di-
vision multiple access (STDMA) was proposed to improve per-
formance of LoRa system. Their method that calculate schedule
with information of end nodes and fit the cell radius to fit the
communication patterns could simplify the calculation of inter-
ference and improve the data rate of LoRa system. The authors
of [34] exploit a new MAC layer to improve the scalability and
reliability of LoRa system. A gateway dynamically allowed spe-
cific transmission power (TP) and SF in each channel then an
end node determined its own transmit time, channel, TP, and
SF. Their results have shown that these methods could reduce
the number of collisions and improve the performance of LoRa
system. However, if we consider improving the scalability of
the LoRa system through dynamically setting the parameters of
transmission, we need to establish a mapping between informa-
tion of current setting of LoRa system and the number of col-
lisions. Also, we need to predict the number of collisions of
future based on current state to better cope with the upcoming
communication situation.

III. COLLISIONS IN LORA SYSTEM

There are several conditions that determine whether the re-
ceiver can decode or not when more than one transmissions
overlap at the receiver [31]. These conditions are carrier fre-
quency (CF), spreading factor (SF), power and timing. When we
look at this issue from a holistic perspective, number of nodes,
number of gateways, bandwidth (BW), coding rate (CR), data
size and period can affect collisions in LoRa transmissions.

A collision behavior is defined as a situation that reception
overlap, CF collision, SF collision, and power collision all arise
simultaneously. It means that if any of the above events did not
happen, packets will not collide at the receiver. For two packets,
the situation that reception start time of the signal arriving later
is earlier than the reception end time of the signal arriving earlier
is defined as reception overlap. However, experiments of [31]
indicate that the critical section of a packet starts at the last 5
preamble symbols. Therefore, the reception overlap can be re-
defined as two packets overlap at one’s critical section. CF col-
lision is defined as that the absolute value of difference between
CFs of two transmissions is smaller than the minimum tolera-
ble frequency offset. For example, Semtech SX1272’s minimum
tolerable frequency offset is 60 kHz when the BW is 125 kHz,
120 kHz when the BW is 250 kHz, or 240 kHz when the BW
is 500 kHz. In a LoRa system, transmissions using different SF
can be decoded successfully. Therefore, SF collision is the sit-
uation that two packets have the same SF. The capture effect is
defined as the situation that two signals arrive at the receiver the
weaker signal would be suppressed by the stronger one. How-
ever, when two signals are nearly equal in power, the receiver
may switch between two signals and not able to decode either
of them. This situation is defined as power collision.

IV. PROPOSED COLLISION PREDICTION MODELS
BASED ON LSTM

Our goal is to predict the number of collisions in LoRa
system based on previous information of traffics. From the
perspective of time series problems, our model receives
{xt−k, xt−k+1, · · ·, xt−1} and then makes a prediction of yt
where xt is the information and yt is the number of collisions of
time step t.

Unlike traditional DL models, RNN is able to handle time
series data by storing information of past in hidden states. The
forward process is defined as:

ht = tanh(W [xt, ht−1] + b), (1)

where W is weight matrix and b is bias vector. The hidden state
ht can provide output value through linear connection. Nonethe-
less, it is hard for an RNN to handle long-term dependency due
to the gradient vanishing or explosion problems [35]. LSTM is
designed to avoid this problem by adding several gates in cells.

There are two ways for training deep learning models that are
offline training and online training. Offline training means the
weights of the model are updated after a batch of data comes
in while online training means the weights are updated after a
single data has been presented to the network. Online training
may lead to destroying the improvement of preceding learning
step. Therefore, the residual error is often bigger than offline
training. However, offline trained models no longer update their
weights in practical applications even though patterns of data
are changed after a while. This situation often occurs in the era
of data explosion. In order to solve this problem, we proposed
long short-term memory extended Kalman filter (LSTM-EKF)
model which use offline trained LSTM as backbone and con-
tinue learning when reasoning.

This section first introduces the traditional LSTM and then
presents the proposed LSTM-EKF for collision prediction in
LoRa system.

A. Long Short-Term Memory

Instead of repeating cells that only have a tanh function,
LSTM has more complicated cell structures as shown in Fig 3.
Each cell has the same inputs and hidden states as standard
RNN, but also has several gates and cell state to control the
flow of information. In a LSTM cell, there are one cell state and
three gates termed input gate, forget gate and output gate. The
cell state runs through the entire chain without any non-linear
operations. The input gate decides what will be add to the cell
state while the forget gate can decides what will be forgot. Fi-
nally, the output gate and the cell state make up the output. The
forward process using the following equations:

ft = σ(Wf [xt, ht−1] + bf ) (2)
it = σ(Wi[xt, ht−1] + bi) (3)
c̃t = tanh(Wc[xt, ht−1] + bc]) (4)
ct = ft · ct−1 + it · c̃t (5)
ot = σ(Wo[xt, ht−1] + bo) (6)
ht = ot · tanh(ct), (7)
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Fig. 3. The LSTM cell consists of three gates (forget gate ft, input gate it,
and output gate ot). Cell state ct can be maintained by forget gate and input
gate. The hidden state ht is decided by output gate ot and cell state ct.

Table 1. The input information of prediction model.

Index Information Units

1 Number of end nodes -
2 Number of gateways -
3 Spreading factor (SF) -
4 Bandwidth (BW) kHz
5 Coding rate (CR) -
6 Data size byte
7 Period ms

where σ() is the sigmoid function and Wf , Wi, Wc, Wo are
weight matrices and bf , bi, bc, bo are bias vectors in the cell.
Furthermore, xt is the input vector, ct is the cell state vector, c̃t
is the intermediate state vector, ht is the hidden state vector, and
ft, it, ot are forget, input, output gates. LSTM cleverly provides
gate control by using sigmoid function. This method retains
information that requires long-term memory and discards unim-
portant information. This architecture also can be extended to
multi-layer by treating the hidden state of last layer as input of
the next layer.

B. Long Short-Term Memory Extended Kalman Filter

In this section, we introduce our novel models for collision
prediction. As mentioned in section II, different parameter set-
tings will affect the number of collisions in the LoRa system,
therefore, SF, BW, and CR are included in the input informa-
tion. In addition, the system information such as the number of
end nodes, the number of gateways, data size, and period has
an impact on the amount of network transmission, then these
are also added to the input information. Finally, these numerical
values at time step t are formed an input vector xt as shown in
Table 1.

B.1 LSTM Regression Architectures

LSTM models could be constructed in a variety of ways de-
pending on the input and output, such as one-to-one, one-to-
many, many-to-one, and many-to-many. In this work, our pur-
pose is to make use of information from several past time steps
rather than information from one time step to make prediction,
thus we consider many-to-one and many-to-many structures to
build our prediction models as shown in Fig. 4. First, let con-
sider many-to-one structure that is the prediction yt of the model

is linear combination of the hidden state ht−1 with weight vector
wt and bias bt. Then, we make the final prediction as

ht−1 = LSTM(xt−k, xt−k+1, · · ·, xt−1) (8)

ŷ
(1)
t = w

(1)T
t ht−1 + b

(1)
t , (9)

where k is the length of time steps received at one time. In this
architecture, the final prediction only depends on ht−1. How-
ever, using more implicit information from the past may im-
prove the performance of the forecast. For this purpose, we
make prediction depend on all hidden states of LSTM. Hence,
the second architecture is defined as

[ht−k, ht−k+1, · · ·, ht−1] = LSTM(xt−k, xt−k+1, · · ·, xt−1)
(10)

ŷ
(2)
t = w

(2)T
t [ht−k, ht−k+1, · · ·, ht−1] + b

(2)
t .
(11)

This architecture makes prediction value with more past in-
formation than architecture 1. These models are trained by back-
propagation through time (BPTT) [36] and stored the whole
structure and trained weights with best validation performance.
Then the LSTM structure can be used as backbones to extract
hidden states for our models.

B.2 LSTM-EKF Architectures

The main idea of LSTM-EKF model is sending the features
extracted from pre-trained LSTM to the SSM models and solve
the SSM by using EKF algorithms as shown in Fig 5. The EKF
is an extension of Kalman filter (KF) which is a well-known lin-
ear system. It linearizes the non-linear systems by using Taylor’s
theorem [37]. There are certain decoupled EKF-based method
to train LSTM [38], [39] in an online manner. However, the
performance of online training methods are far from the level of
offline training. Therefore, in our case, we combine the statisti-
cal validity of offline methods and the adaptable characteristics
of online methods. When making predictions on the test set, the
EKF algorithm estimates weights vector and bias which directly
maps the hidden state to the predicted output, while keeping the
remaining weights within the LSTM unchanged. This method
can make the offline trained model adapt to the test data to fur-
ther improve the accuracy of the offline model. The EKF as-
sumes that the posterior pdf of the states given the observation
is Gaussian [40]. Therefore, our hybrid system based on LSTM
architecture 1 in a perspective of SSM can be defined as

[
w

(1)
t

b
(1)
t

]
=

[
w

(1)
t−1

b
(1)
t−1

]
+

[
ε
(1)
t

ν
(1)
t

]
(12)

y
(1)
t = w

(1)T
t ht−1 + b

(1)
t + η

(1)
t , (13)

where ε
(1)
t , ν

(1)
t , and η

(1)
t are Gaussian noises and

[ε
(1)T
t , ν

(1)T
t ]T and η(1)t are with variancesQt andRt. Similarly

our hybrid prediction model based on architecture 2 is defined
as
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Fig. 4. Many-to-one and many-to-many structures: (a) Many-to-one and (b) many-to-many.
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w

(2)
t

b
(2)
t

]
=

[
w

(2)
t−1

b
(2)
t−1

]
+

[
ε
(2)
t

ν
(2)
t

]
(14)

y
(2)
t = w

(2)T
t [ht−k, ht−k+1, · · ·, ht−1] + b

(2)
t + η

(2)
t .

(15)

B.3 LSTM-EKF Process

First, we initialize the hybrid model with pre-trained LSTM
and then receive the input and forward through the model to cal-
culate the output ŷt. This step is defined as prediction stage and
the prediction result is made based on the previous information
and system weighting factor. Then, we can update the wt and bt
based on the observation. This step is defined as correction stage
that calculate the posterior weighting factor conditioned on cur-

rent observation. Thus, the EKF update wt and bt as follows:

Gt = PtJ
T
t [JtPtJ

T
t +Rt]

−1 (16)[
wt+1

bt+1

]
=

[
wt

bt

]
+Gt(yt − ŷt) (17)

Pt+1 = Pt −GtJtPt +Qt, (18)

where Gt denotes the Kalman gain and Pt denotes the error
covariance matrix. The matrix Qt is the covariance of process
noise and theRt is the measurement noise. Finally, the Jacobian
Jt containing the partial derivatives is calculated as

Jt =
[
∂ŷt
∂wt

∂ŷt
∂bt

]
. (19)

For the Jacobian computation, the two architectures calculate
based on (9) and (11). The computational complexity of the
EKF updating the weight vector and bias based on the size m
and the length k of the time steps of input. Thus, the compu-
tational complexity of updating weight vector and bias of the
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architecture 1 using EKF is O(m3) due to the matrix computa-
tion while the architecture 2 results in O(k3m3).

V. PERFORMANCE EVALUATION

In this section, we evaluate performance of our proposed pre-
diction models for the data sets generated by LoRaSim. Our goal
is to predict the future collisions in a LoRa system by examin-
ing the past information. We first evaluate the performances of
LSTM-EKF model and compare it to the offline trained LSTM
model. Then we compare the performance of two different
structures of LSTM-EKF. We then examine the parameters such
as size of hidden states, length of time steps, and number of lay-
ers. To illustrate the EKF updating method is better than fine-
tuning, we compare the performance of EKF and stochastic gra-
dient descent (SGD) in online training method. Finally, we com-
pare our model to conventional deep learning methods.

Mean squared error (MSE) and coefficient of determination
denoted R2 are used to assess the quality of these prediction
models:

MSE =
1

T

T∑
t=1

(yt − ŷt)2 (20)

R2 = 1−
∑T

t=1(yt − ŷt)2∑T
t=1(yt − ȳ)2

, (21)

where yt and ŷt are ground truth value and predict value at time
step t respectively. Moreover, ȳ denotes mean value of ground
truth. MSE measures the average squared error loss between
the predicted values and ground truth. It is always positive or
0 and value smaller means better. On the other hand, R2 is a
statistical measure of how well the regression model fit to the
data. It is used for evaluating performance of proposed models.
R2 is normally ranges from 0 to 1. R2 = 0 indicates that the
regression model cannot explain the data while R2 = 1 means
that the regression model explains data completely.

A. DATA SET

A.1 LoRa Simulation

In this work, we use LoRaSim [31] to simulate LoRa link be-
haviors and generate data sets. LoRaSim is a discrete-event sim-
ulator based on SimPy [41] for simulating collisions in LoRa
networks and to analyze scalability. It simulates LoRa nodes
and base stations in a 2-dimensional space. Parameters such as
numbers of nodes, numbers of gateways, BW, SF, CR, data size,
period and total simulation time can be set up and the number
of collisions can be output as a result. Gateway in LoRaSim
simulates the Semtech SX1301 chip which can receive 8 con-
temporaneous signals since these signals are orthogonal.

A.2 Data Generation

LoRaSim mentioned above is used to generate data set and
split to training data and test data. We set parameters manually
and collect generated number of collisions. The time step in our
work is set as 20 minutes.

We split our data set into a training set and test set by a ratio
of 70% and 30% and scaled the data to [0, 1] since doing so

could speed up the convergence of models. The performances
compared in the experiments in this paper, such as MSE and R2,
are calculated using scaled data. We choose Keras library with
tensorflow as backend written in Python. Models are trained on
single Nvidia GTX 1080 Ti GPU.

B. Performance of LSTM and LSTM-EKF

We first consider whether the LSTM-EKF model can improve
the performance of LSTM. For this purpose, we choose the
same parameters settings and test on both architectures. For the
LSTM, we set parameters length of time steps as k = 5, number
of LSTM layers as n = 2, learning rate as µ = 0.01, and the hid-
den state size varying among [5, 25, 45, 50]. All LSTM models
are trained by Adam and RMSprop and the MSE is used as loss
function. The model with best validation performance is stored
and test on test data. For the LSTM-EKF model, we initialize
the model with pre-trained LSTM and we choose P0 = 10−3I ,
Qt = 10−4I , and Rt = 0.25. Fig. 6 shows the performance
of LSTM and LSTM-EKF prediction on test data. The MSE
and R2 of architecture 1 with different hidden state size are pre-
sented in Figs. 6(a) and 6(b) and the results of architecture 2 are
presented in Figs. 6(c) and 6(d). As shown in Fig. 6, whether
choose architecture 1 or architecture 2, the prediction results of
LSTM-EKF are always better than LSTM in the case of differ-
ent hidden state sizes. In addition, it can be clearly seen from
Fig. 6 the improvement of LSTM-EKF with architecture 2 is
more significant than the improvement of LSTM-EKF with ar-
chitecture 1. For architecture 1, LSTM-EKF reduced MSE by
an average of 0.95% and R2 increased by an average of 0.02%
compared to LSTM. Take the architecture 1 model with hid-
den state size m = 45 as an example, the LSTM-EKF model
improved the LSTM model with 1.50% reduction of MSE and
0.03% increase of R2 on test data. However, for architecture 2,
MSE decreased by an average of 7.57% and R2 increased by an
average of 0.17%. Wherein the architecture 2 with hidden state
size m = 45, MSE is reduced by 14.79% and R2 increased by
0.32%. We believe that the reason of the improvement effect of
architecture 2 can be better than architecture 1 is that LSTM-
EKF with architecture 2 handles more hidden states and the size
of weight matrix which mapping hidden states to final prediction
needs to be updated during the reasoning process is much larger
than the weight matrix of LSTM-EKF with architecture 1. The
ground truth of collisions of test data and the prediction result
generated by LSTM and LSTM-EKF with architecture 1, k = 5,
n = 2, m = 45 are presented in Fig. 7. As can be seen in Fig. 7,
the accuracy of LSTM-EKF is better than LSTM especially on
the peak of the number of collisions. In summary, by adding an
EKF on the top of LSTM, weights and bias for mapping features
to the predict values are updated in an online manner that can
improve the performance of LSTM and the improvement with
architecture 2 is more obvious than that with architecture 1.

C. Different Architectures

Next, the performance of LSTM-EKF with different archi-
tectures and different settings are compared. In this experiment,
we set length of time steps as k = 5, number of layers among
[1, 2, 3], and hidden state size among [5, 25, 45, 50]. Generally,
more layers and larger hidden state size imply more parameters
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Fig. 6. Performance of LSTM and LSTM-EKF on test data with different architectures: (a) Architecture 1 MSE, (b) architecture 1 R2, (c) architecture 2 MSE, and
(d) architecture 2 R2.

Table 2. Best performance of LSTM-EKF on test data with different LSTM as backbone.

Parameters(layers n, hidden state size m) Architecture 1 Architecture 2

MSE(10−3) R2 MSE(10−3) R2

n = 1,m = 5 1.3549 0.97653 1.2299 0.97869
n = 1,m = 25 1.1144 0.98018 1.1173 0.98064
n = 1,m = 45 1.2042 0.97914 0.9863 0.98291
n = 1,m = 50 1.2014 0.97918 1.0430 0.98193
n = 2,m = 5 1.2336 0.97863 1.1677 0.97977
n = 2,m = 25 1.0503 0.98180 1.1318 0.98039
n = 2,m = 45 0.9943 0.98277 1.0367 0.98204
n = 2,m = 50 1.1566 0.97996 1.1647 0.97982
n = 3,m = 5 1.1359 0.98032 1.1655 0.97981
n = 3,m = 25 1.2180 0.97890 1.2536 0.97828
n = 3,m = 45 1.3187 0.97715 1.1660 0.97980
n = 3,m = 50 1.2031 0.97916 1.3563 0.97650

that can learn data better. However, too many parameters will
lead to overfitting problem. On the other hand, too few param-
eters can not learn data very well. Finally, the architecture 2
handling more hidden states means that it has more parameters
than architecture 1 with the same settings.

Test results are tabulated in Table 2. First, we consider the
effect of the number of layers on the results. For the architec-
ture 1, the results of two hidden layers models are generally bet-
ter than one hidden layer models, however, three hidden layers
models are even worse. These results indicate that when using
architecture 1 to predict number of collisions one hidden layer
models do not learn pattern of the data well while three hidden
layers models’ accuracy decrease due to the overfitting problem

caused by too many parameters. For the architecture 2, it obtains
the best result with one hidden layer. Such results indicate that
using architecture 2 to make predictions in this work, one hid-
den layer is enough. The reason why the accuracy of two hidden
layers and three hidden layers decrease is also due to overfitting
problem. Then, we focus on the effect of hidden state size on
testing results. According to Table 2, both architectures perform
better on test data as the hidden state size increases until they
achieve the best results. After reaching the best result, the re-
sults of the two architectures are not better with the increase of
the number of parameters since overfitting problem. Finally, let
consider the performances of different architectures. Architec-
ture 2 is always better than architecture 1 with the same layers
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Fig. 7. Comparision of actual data with predicted results of pre-trained LSTM
and LSTM-EKF (architecture 1, number of hidden layers=2, length of time
step=5, hidden state size=45).

and hidden state size before reaching the best performance. The
best MSE and R2 result of architecture 2 with one hidden layer
is even better than architecture 1 with two hidden layers thanks
to it handling more hidden states.

D. Online Training

Then we turn our attention to discuss the performance of on-
line training. We choose the parameters settings such that both
SGD and EKF reach their best performance for fair compari-
son. To provide this fair setup, we have the following settings.
For the LSTM structure, we choose architecture 2 with length of
time steps as k = 5, number of LSTM layer n = 1, and hidden
state sizem = 10. For the EKF based online training algorithm,
we set the initial error covariance as P = 1.0I , process noise
as Qt = 0.001I , and measurement noise as Rt = 0.25. For the
SGD based online training algorithm, we set the learning rate as
µ = 0.01. Therefore, the online training methods of EKF for
LSTM is defined as:

[ht−k, ht−k+1, · · ·, ht−1] = LSTM(xt−k, xt−k+1, · · ·, xt−1)
(22)

Θt = Θt−1 + εt (23)

yt = wT
t [ht−k, ht−k+1, · · ·, ht−1] + bt,

(24)

where Θt denotes whole weights in the system.
As depicted in Fig 8, the EKF converges to smaller MSE. It

can be seen that it is more stable than SGD for on-line learning.
The ground truth and the predicted values are depicted in Fig 9.
Obviously, the predictions made by EKF trained on-line model
are much better than SGD-trained model. In summary, EKF is
more stable and accurate than SGD with online learning setting.

E. Performance of Conventional Models and LSTM-EKF with
different length of time steps

To illustrate the effectiveness of the proposed model, we com-
pare the model to conventional time series models such as RNN,
GRU, and LSTM. GRU is recently introduced special kind of
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Fig. 8. Comparison of the MSE loss value of online training algorithms: EKF
and SGD.
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Fig. 9. Comparison of actual data with predicted results of online training
algorithms: EKF and SGD.

RNN and process defined as:

ut = σ(Wu[xt, ht−1] + bu) (25)
rt = σ(Wr[xt, ht−1] + br) (26)

h̃t = tanh(Wh[xt, rt · ht−1] + bh) (27)

ht = ut · ht−1 + (1− ut) · h̃t, (28)

where Wr, Wu, and Wt are weight matrices, and br, bu, bh are
bias vectors in the cell. Furthermore, xt is input vector, ut is
update gate, and rt is reset gate. All these models with both
architectures are trained by Adam and RMSprop with learning
rate µ = 0.01 and stored the parameters with best validation
performance. For fair comparison, we set parameters length of
time steps k varying among [5, 10, 15, 20], number of layers n
varying among [1, 2, 3], and hidden state size m varying among
[5, 15, 20, 25, 30, 35, 40, 45, 50]. The best result of MSE andR2

for each length of time steps of all these models are tabulated in
Table 3. Since our combination of LSTM and EKF approach is
generic, we also apply our approach to conventional RNN and
GRU models.

As can be seen in Table 3, by adding EKF to these con-
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Table 3. Best performance of proposed model and conventional models.

Models k = 5 k = 10 k = 15 k = 20

MSE(10−3) R2 MSE(10−3) R2 MSE(10−3) R2 MSE(10−3) R2

RNN 1.0820 0.98125 1.0275 0.98248 0.9924 0.98341 1.1918 0.97956
RNN-EKF 1.0760 0.98136 1.0182 0.98264 0.9890 0.98346 1.1912 0.97957
GRU 1.0122 0.98246 1.0335 0.98238 0.9983 0.98331 1.1346 0.98054
GRU-EKF 0.9957 0.98275 1.0318 0.98240 0.9972 0.98333 1.1269 0.98067
LSTM 1.0014 0.98265 0.9586 0.98365 0.9542 0.98405 0.9596 0.98354
LSTM-EKF 0.9863 0.98291 0.9475 0.98384 0.9363 0.98435 0.9437 0.98381

ventional models the results are improved. When k among
[5, 10, 15], the MSE of RNN and LSTM decrease as k increases.
However, when k = 20, the accuracy of RNN and LSTM both
decrease. GRU and GRU-EKF also achieve their best perfor-
mance at k = 15. For each k, the performance of LSTM model
is the best in the conventional time series models and the results
of RNN and GRU are close. Our proposed LSTM-EKF model
achieves the best results in every different k thanks to the per-
formance of LSTM backbones. Finally, since the LSTM-EKF
achieves its best performance at k = 15, it is a reasonable set-
tings for this prediction task.

VI. CONCLUSION

Deep learning is widely used in various industries with its
powerful learning ability. However, in the field of IoT, espe-
cially the LPWAN that particularly sensitive to resource alloca-
tion, how to apply deep learning is worthy of further study. In
this paper, we studied the collision problem in LPWAN system.
We then propose LSTM-EKF model for this task. We also test
with offline trained model and online trained model. Although
offline trained model is much more accurate than online model,
it learns the pattern or the distribution of current data. On the
other hand, online trained model is more adaptable for changes
of patterns but not stable as offline. However, we can see that
EKF is much better than first-order gradient-based methods for
training an online model. This model is much more stable than
online model and can adapt to new subtle changes due to the
EKF updating the parameters mapping hidden states to predict
results and freeze weights of hidden layers. Based on our pro-
posed prediction models, developers or network administrators
can make pre-judgments and deal with allocation management
problems. In the future, we would consider to construct a deep
learning based resource allocation algorithms for LPWAN sys-
tem.
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