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QoS Provisioning and Energy Saving Scheme for
Distributed Cognitive Radio Networks Using Deep
Learning

Mduduzi Comfort Hlophe and Bodhaswar T. Maharaj

Abstract: One of the major challenges facing the realization of cog-
nitive radios (CRs) in future mobile and wireless communications
is the issue of high energy consumption. Since future network in-
frastructure will host real-time services requiring immediate satis-
faction, the issue of high energy consumption will hinder the full
realization of CRs. This means that to offer the required quality
of service (QoS) in an energy-efficient manner, resource manage-
ment strategies need to allow for effective trade-offs between QoS
provisioning and energy saving. To address this issue, this paper
focuses on single base station (BS) management, where resource
consumption efficiency is obtained by solving a dynamic resource
allocation (RA) problem using bipartite matching. A deep learning
(DL) predictive control scheme is used to predict the traffic load
for better energy saving using a stacked auto-encoder (SAE). Con-
sidered here was a base station (BS) processor with both processor
sharing (PS) and first-come-first-served (FCFS) sharing disciplines
under quite general assumptions about the arrival and service pro-
cesses. The workload arrivals are defined by a Markovian arrival
process while the service is general. The possible impatience of cus-
tomers is taken into account in terms of the required delays. In
this way, the BS processor is treated as a hybrid switching sys-
tem that chooses a better packet scheduling scheme between mean
slowdown (MS) FCFS and MS PS. The simulation results presented
in this paper indicate that the proposed predictive control scheme
achieves better energy saving as the traffic load increases, and that
the processing of workload using MS PS achieves substantially su-
perior energy saving compared to MS FCFS.

Index Terms: Bipartite matching, cognitive radio networks, deep
learning, energy saving, mean slowdown, quality of service, re-
source allocation, resource percentage threshold, traffic prediction.

I. INTRODUCTION AND BACKGROUND

ECAUSE of the increase in data rate requirements and the
level of heterogeneity, the rate of change in network traf-
fic expected in future mobile and wireless communication net-
works poses new challenges related to spectrum management
and energy consumption [1]. The increase in multimedia ser-
vices and other mission-critical applications that are hosted by
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network infrastructure, which demand immediate satisfaction
in terms of quality of service (QoS) requirements, has led to
even newer challenges in energy efficiency [2]. These have led
to escalating concerns regarding energy efficiency in terms of
network operational costs such that research on energy con-
sumption and saving has gained huge attention. In mobile and
wireless communication networks, base stations (BSs) consume
much of the power and their power consumption varies over
time [3]. The general BS operation mode can be described as
a finite state machine, which can be explained in terms of a two-
state Markov model, i.e., idle (OFF) and active (ON). Hence the
energy consumption of a general BS depends on its mode of op-
eration. When the BS is in its active mode, it has to process
traffic streams from all its associated users, hence its computa-
tional components are faced with maximizing user satisfaction
demands, while simultaneously minimizing their energy con-
sumption. On the one hand, maximizing user satisfaction by up-
holding user QoS requirements through an increase in transmis-
sion power has a substantial effect on energy efficiency, while
on the other hand reducing transmission power degrades QoS
performance [4]. Therefore, quantifying the trade-off between
energy consumption and the required QoS are key parameters in
BS energy consumption that require balanced optimization.
Researchers in both industry and academia have proposed
workable solutions to reduce network operational costs through
the installation of energy-efficient hardware [5], but this ap-
proach does not seem to solve the problem completely. Re-
ducing network operational costs by installing more energy-
efficient hardware somehow requires a compromise between the
energy cost and the user coverage drop. Thus, this approach
somehow falls short in addressing the energy efficiency prob-
lem, since it might result in wireless access networks being
almost invariably over-provisioned and under-provisioned with
respect to the user traffic demands [6]. Even though resource
over-provisioning may lead to better QoS provisioning in terms
of negligible packet losses and transmission delays, it comes
at non-negligible operational costs [7]. It is thus clear that re-
source over-provisioning needs to be replaced by optimal or
even near-optimal energy-efficient solutions that allocate ade-
quate network infrastructure based on current resource demand.
Adequate provisioning, however, requires better understanding
of the relationship between resource demand, available capac-
ity and the transparency between real-time and best effort traffic
streams. In light of the above, newer and more efficient resource
management schemes, capable of controlling how many net-
work resources are allocated at a certain time, can be extremely
effective and provide quite large network operational cost reduc-

1229-2370/19/$10.00 © 2020 KICS

Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.



186

tions. As the energy efficiency of BSs is receiving more attention
owing to several factors, there are also concerns about meeting
the international mobile telecommunications (IMT)-2020 and
beyond requirements, as well as challenges facing cognitive ra-
dio networks (CRNSs).

In the overall energy efficiency network design and evalua-
tion process, the primary objective is an adequate metric that
is directly related to the optimized decisions across all the pro-
tocol layers. The most popularly used metric is bits-per-Joule,
which is defined as the system throughput for unit energy con-
sumption [8]. A great quantity of information-theoretic results
for energy efficiency at the link level, based on this metric set
the limitation on transmission power is set as a constraint, and
it has been proven that the upper bound channel capacity per
unit energy can only be achieved by utilizing an unlimited num-
ber of degrees of freedom per information bit [9]. Analyzing
the “bits-per-Joule” capacity at network level proved that capac-
ity increases with the number of nodes in the network, imply-
ing that large-scale energy-limited networks may only be suit-
able for delay-tolerant applications. For example, this metric has
been widely used as the utility function in game-theoretic ap-
proaches for energy saving in wireless networks, where the en-
ergy consumption models only consider the transmission power
associated with the data transmission rate [10]. However, the
transmission power is only part of the overall energy budget
and when the energy consumption of other parts (e.g., circuit
power consumption of the transceiver) is taken into account, the
energy-efficient schemes described in literature might not be ap-
propriate to meet the IMT-2020 and beyond requirement speci-
fications.

A. Meeting IMT-2020 and Beyond Requirement Specifications

Nowadays, global mobile data traffic is increasingly domi-
nated by delay- and loss-intolerant traffic streams, which means
that traffic congestion in the core network is an inevitable occur-
rence. This can quickly lead to overall network performance
degradation resulting from the moderate-to-high traffic levels
[11]. The consequence of this is the catastrophe of heavy burst
losses, as the whole network might degenerate into chaos. The
daily operations of network components that are pushing data
and multimedia traffic into the internet require a significant in-
crease in network energy consumption or no user will be able to
use the network properly. However, despite the intense research
efforts by both academia and standardization bodies in the quest
to meet the requirements specified in the IMT-2020 [12], there is
still considerable controversy concerning the definition of QoS
and its direct influence on network resource provisioning. This
is because huge research efforts have focused on the optimiza-
tion of sum-rate to support high data transmission rates [13].

Apart from energy efficiency, a variety of objectives have
been put forward in the preparation of the next generation of
mobile and wireless communications. Other than achieving high
data rates, these objectives are based on network metrics such as
improved coverage with uniform user experience, higher relia-
bility and lower latency, better energy efficiency, lower cost user
devices and services and better scalability with the number of
devices [14]. However, these objectives have to be realized si-
multaneously, and the challenge is that they are often coupled in
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a conflicting manner. Achieving improvements in one objective
leads to degradation in the other. Consequently, the design of
future mobile and wireless networks requires new optimization
tools that are capable of properly handling both the existence of
these objectives and intelligent trade-offs between them.

In CRNs, QoS provisioning requires a cross-layer design. Nu-
merous studies have proposed allocating resources reasonably
by considering QoS requirements for secondary users (SUs).
For example, the authors in [15] considered the energy effect
on QoS provisioning and proposed an energy-efficient chan-
nel hand-off strategy using partially observable Markov deci-
sion processes (POMDPs). In the development of the hand-off
strategy using POMDPs, the authors considered imperfect chan-
nel sensing and residual energy of SUs, which considers beliefs
about the operating and backup channels and the residual en-
ergy at the SU. An a-retry policy was proposed as a spectrum
access strategy to enhance QoS for SUs in [16], where a pre-
emptive priority queue was built as a two-dimensional discrete-
time Markov chain (DTMC) and the blocking rate, the forced
dropping rate, the throughput and the average delay of the SU
packets were analyzed. From a spectrum management perspec-
tive [17] proposed a queuing theory-based analytical framework
to analyze QoS for SUs. The spectrum resource management
problem was considered for co-located SUs with both stream-
ing and intermittent data and seamless end-to-end service was
ensured by effectively identifying the number of backup chan-
nels. In another contribution, the authors in [18] proposed the
use of priority queues as a resource allocation (RA) model for
different traffic classes. They used packet priority to explore
the relevance and implications of various heterogeneous clas-
sifications. The RA model incorporates the essential concepts
of heterogeneity, which were developed with weight attached to
differentiate between different traffic classes.

Meeting the IMT-2020 requirement and beyond specifications
within the CRN space has presented itself as a huge challenge to
researchers, since balancing the above approaches in an energy-
efficient manner depends on several factors. Such factors are the
degree of cooperation between primary users (PUs) and SUs and
the reliability of spectrum sensing [19] exacerbating the problem
of energy-efficient CRN operations. Because of the intermittent
nature of SU connections in the primary networks, it is a diffi-
cult task to achieve energy-efficient CRN operations owing to
the preemptive priority of PUs. Preemptive priority gives PUs
absolute rights to use their licensed spectrum such that while
SUs try to exploit transmission opportunities in free spectrum
bands, PUs can resurface at any time and force SUs to termi-
nate their transmissions. In that case, SUs are forced to leave
the current spectrum band and handoff their activities to another
channel that is deemed vacant through spectrum sensing. These
transmission terminations lead to subsequent transmission de-
lays and high energy consumption, which affect the latency and
energy efficiency respectively, especially when the probability
of forced terminations is high [20]. Thus, it seems as if there are
apparently too many different requirements that need to be kept
in mind when attempting to design lasting solutions. Unfortu-
nately, there is no easy shortcut to achieving a long-lasting solu-
tion that balances energy-efficient RA and QoS in CRNs. This
means that these two objectives cannot be treated separately be-
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cause they are coupled - sometimes in a consistent fashion, but
more often than not in conflicting ways, implying that improve-
ments in one objective leads to deterioration in the other.

B. Technological Challenges Facing CRNs

The 5G era, which is driven by the Internet of things (IoT),
introduces the requirements of high data rates, low latency, effi-
cient use of spectrum resources and coexistence of different net-
work technologies. Because of the existing spectrum quagmire,
all future wireless devices need to be CR-capable, which makes
CR technology the biggest enabler of 5G networks and beyond.
Apart from the major concern of spectrum scarcity, there are
several other issues and technological challenges that hinder
the design, implementation and realization of a fully functional
CRN. All future mobile and wireless network technologies will
be deployed in a distributed fashion in order to exhibit signif-
icant gains in network capacity maximization. Wireless tech-
nologies deployed in this manner require significant coordina-
tion among network devices, which results in high communica-
tion overheads. Beyond the level of heterogeneity introduced
by CRNS into the traditional wireless network, the other spec-
trum use cases that are supposed to benefit enormously from CR
technology also have heterogeneous requirements. For example,
the IoT and its other derivatives, such as the cognitive internet of
people, services, data and things and several other variants of the
IoT, with bandwidth-demanding services such as video stream-
ing and video-on-demand, all pose great challenges to the issue
of spectrum management.

Because of the challenges that come with the dynamics of
channel availability, uncertainty of spectrum sensing and spec-
trum access, as well as PU activities, real-time SU transmis-
sions might suffer. On the one hand, the network designer is
faced with numerous design trade-offs, diversified network dy-
namics and limited resources, while on the other hand SUs with
bandwidth-consuming services with stringent QoS constraints
require resources to be allocated immediately. Thus, this ne-
cessitates a holistic cross-layer design approach to exploit the
CR technology optimally, which calls for the development of
intelligent and invisible paradigms for programmable and con-
trollable networks to satisfy future requirements. Regarding the
intelligent use of spectrum resources, the CR technology stands
to benefit massively from the incorporation of artificial intelli-
gence (Al) into its operation. From a cognitive radio (CR) per-
spective where the issues of QoS and energy efficiency have
put enormous pressure on top of the existing spectrum shortage,
achieving energy-efficient operations is a daunting task. With
the interconnection of heterogeneous devices posing numerous
challenges that may include high energy consumption, data rate
requirements and intermittent connections because of SU mobil-
ity and PU activities, the incorporation of Al will ensure efficient
decision-making. A perfect solution to this problem will require
some kind of automated approach that achieves both QoS and
energy efficiency, while also yielding a new set of network as-
surances such as reliability.

However, whatever automation network designers can come
up with, it has to be within the perimeters of good energy con-
sumption. One promising way is to use the massive amount of
data that is generated by the great quantity of network equip-
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ment to develop predictive measures to deal with the energy ef-
ficiency problem. Al strategies such as deep architectures (i.e.,
deep learning (DL), deep reinforcement learning) can be used to
analyze these data, extract the relevant patterns, make sense of
the data and then prescribe energy-efficient actions to be taken
by network equipment. This may lead to a realization of more
effective and efficient energy-saving models for CRNs. Exist-
ing energy-saving schemes in traditional cellular networks are
discussed in the following section.

II. EXISTING ENERGY EFFICIENCY SCHEMES
A. The EARTH Model

The first energy-saving technique was proposed in the energy
aware radio and network technologies (EARTH) project, which
is a concerted effort to achieve energy efficiency in wireless net-
works. The primary objective of the project was a reduction in
energy consumption in mobile networks as environmental con-
cerns such as global warming were gaining momentum [21]. To
quantify the energy savings in a wireless network, the power
consumption of the entire system needs to be captured and
an appropriate energy efficiency evaluation framework (E3F)
needs to be defined. The E3F is applied to provide an assess-
ment of the BS energy efficiency of a third generation partner-
ship project long term evolution (3GPP LTE) network deployed
where BSs are switched ON/OFF based on traffic load [22].
This model is based on a finite-state machine model consisting
of two operational states, P, which denotes the static/load-
independent power consumption figure; P;,, which denotes the
dynamic/load-dependent power consumption figure whose con-
sumption trajectory is scaled according to traffic load.

This technique offers energy-efficient communication in low
traffic regimes and plays an important role in reducing overall
network power consumption [23]. However, in terms of meet-
ing the IMT-2020 and beyond requirement specification, one
striking drawback is that when a BS is switched ON/OFF, a
switching cost is incurred in terms of the energy and the time
to transition from ON to OFF when there is little or no channel
activity and vice versa, which is a significant amount that cannot
be ignored. Except the evident and noticeable reductions of the
operational costs faced by mobile operators, it also adapts the
level of resource over-provisioning by re-associating traffic to
moderately served BSs [24]. A considerable amount of energy
and time is spent in turning on BS components, user data man-
agement and user re-association; which affects the QoS owing
to server response times that also has a consequence in packet
delays and losses. There is also limited support for newer sys-
tems and technologies and the (de)activation information is not
defined.

B. Green Cellular Network Model

The second energy-saving technique is the green cellular net-
work model, which was proposed to address the shortcomings of
the EARTH model and reduce carbon dioxide (C'O2) emissions.
This technique incorporates the use of both grid power supply
and energy harvested from solar and wind sources. However,
the basic structure of the EARTH model was not discarded, but
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was maintained and reused - meaning that the BS power con-
sumption remained unaltered. Through this technique, BSs can
selectively switch between grid and harvested energy in order
to reduce network operation energy costs. In this technique,
an energy-harvesting BS is co-located with a multi-access edge
computing (MEC) server to reduce energy consumption further.
The radio network and energy level information is communi-
cated periodically to the MEC server through the radio network
information services (RNIS) and the energy manager. The RNIS
entity is responsible for selecting the appropriate energy source
to fulfill the energy buffer and for monitoring the energy levels
of the system.

The authors in [25] investigated an environment-aware frame-
work for CRNs where PU and SU networks collaborate. The
collaboration between the two networks is intended to maximize
their profits and meet PU QoS and the total C'O5 emission. In
terms of energy balancing, [26] proposed an energy-balancing
strategy where the key technique is that each BS maintains two
parameters. These parameters contain the trend of its previous
energy consumption and then predicts its future quantity of en-
ergy, which is defined as the BS’s potential energy capacity.
Using this concept offers better solutions, but the simplifying
assumptions made may often introduce inaccuracies when the
switching is not optimized. In terms of green cellular network-
ing, it is argued that energy saving can be achieved through the
adoption of renewable sources of energy to make communica-
tion networks more energy-efficient. However, from a commu-
nication perspective, a more energy-efficient system is created
where the power consumption of the BS is optimized rather than
adding several more power sources.

C. The One-step-ahead Predictive Model

The final energy-saving strategy is the one-step-ahead predic-
tive model, which has the potential of playing a decisive role
in boosting energy efficiency in future mobile and wireless net-
works through the use of predictive analytics. This technique
does not optimize the network operation only in terms of energy
consumption, but also with respect to balancing the transmis-
sion rates and power consumption by predicting the future traf-
fic load. In this way, the signaling overhead and circuit power in
terms of proactive preparation of the required number of items
of computational equipment to be allocated are taken into ac-
count a priori. The use of predictive analytics through one-step-
ahead network traffic prediction puts the system ahead of the
normal time by enabling it to take proactive decisions through
the extraction and analysis of traffic patterns in network traf-
fic trends and user behavior to predict future network behavior
for better RA. Through this technique, systems can learn traffic
profiles and automatically tune their computational parameters
to accommodate future demands; thus data analytics promises
to be a possible pathway towards achieving both QoS and en-
ergy efficiency objectives.

There are several prediction techniques that are suitable for
training and testing CR systems, such as the bio-inspired meta-
heuristic system in [23], which has been inspired by swarm in-
telligence and has been seen to achieve better energy saving for
5G networks. The authors proposed the separation of the con-
trol and data planes and the use of particle swarm intelligence
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to handle the interaction and operation of users to achieve better
energy efficiency and lower aggregate delays. However, the in-
tegration of real-time practical learning capabilities using such
a soft computing technique is a challenge in CRNs [19]. Nev-
ertheless, an investigation of applications from deep architec-
tures has shown some significant benefits in enabling decision-
making through prediction in the absence of real-time informa-
tion. For example, artificial neural network (ANN) techniques
studied in [27] and [28] proved to improve the accuracy and de-
crease the complexity of traffic prediction and RA, respectively.
However, from both these works, it is clear that recent RA prob-
lems have become dynamic and require the enhancement of ma-
chine learning architectures in order to improve their inference
capabilities. As just pointed out, [29] proposed an inference en-
gine using fuzzy techniques to improve RA in CRNs using an
improved channel allocation that considered signal strength as
the decision variable for the channel access priority of SUs. A
genetic algorithm (GA)-based RA technique was studied in [30].
GA was used to define the radio in the form of chromosomes and
genes, where the users’ QoS requirements were given as the in-
put of the GA algorithm. The impact of the available spectrum
resource size was analyzed in terms of both the population size
and the number of defined chromosome genes in spectrum allo-
cation efficiency.

In another contribution, an improved long short-term mem-
ory (LSTM) was used in [31] to obtain accurate and fast traffic
flow forecasting in intelligent transportation systems. Moreover,
a time series prediction for extracting useful information from
historical records to determine their future values was studied
in [32], where a random connectivity LSTM (RCLSTM) model
was used to reduce the computational complexity associated
with LSTM and was tested and verified for traffic prediction and
user mobility in wireless networks. The RCLSTM was found
to exhibit a certain level of sparsity, which appealingly reduces
the computational complexity, making it suitable for latency-
stringent applications. An online optimization algorithm called
the energy aware and adaptive management (ENAAM), based
on traffic prediction and foresighted control policies, was pro-
posed in [33]. Here, the BSs and virtual machines (VMs) are
dynamically switched ON/OFF to effect energy saving and QoS
provisioning by exploiting short-term traffic load and harvested
energy forecasts using LSTM. This contribution was inspired by
the convergence of communication and computing has led to the
emergence of mobile edge computing (MEC), where computing
resources supported by VMs were distributed at the edge of the
mobile network. BSs aiming at ensuring reliable and ultra-low
latency services are equipped with an energy-harvesting system
to reduce energy consumption.

One shortcoming of this traffic prediction technique is that it
relies on the obvious seasonality of traffic that has been aggre-
gated with the granularity of "hours of day". Longer time gran-
ularities, based on hours, can have significant short-comings
in today’s network traffic, since it does not exhibit the same
seasonal behavior, but rather up-down linear trends. The traf-
fic pattern in modern cellular networks has changed drastically
since the emergence of smart phones owing to the many applica-
tions hosted by wireless networks. Applications for social net-
working (e.g., Facebook), for internet telephony (e.g., Skype),
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for micro-blogging (e.g., Twitter, Posterous, FriendFeed, etc.),
for instant messaging (e.g., WhatsApp, Facebook Messenger,
WeChat, Viber, etc.), consist mostly of real-time content and
hence exhibit different traffic patterns compared to the tradi-
tional voice, text messaging, emails and web surfing. Nowadays,
the behavior of user traffic is mostly application-specific and
varies rapidly within short intervals of time. Thus, the "hours of
day" granularity may present some anomalies with traffic trends
that require a new traffic matrix at each time slot in order to be
effective. Because of the change in traffic trends, there are sig-
nificant changes in individual packet sizes, burst sizes, packet
inter-arrival times, as well as the behavior of inactive periods.
For this reason, a system capable of learning traffic and user be-
havior, predicting its future trends, and dynamically adjusting its
computational resources to be assigned to traffic relations may
turn early research into usable solutions.

D. Motivation and Contributions

The application of data analytics in wireless data promises to
be a possible pathway towards achieving both QoS and energy
efficiency objectives. This will help in obtaining tentative oper-
ating points for network equipment to achieve energy efficiency
and network sustainability, which is an essential step in manag-
ing the high level of heterogeneity associated with future mobile
and wireless networks. Then, depending on the applied network
functions, the question regarding the balance between QoS pro-
visioning and energy efficiency rests on the packet-service dis-
cipline to achieve better energy saving. To solve this problem,
an interesting contribution is followed in [34]; however, the ap-
proach proposed in this paper differs from that, since it involves
a separation principle that decouples the design of RA, energy
consumption, and service QoS provisioning and makes the prob-
lem manageable. The major contributions of this paper are sum-
marized as follows:

o Firstly, a distributed dynamic RA based on uplink (UL)
power allocation and SU resource reservation protocol is
proposed. Resource reservation is a transport layer proto-
col designed to reserve resources across a network for QoS
using the integrated services model and is adopted in this
paper to give SUs a high probability to complete their trans-
missions. The resource reservation problem is solved using
geometric programming (GP) and a resource percentage
threshold (RPT) serves as the portion of resources reserved
for SUs. An optimal RA solution is obtained through a
weighted bipartite matching from graph theory with a poly-
nomial complexity of O(K?3) compared to the O(K!) of
integer programming.

« Secondly, resource consumption efficiency obtained from
the bipartite graph solution is then used to solve as
weighted cost function in which power consumption is
added together with different weights, reflecting their con-
tribution to BS power consumption. This initiates a DL
predictive control scheme with control actions derived to
drive a stacked auto-encoder (SAE) in making future traf-
fic predictions as well as providing computing performance
measures.

« Finally, control actions are applied and using this formu-
lation, relevant parameters of the operating environment
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such as workload arrival patterns, are estimated and used
by the model to predict the future behavior over a finite
horizon, T'. Using the output of the SAE, which is sim-
ply a regression between the previous and current sys-
tem states, appropriate packet-processing schemes are cho-
sen between mean slowdown first-come-first-served (MS
FCFS) and MS processor sharing (MS PS). The belief that
MS is important in packet-by-packet processing as a mea-
sure of the system’s energy efficiency is proven by the find-
ing that different traffic flows consume significantly differ-
ent amounts of resources and the choice of a processing
scheme determines the overall energy efficiency of the sys-
tem.

To achieve these objectives, the remainder of this paper is or-
ganized as follows: The system model of the resource-aware
energy-efficient model is presented using both opportunistic
spectrum access (extrinsic) and BS server opportunistic com-
puting (intrinsic) in Section III. The mathematical description
of the model is presented in both opportunistic access and traf-
fic load power consumption and then an overall formulation is
given in Section IV. The solutions for resource reservation and
optimal RA are presented in Section V, and the solution of the
computational-resource aware DL predictive scheme is given
in Section VI. The experimental set-up for the DL predictive
scheme is discussed in Section VII and the prioritization and en-
ergy consumption per service is discussed in Section VIII. The
simulation parameters and the simulation results together with
their discussions are given in Section IX. Finally, the validation
of the main findings of this paper is given in the conclusion in
Section X.

III. PROPOSED SYSTEM MODEL

Consider a single-cell spectrum-sharing scenario where a PU
transmitter and a PU receiver coexist with a set £ : k
1,2,---, K SUs in an energy-constrained CRN. It is assumed
that SUs are running real-time traffic and performing oppor-
tunistic transmission on the shared spectrum consisting of J :
j =1,2,---,J physical resource blocks (PRBs). Perfect chan-
nel state information (CSI) is assumed for all &' SUs uniformly
distributed in a cluster such that the distance between them and
the BS is characterized by channel gains g;1(t),- -, gj, x (t) as
illustrated in Fig. 1 below [35]. As shown in Fig. 1 above,
resources are allocated using a mapping technique through an
undirected bipartite graph. Since the CR technique is performed
by SUs, and the transmission access and gateway are dealt with
by the BS, a bipartite matching strategy in graph theory is ap-
plied to optimize the RA. The BS is assumed to utilize a hybrid
access scheme where SUs can connect when there are free RBs
and employs resource reservation for bandwidth estimation ad-
mission control. Therefore, the proposed system model is split
into two parts, which are discussed in the following subsections.

A. Spectral Efficiency

Each SU £ can transmit data through PRB j such that the
transmission link is represented by k£ — 7, which is denoted as
follows:

dj = \/(-Tk — ;)% + (ye — y5)?, (D
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Fig. 1. RA characterized as a weighted bipartite matching problem.
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which is a Euclidean distance measure where the k" SU and
the BS are located at (z, yx) and (z;, y;), respectively. In or-
der to increase the chances of SUs completing their transmis-
sions, a resource reservation strategy is proposed where the BS
reserves a fraction of the J PRBs for opportunistic SU transmis-
sions, which the SUs can exploit with an optimal transmission
power P; ;. that is closely controlled by PUs’ activities. Thus,
the spectral efficiency of the k" SU with access to the j** PRB
is formulated as follows:

Pjkgjk

2
e )

Rjr =logy(1+ k), where ;) =
where R;j is the Shannon bound of the spectral efficiency,
and ;. is the signal-to-interference-plus-noise ratio (SINR)
obtained through the designated transmission power P; ., the
channel gain g; 5, the noise spectral density o2, and the inter-

ference caused by simultaneous transmission Zj, is described as

follows:
o= . Pilgsl’,
jeR\{k}

where P; denotes the transmission power of the other PRBs, ex-
cluding the one assigned to the k' SU. The channel gain 9j.k
is defined as a function of the distance measure in (1) and other
terms such as the path-loss coefficient n; 1, the channel fading
coefficient h; ;, and the path-loss exponent «,; as given in [36].
In (3) is a measure of the multiple access interference origi-
nating from other SUs, which might be using the same access
technique as the k" SU, linear SINR prediction that employs
constant first-order derivatives across adjacent transmissions is
assumed. Therefore, according to the proposed resource reser-
vation strategy, the UL rates achieved by SUs can be obtained
as follows:

3

th

S
Rjr = gT logy (1 +75.k) s

where £¢t" / ) is the fraction of resources reserved for SUs which
represent the admission condition for each SU that requests a
connection. The terms ¢ and ¢** are computed as follows:

“

§(y) =log(1+7) — (7) logy, <"(y)=—1—, (5

1+ 1+’
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High-level view of the decision-making life cycle for energy saving
through BS traffic load prediction.

where the term ~y is the most influential parameter as a factor
selected to adapt the channel quality conditions to the QoS.

B. BS Server Opportunistic Computing

The BS is assumed to use the OpenFlow software defined
networking (SDN) standard defined in [26], which is used to
monitor network information and subsequently decide on best
configurations to be applied in the entire CRN. The design ob-
jective is to maximize the CR system performance with respect
to throughput while reducing infrastructure energy consump-
tion. The high-level representation of traffic classification and
decision-making life cycle is shown in Fig. 2 below. In Fig. 2
above, the circled SUs represent all the SUs in the cluster where
the BS server operates using model-based reinforcement learn-
ing (RL), with an actuator that estimates the state of the pro-
cessor using Markov decision processes (MDPs). The traffic
streams from SUs consist of a variety of QoS requirements and
the current load measurements are the inputs used by the ac-
tuator to make energy-efficient decisions and take subsequent
transmission actions. This completes a model-based RL strat-
egy whose process feeds the RL portion of the algorithm, which
determines, in a single look-ahead, which possible scheduling
scheme would provide the most effective energy saving, QoS,
cost and response. For the balancing of QoS provisioning and
energy saving, the BS server is assumed to employ MS on work-
load processing.

The optimization of the system performance and energy con-
sumption involves performance specifications that are mea-
sured, such as the traffic load measurements and QoS require-
ments that form the system state x € X. Therefore, as seen in
Fig. 2 above, the BS has to make energy-saving decisions based
on the following dynamic equation

&= o(a(t),u(t)), ©)

which describes a continuous-time non-linear input affine sys-
tem, where x(t) is the state of the system defined by the load-
dependent power consumption P(v, p,t), where v denotes the
BS switching mode, p is the system utilization, and the term
u(t) represents the control input to the system, which are the
decisions made on which scheduling scheme to be used. In or-
der to achieve the objective of the study, one must be cognizant
that the main cause of high energy consumption in wireless net-
works is BS operation, whose process has proved difficult to
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optimize manually because of the complexity of the interactions
of the equipment necessary for its operation.

IV. MATHEMATICAL PROBLEM FORMULATION

Since the rules and heuristics needed for every scenario that
ensures everything from efficient RA to energy efficiency are
difficult, particularly when interactions with the immediate en-
vironment are considered. In this paper, each of the parame-
ters required to ensure energy-efficient RA will be formulated
individually and will then be combined into a single formula-
tion. Thus, the optimization problem for SU UL capacity max-
imization is formulated with the resource reservation technique
whereby the BS dynamically reserves resources for SUs based
on the number of PUs currently being served. The formulation
of the optimization problem is as follows:

J K
P1 = argmax Z Z R; 1, subjectto @)
P oS
J K
C1:> > Py < Puax, VEEK ®)
j=1k=1

K
C2: Pr {megj,kﬁ > Ith} <45, VkeK (9
k=1
where P is the set of all individual UL transmission powers P; i,
which for all £ € K, is limited by a power constraint Pp,,x given
in (8). This is the maximum allowed power, which is set indi-
vidually for each SU owing to the power falloff of dj_ka”l with
distance d;;. The constraint in (9) denotes that the probability
that the interference threshold Iy, is exceeded must not exceed

J.

A. Traffic Load and Power Consumption

Every BS activity has required power consumption implied
in its energy consumption, thus it is assumed that the power
consumed by the BS belongs to the following classes: Poy, (1),
which represents the load-independent power consumption,
Py (t), which represents the load-dependent total transmission
power, and Pierver(t), which is the load-dependent computa-
tional power consumption of the server. Therefore, the total BS
power consumption is obtained as a combination of these classes
as follows:

P(U7 p7 t) = /U(t)POI](t) + PtX(t) + Pserver(p7 t)) (10)

where v(t) € {e,1}, ¢ # 0 is the BS switching status indica-
tor; 1 for active mode and ¢ for power-saving mode, p(t) is the
maximum server utilization factor at time slot ¢. In fact, ¢ is the
operational, load-independent power consumption representing
the normal BS power expenditure, which entails baseband pro-
cessing, conversion, cooling, etc. The term P (t) represents
the load-dependent total transmission power from the BS to the
served SUs. The term Pierver(p, t) denotes the load-dependent
computational energy consumption of the server, defined as fol-
lows:

Pscrvcr(pa t) = Hdlc(t) + p(t)Pcomp (t)a (1 1)
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which describes the QoS part where the BS server dynamically
adjusts its computational power based on the current traffic load
and demand. The term P,q10(t) is the server’s load-independent
operational component, and Peomp(t) is the maximum power
consumed by the server when operating at full power.

Assuming that the BS computational resources can be tuned,
the term Peomp(t) is linearly scaled with respect to p(t). The
term p(t) denotes the slope of the trajectory that quantifies the
load dependence. Therefore, P(v, p,t) weighs the energy con-
sumption due to the BS transmission and server computation.
Since a single BS is considered, an optimization weight « is em-
ployed and the corresponding weighted cost function is defined
as follows:

@, p,t) £ P (0(t). p(t).1) + ale(t) = p(1)",  (12)
where @ £ 1 — a, 0 < a < 1, the quadratic term (p(t) —
p(t))? accounts for the QoS cost, where p(t) = £(t)/limax is
the approximation of the normalized BS load at time slot £, as
given in [39]. Hence, over the finite horizon ¢ = 1,---, T, the
optimization problem is defined as follows:

P1* :minJ(v,p,t), VteT (13)
v,p
subject to
C1":0<p(t) <1, C2":w(t) € {e 1},
<o) < e,

C3* Loy > (1),

then the vectors v and p contain control actions for the con-
sidered time horizon T, i.e., v = [v(1),v(2),---,v(T)] and
p = [p(1),p(2), -+, p(T)]. The constraint C1* specifies the
server utilization factor bounds, C2* specifies the BS operation
status, C3* forces the required number of VMs, I, .x, always
to be greater than or equal to a minimum number 7(¢) > 1.

B. Overall Optimization Problem

In order to achieve an optimal RA strategy, transmission col-
lisions between PUs and SUs may result when the interference
caused by SUs exceed 9, as shown in (9). In order to meet
this condition, the RA problem has to be reduced to a bipar-
tite matching problem. The advantage of this formulation is that
globally optimal power allocations can be effectively computed
for a variety of system-wide objectives and SU QoS constraints.
Therefore, a single objective bipartite graph to realize the bi-
partite matching technique is constructed as illustrated in Fig. 3
below. In Fig. 3 above, on the left is the bipartite graph show-
ing the whole matching process, while on the right is a graph
edge showing individual allocation. In this illustration, the K
SUs form a set K = {1,---, K} and on the opposite side, the
J PRBs form a set J = {1,---,J}; K < J. This constitutes
a two-dimensional mapping problem where each SU may want
a number of PRBs such that the inputs to the system are the
number of SUs and the number of PRBs. Thus, during the RA
process, it is paramount to consider certain parameters such as
rate requirements and the weight a;, of the link, which will be
explained in detail in Section V.A. Therefore, since the spectrum
resource is &, the formula for data rate R;;, can be formulated to
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Fig. 3. Unconstrained weighted bipartite graph representation of resource allo-
cation.

the system data rate as follows:

K
Reys =Y Rk
i=1

In order to maximize (15), it is required that all the possible
K'! combinations between SUs and PRBs are tried out. At this
point, the weight of each connection link between the SU and
the BS is calculated using a bipartite graph as follows:

s)

Rays }

—— (16)
J K )

D1 2ok Bjk

where J x K is used to normalize the mean value of w;. The
higher the value of wjj, the higher the data rate attained, thus
the optimal RA can be described by the following optimization
problem:

wa{JxKx

K
P1™ :ar ma w;j 17
B, X (; M) (17)
subject to
C1*:J>K, Vg,q; €{1,2,---,K},
> qi, 4 { } (18)

C2* {qi,q;} < {r1,--- 75},

where by assuming that the bipartite graph is perfectly symmet-
ric, the original graph can be solved using a Hungarian matching
algorithm.

V. PROPOSED SOLUTION FORMULATION

When an SU requests an UL connection, the BS checks that
if by accepting the new SU connection its meets its admission
control condition, availability of resources and interference con-
straints. Transmission resources are afforded to SUs only if
these conditions are met, but mostly this RA is determined by
the number of SUs already in the system. To obtain the new
admission condition for a newly arriving SU, the number of
SUs is increased by 1 and this new admission condition is com-
pared with an admission bandwidth threshold, £°%, & > £°Y,
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which is set to a minimum equi-spaced sub-channel per SU. This
admission constraint is imposed to protect the integrity of PU
transmissions; then the admission control probability ¢ for SUs
within the BS coverage can be represented as follows:

(b — 1) gnew Z gsu
0, Otherwise,

with &new = &6 /(A + 1), where the denominator is the arrival
rate A in (4) increased by 1. Then, the total number of SUs
attempting to connect to the BS can be given by

19)

€<th

Enew

A

—1= ggth(é-su)—l. (20)

So, if 0 < gf—;h — 1 < &M (€5%)~1, it means the BS is under-
loaded, thus the admission probability equals 1. If £6" /€ 0w —
1 > &t (¢5)~1, the BS is overloaded and any new SU con-
nection request will be rejected. This results in a new admission
probability of &6 /(X + 1). In this case, the optimal transmis-

sion power and channel power gains per SU are obtained using
GP.

A. Bipartite Matching Strategy for RA

This formulation constitutes a two-dimensional mapping
problem where each SU may want a number of PRBs such that
the inputs to the system are the number of SUs and the number
of PRBs. Thus, during the allocation process, it is paramount to
consider certain parameters, such as the weights of rate require-
ments, and a graph data structure is considered for this problem,
as outlined below.

1) Denote the KC, J as bi-partition sets, X = {1,2,---, K}
and J = {1,2,---,J} and consider them as two strictly
independent sets, as discussed above.

2) Initiate labels u; and v; by u; = maxy; w;;, which are sup-
posed to support the SU data rates and label then according
to r1,re, - - -, 77, for the satisfaction of the k” SU in terms
of bandwidth demand b;. Match rate requests {g;,q;} to
one or more of the available radio units, as illustrated in
Fig. 4(a) below: This formulation is supported by Hall’s
theorem [40], where based on the SU traffic demands, RA
will be performed by satisfying different design criteria,
without loss of generality, ¢; and g;. In order to achieve
RA for the the bandwidth demands ¢; and g;, an example
of the solution is shown in Fig. 4 above, where the objec-
tives are collected to form vectors of rate request, {¢;, q;}
for SU traffic k, where the candidate PRBs must satisfy
both criteria.

3) Construct a subgraph as in Fig. 4(b), which is a straight-
forward generalization of the bipartite graph matching in
Fig. 3 to multi-dimensional matching, where Fig. 4(a)
shows the RA using a bipartite graph and Fig. 4(b) is a
solution of the bipartite matching problem by constructing
a regenerative bipartite graph.

4) The weight ay; € [0,1] is then added to the links con-
necting the SU to the corresponding PRBs, such that the
number of PRBs consumed by each SU is represented as
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(a)

Fig. 4. Multi-objective oriented bipartite graphs and evolving of concepts to
facilitate RA.

follows:

brmin Q1)

biuk =

TR = Z akjbiuy 5
JGJ max

where the term b;,,, is the number of consumed PRBS, byin
and by, are the minimum required long-term rate, which
represents the rate QoS class requested by SU £ and the
maximum required rate, respectively.

The number of PRBs consumed is regarded as the load ef-
ficiency, which is the resource consumption efficiency. Us-
ing (16) and (21), this is given as

plt) = .

which is the long-term rate achieved by SU k.

5)

(22)

B. Efficiency of the Bipartite Matching Algorithm

The bipartite matching algorithm, which is an efficient match-
ing approach in graph theory, provides an optimal RA solu-
tion with a polynomial complexity of O(K?) compared to the
O(K!). Given a finite bipartite graph G with vertices that can
be partitioned into two disjoint sets C and 7, all of its edges
& connect a vertex in K to one in J. A match is a subset of
edges K C &£ no two members of which share a common ver-
tex, where K is the cardinality of the node set of the bipartite
graph.

For example, if data rates r1, 72, and r3 satisfy demand g;,
and data rates 71, 3, and 74 satisfy demand g;, the request vec-
tor {g;, ¢; } for SU; and SUj traffic only connects to 71 and r3.
This is the intersection of sets formed by PRB matching both
criteria for SU; and SUs, as shown in the regenerative bipartite
graph in Fig. 4(b). In this way, a regenerative bipartite graph is
obtained for multi-objective RA, using a technique called pref-
erence requirement, which states that for any application that
the SU is running, there is a preference requirement of data rate
from the corresponding vertex in set K to set 7.

VI. MODELING THE PREDICTIVE CONTROL SCHEME
USING DEEP LEARNING

Supposing that a naive method is applied at the current time ¢
to predict the traffic load and then decide an appropriate trade-
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off between QoS provisioning and energy saving to be applied
at time ¢ + 1. Referring back to Fig. 2, let the BS server be able
to save the traffic profile for the previous and current time slots,
t — 1 and ¢, respectively, for it to be able to predict the traffic
load for the time ¢t + 1 by curve-fitting and approximating its
moving trend. Assuming that the BS’s static energy and server
utilization can be tuned to scale the server dynamic power con-
sumption in proportion to the expected traffic load for the next
time slot, it can make the necessary trade-off between QoS pro-
visioning and energy saving.

Using the predicted value of the traffic load together with the
values associated with the maximum BS capacity ¢(t), the en-
ergy consumption cost function J(v, p, t) in (13) can be solved.
To solve the cost function J(v,p,t), an online management
technique is employed whereby the cost function is treated as a
Lyapunov candidate [45]. Therefore, using the Lyapunov tech-
nique, the BS processor is treated as a hybrid switching system
where J (v, p, t) is associated with a search of an optimum op-
erating state, which when reached is maintained until parame-
ters are updated. Then, a time series prediction technique can
be applied to learn the function that maps a sequence of past
observations as input to an output observation, but before that,
the control actions that need to drive the time series prediction
model have to be derived.

A. Derivation of Control Actions

In this subsection, using model-based RL and Lyapunov tech-
niques, the control actions that will drive the time series pre-
diction model are derived. Assuming that the control actions to
drive the model in the next time slot ¢+ 1 are o(t) £ (v(t), p(t)),
the system state vector, which contains the inputs to the time se-
ries model at time slot ¢, is denoted by () (o(t), p(t)).
Here, the cost function J(C, p, ) is associated with reaching a
certain state and maintaining it until the duration At elapses.
This means that, in the sequel, the presentation (v(t), p(t), t) is
dropped to make way for (z(¢t + AT)) in the sequel. Now, if the
upcoming time slot is represented as t+1 = t—&—ZtT:I At, which
denotes the next transmission time interval where the predicted
system state is (¢ + 1), becomes the decision-making informa-
tion state for the next time slot. Taking the optimal cost func-
tion J(z(t)) as a Lyapunov candidate and the input trajectory as
u(t), then At = Ei:1 At < T,1 <t < T is denoted as the
time between two decision time steps, i.e., d(t) and d(t + 1), as
exemplified by the illustration in Fig. 5 below. With reference to
the graphical representation of the auto-scaling in Fig. 5 above,
the system faces serious concern when the load exceeds the 0.5
mark, which is indicated by the broken line. Assuming that the
probability that the traffic flow information of the space-time
points causes the future traffic flow, given the traffic load p(t)
at time step ¢, the decision-making step can be given as 7(¢).
The decision for the next transmission time is taken, the control
(t) is applied at the beginning of the next time slot, whereas
the offered load p(t) is accumulated during the time slot and its
value is only known at the end of each time slot. Then, it means
that the decision on the next time slot ¢ + 1 is made at the end
of time-slot ¢. The estimated system state for time-slot ¢ 4 1 is
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Fig. 5. Graphical representation of the time series prediction and decision steps.

given as follows (more details in Appendix A):

z(t+1)= ¢(m(t),v(t)),

where ¢(t) is the behavior model that captures the relationship
between (z(t), v(t)) and the next state (¢ + 1).

(23)

VII. EXPERIMENTAL SET UP

The experimental set-up step, which is similar for the auto-
regressive integrated moving average (ARIMA), the LSTM and
the proposed SAE, are outlined in the following subsections.

A. Data Collection, Pre-processing and Normalization

In this section, a traffic flow data set was obtained using a
traffic flow simulator in [42], aggregating it into data points sep-
arated by 1 second for 90 seconds (each for IN and OUT traffic
data). The traffic streams for K SUs were represented in the
form of a traffic flow matrix with a history of n time slots as
follows:

Sl Sl(t ) Sl(t - 1)
o — So B So(t —n) Sa(t — 24)
Sy St —n) Sic(t—1)

whose rows represent the historical traffic flow data during the
previous n time slots. Thus, this traffic flow matrix, together
with the system state and controls, is used as the input data for
the predictive model to generate predictions for the time horizon
T,ie,t,t+1,---,t+T.

B. Data Pre-processing

In this section, a multilayer perceptron with a nonlinear ac-
tivation function, the logistic sigmoid, which has the squashing
role in restricting from a node to (-1, 1), was used. This is rep-
resented using attention matrix A, given as follows:

A =3(W(S*) +(), (25)
which can be interpreted as the probability that the traffic flow
information of the space-time points causes the behaviour of fu-
ture traffic flow. The term @ is the sigmoid activation function
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Fig. 6. SAE with job queue attribute detection and priority queue.

between outputs and the hidden layers of the neural network,
which is monotonic, continuous and differentiable, given as fol-
lows:

D(B) = (1 4+ erlbmmboin)) " (26)
where x € [1, —1] is a constant that determines if the function is
increasing or decreasing, and by,;,, is the QoS metric of a given
service and determines the absissa shift of the function, whereby
the absissa is the QoS metric by, .y, both given in (21). The term
W is the weight that acts as a projection and vectorization of the
speed matrix S® between the input and the hidden neurons, the
speed matrix S® has the same size as S’ in (24); and the term (
is the bias variable without which a given layer will not be able
to produce output in the next layer that differs from 0. Then, the
traffic flow matrix S/ is point-wise multiplied by the attention
matrix A to obtain a weighted traffic flow matrix S for the ap-
plication of the DL procedures. Then using feature mining, we
obtain server instances of the applications. By server instances,
we mean a set of features/attributes representing a specific oc-
currence of the problem.

C. Training, Testing and Validation

During training and testing, the data set was split into 30%
training and 70% testing data sets, respectively. The variations
of the traffic load were aggregated in seconds on average of kilo-
bits per second. Then, it was reshaped, services and jobs put into
a job queue, extracted, processed and the service priorities made
available in the priority queue and decisions for the next trans-
mission slot were taken based on these priorities. The goal of
the SAE was to use a speed matrix S° of the space-time points
of S/ to learn attention-weight matrix A. Thus, given the traffic
load p(t) at time stamp ¢, the decision-making step given as 7(t)
leads to a decision that should ensure that enough resources are
allocated to serve the traffic until the next decision step. This is
the number of virtual machine instances that need to be turned
on to serve the traffic classes, such that the number of virtual ma-
chines allocated define the instance of a class. Here, a fully con-
nected SAE consists of two encoders, each encoder consisting
of a single hidden layer, as shown in Fig. 6 below. The service
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attributes are obtained from the job queue, i.e., resources (b, ,
bmax), deadline, and processing time. The scheduler performs
all sets of combinations of the application environment men-
tioned in the service attributes. All attributes per service per user
are entered with calculated weights and assigned priorities. As-
sign the current value of p(t) to a system state z(¢) = [p(¢), ¢(t)]
as the input vector that drives the system behavior at time ¢. Ini-
tialize the cost function J (v, p, t) to zero; then begin a breadth-
first search by building a tree of all future states up to the pre-
diction depth T, i.e., Z(t + 1),---,Z(t + T). Accumulate the
cost as the search for future states travels through the tree, ac-
counting for predictions and past outputs. Create a state-space
S(t+n) using the set of states reached in every prediction depth
t 4+ n. For every prediction depth ¢ 4 n, the search continues
from the set of states S(¢ + n — 1) reached at the previous step
t+mn — 1, exploring all possibilities of obtaining the next system
state. Update the accumulated cost as the result of the previous
accumulated cost, plus the cost associated with the current time
step ¢ + n. When this exploration has finished, select the action
at time ¢ + 7' that leads to the best final accumulated cost as the
optimal operating value, as done in Appendix A.

D. Calculation of Performance Measures

Two ways of exploring the state space are used in this paper;
one is the random technique, which uses the randomness of a
random tree, while the other one uses the exploration technique
from RL technique.

The random technique proceeds as follows: Let ¢ be the cur-
rent time, and p(t + n — 1) be the predicted traffic load in time
slott+n—1,n = 2,---, T It then performs a random prediction
as follows: If the expected load difference p(t + 1) — p(¢) > 0
then the offered load in the next time slot is randomly selected in
the range [0.5, 1], otherwise it is selected evenly from the range
(0.0, 0.5). This is an exploration kind of behavior.

The RL-based technique substitutes the randomness of the ex-
ploration of the random tree with an exploitation technique from
RL, which is a very naive technique that only cares when the
traffic load exceeds 0.5. This means that it selects its prediction
in the range [0.5, 1], which saves a lot of time compared to the
exploration technique.

VIII. PRIORITIZATION AND ENERGY CONSUMPTION
PER SERVICE

Once the prediction horizon is fully explored, a unique se-
quence of reachable states Z(t+1), - - -, (¢t +7') with minimum
cumulative cost is obtained. Two decisions have to be made
when generating the class values; one prioritizes the QoS while
the other prioritizes the energy saving. These are described as
follows:

e QoS prioritization: This approach prioritizes QoS provi-
sion over energy saving, which means it allocates more re-
sources to guarantee QoS. The allocation of more resources
reduces energy efficiency, since more server instances will
have to be launched at that given time. In this case, QoS
requirements are guaranteed while energy saving suffers.
In order to guarantee QoS, the decision d(t) taken at time
step t considers future traffic changes until time step ¢ + 1.
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The service class is generated as follows:

d(t) = max(QoS(\(t))),Vt € {r(¢t), 7(t+1)}. (27
The QoS(-) function takes the traffic load measured at time
t as input and outputs I(t), which is the number of vir-
tual machines that are required to serve the measured traffic
rates without violating the QoS.

« Energy saving prioritization: This approach assigns pri-
ority to energy saving by ignoring short-lived bursty traffic
between steps ¢ and ¢ + 1 to save on the energy consump-
tion that comes with launching many virtual machines, thus
accepting short-lived QoS degradation owing to the under-
provision of virtual machines. The service class is gener-
ated as follows:

d(t) = max (QOS()\(T(t)))7QOS (A(T(f)))) (28)

This gives the number of processing units by specifying the
scheduling mechanism, as the idea is to concentrate the compu-
tational resources by choosing the appropriate scheduling mech-
anism for each service that will not drain too much of the sys-
tems’ energy. Thus, for energy consumption per application, the
following equation is used

Pon(t) + Ptx(t)
A

EE(v,p) = Y + 0 Peomp(prt),  (29)
where A is the packet arrival rate, p = Ap(t)Els] is the load
factor, o(t) is the normalized traffic load, E[.] is the mean ser-
vice rate of the server, and s is the service time per job. Equa-
tion (29) supports the principle of concentrating computation
on a small number of processing units in order to minimize the
server power consumption per application [52]. A simple an-
alytic model that uses the combined energy-QoS cost function
includes in its first part the well-known Pollaczek-Khintchine
formula for M /G /1 queue [48] for the average response time,
based on Poisson arrivals of jobs and general service time distri-
butions, and in its second part the energy consumption per job,
given as follows:

C(v,p) =

alEs {1 +

p(1+C3) v(t) Pon(t) + Pix(t)
2(1—p)]+b{ 3 + mE[s]

(30)

Here, C2 = 02/(1/p)? is the squared coefficient of variation
of service time, where O’? is the variance of the service time
and p is the mean service rate; constants a and b describe the
relative importance placed on QoS and energy consumption, re-
spectively. This allows us to compute the value of the arrival
rate that minimizes C'(v, p). The result in (31) indicates the op-
timum setting of the load p* = A\*E[s| and its dependence on
v(t) Pon(t) + Pix(t) and on the ratio b/a given as follows:

\/Qb(v(t)Pon (H)+Pix(t)
. a(1+C3)

Pt = :
26(0(t) Pon (1) + Pex (¢
1+ \/ ( a(pfcg) =

3D
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Algorithm 1: Algorithm to exhaustively evaluate operating
states within the prediction horizon T’
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Table 2. Simulation parameters.

Input: Current state x(¢), Prediction horizon T’
Output: <(¢), EE(v, p), C(v, p)

01: Initialize all inputs: S; = x(¢)

02:  Assign J(Z(t)) + J(&(t —1))

03: Fort=1:Tdo

04: Set next state Sy 1 # ()

05: For x € S; do

06: Predict environment parameters for ¢ + 1

07: Estimate the next state, & = ¢(x, u)

08: Set S¢y1 =S U {.CE}

09: Find z;, € Sy with minimum cost J(z)
(i.e., 4(t) = input leading from x(t) to Zyin

10: If J(z) = J(z) — J(Z) do

11: Execute QoS priority using (27)

12: Else

13: Execute energy saving using (28)

14: End If

15: Compute service cost using (31)

16: End For

17: Predict the cost J(Z) using (34)
18: Return ¢(t)
19:  End For

Simulation parameter Value

Carrier frequency, f, 2.1 GHz

System bandwidth, & 8 MHz

Maximum number of RBs, J 100

Noise power spectral density, o 2 x 10~ watts/Hz
BS operating power, Py, 40.25 dBm [10.6 W]
BS transmission power 46 dBm [40 W]
Dynamic maximum power, Ps.,, 56.7 dBm [472.3 W]
Energy consumption at P,qje 3]

Path-loss model
Symbol duration, T’

34.46 4 201ogo(d;k)
500 x 10% symbols/sec

Maximum packet arrival rate, A\ 60 packets/sec
Min. and Max. BS load, ¢ [5,10] MB
Maximum decision interval, At 1 sec
Minimum number of VMs, I(¢) 1

Maximum number of VM, I,.« 30

Number of input layers 1

Activation function, hidden Sigmoidal
Learning rate 0.3

Number of output layers

1

Table 1. CRN traffic profiles considered in this paper.

CRN applications’ traffic profiles

Application/Job Des. delay by, bps  bax bps
Audio or VoIP service 180 ms 30K 64 K [43]
Online gaming 150 ms 1M 4 M [50]

Buffered video 2 ms 3M 25 M [51]
Video conferencing 300 us 256 K 20 M [49]

Equation (31) gives us a simple rule of thumb for select-
ing system load for optimum operation, depending on how
we weigh the importance of energy consumption with re-
spect to average response time or how fast we are getting
the jobs done. We also see that p* increases at the ratio
(b(v(t) Pon(t) + Pix(t)))/a(1 + C2). This tells us that the op-
timum load should increase with the expression v(t) Py (t) +
P (t) of the system, the relative importance that we place on
energy, and with the squared coefficient of variation of service
time. The algorithm for this process is shown in Algorithm 1:

IX. SIMULATION RESULTS AND DISCUSSION

To validate our main findings of this paper, a series of simula-
tions were conducted using M ATLABTM  The services con-
sidered are tabulated in Table 1 below. The features tabulated
in Table 1 above are used to compute the resource consumption
efficiency for each service run by the CR devices using (21).
Simulation parameters are as shown in Table 2 below.
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Fig. 7. UL achievable capacity per SU.

A. Resource Reservation and Allocation

In this subsection, it is considered that some resources are left
for SUs using the RPT, which gives the amount of resources re-
maining for SUs when PUs are active in their channels. The
bandwidth required by PUs is calculated and their required ca-
pacity is set to find the bandwidth percentage to be allocated to
SUs, which gives the RPT. After the RPT has been calculated,
the performance on the achievable capacity is evaluated using
two variations of the algorithm; (i) Dynamic-RPT + Bipartite
matching and GP and (ii) Dynamic-RPT + GP for six and nine
PUs in the CRN. The achievable capacity and the percentage de-
crease in RPT as a function of an increasing SINR are illustrated
in Fig. 7 and Fig. 8 below, respectively.

Fig. 7 above shows results for the RPT for SUs, given the
number of PUs and resources allocated to them. It can be ob-



HLOPHE AND MAHARAJ: QOS PROVISIONING AND ENERGY SAVING SCHEME ...

<
)
N

—&— Dynamic-RPT + Bipartite + GP (RPT = 46.64%, PUs = 6)
=@~ Dynamic-RPT + GP (RPT = 46.64%, PUs = 6

—#— Dynamic-RPT + Bipartite + GP (RPT = 19.97%, PUs = 9)
—#==- Dynamic-RPT + GP (RPT = 19.97%, PUs = 9

o
¥

°
©
T

°
=)

0.14

o
o ©
8 =

SU resource percentage,s (x100%)
8 s

0.04

0.02 I I I I I

SINR, ~ (dB)

Fig. 8. Resource percentage threshold vs. SINR.

served that the achievable UL capacity for SUs decreases with
an increase in the number of SUs being admitted, which sug-
gests that their performance might be limited by interference
from other users (PUs and SUs). However, by combining the
dynamic resource percentage threshold with bipartite matching
achieves better performance through the GP solution obtained
in (7). It is shown that as the number of PUs is increased from
six to nine, the RPT reduces from 46.64% to 19.97%, which is a
26.67% difference. With six PUs and only one SU admitted into
the system, the achievable capacity is 318.56 Mbps and 306.16
Mbps at an RPT of 46.64%, which indicates that Dynamic-RPT
and bipartite matching performs 3.54% better than Dynamic-
RPT alone. As SUs are admitted into the system, the achievable
capacity decreases such that at 11 SUs, the achievable capac-
ity is 28.96 Mbps and 27.83 Mbps, which is a 0.3% difference
between the two algorithms. When the number of PUs is in-
creased to nine, the achievable capacity is 136.36 Mbps and
131.05 Mbps with one SU in the system. However, there is a
difference of only 0.483 Mbps between the two algorithms at 11
SUs. With nine PUs, more asymptotic behavior is observed, as
the number of SUs increases, which suggests that the RPT algo-
rithm always allows for resources to be reserved.

Fig. 8 above shows the decline in the RPT as the SINR ~
increases, and what can be observed is that the RPT decreases
more rapidly when there are fewer PUs in the system than when
there are more PUs. This observation can be explained as fol-
lows: with an increase in the number of available channels and
good channel conditions, the probability of SUs’ channel access
increases, which also increases the possibility of SU collisions.
It is a problem that still needs to be addressed. Furthermore,
with a decrease in the number of available channels, even if the
channel conditions improve, there are fewer transmission oppor-
tunities for SUs due to PU activities and an increase in the col-
lision intensity among SUs. In the same fashion, the achievable
UL capacity per SU as the SINR increases is evaluated in Fig. 9
below. As shown in Fig. 9, the performance of the UL capacity
per SU as a function of an increasing SINR ~; however, there
is a performance difference, as the number of PUs is increased
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from six to nine. As in the case of the performance shown in
Fig. 7, it is shown here that the achievable UL capacity per SU
decreases. However, the difference between the two algorithms
is less when the number of PUs is kept constant. This shows
that even though SUs might be expected to exploit much of the
available capacity and achieve higher transmission throughput,
this is affected by the number of available PUs. This can be ex-
plained using the response of the effective system bandwidth as
a function of an increasing SINR, which is shown in Fig. 10 be-
low. Fig. 10 above shows the response of the system bandwidth
as a function of an increasing SINR ~ for the two algorithms
and changing number of SUs. The system bandwidth decreases
drastically with an increase in PUs from six to nine. This result
serves to confirm an old belief that SUs can have higher instan-
taneous throughput when there are more available channels, but
the channel switching that takes place when PUs re-appear to
claim some of their channels and the PU activities together with
the contention among SUs create high liability, since there might
not be available channels for some SUs.
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Fig. 11. BS load prediction using an SAE architecture.

B. BS Traffic Load Prediction

Table 3, Table 4 and Table 5 below present a convergence
comparison of the training and validation for three NN architec-
tures used for forecasting/prediction purposes. All three predic-
tion schemes are trained over 110 epochs, each epoch consist-
ing of 2,000 individual training trials, and the RMSE is used as a
performance measure of the models. The training and validation
results of the ARIMA in performing the same prediction task are
shown in Table 3. The training shown in Table 3 was performed
over 110 epochs and the training convergence was observed at a
loss of 0.11. The same performance evaluation was done for the
LSTM, as shown in Table 4.

In Table 4 it can be observed that the LSTM begins with an av-
erage training error of 0.4036 (RMSE), which is better than that
obtained using the ARIMA, i.e., 0.5094 (RMSE); itis a 10.58%
improvement over ARIMA. However, at the end of the training
only a 1.15% difference is observed. Compared to the ARIMA
and LSTM, the SAE architecture performs well with an initial
training error of 0.3115 (RMSE), which is 19.79% and 9.21%
superiority over ARIMA and LSTM, respectively. Therefore,
compared with the other two architectures, in the sequel, the
SAE becomes the architecture of choice because of the lowest
training error. The training of the SAE in traffic load prediction
is performed where a careful choice of learning rate is made
to be o = 0.3 to make the SAE training more reliable. Even
though the training and subsequent optimization might take a
little longer than it would with a higher learning rate, this is a
better choice of the learning rate. A training rate higher than this
one proved to be faster, while the convergence was poor because
the weight updates became big, such that the optimizer overshot
the minimum and made the training loss worse. The results for
BS load prediction are illustrated in Fig. 11 below. As shown
in Fig. 11, the BS load pattern prediction results were based on
the SAE architecture for a time horizon of 7" = 90 seconds. The
prediction error shows some stabilization as the training time in-
creases, which indicates reliability of the training results to be
obtained.
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Fig. 12. Mean energy saving as a function of optimization weight o using SAE.

C. Energy Saving and QoS Provisioning

When the SAE is use in energy saving with respect to the op-
timization weight, «, the RL-based technique is compared with
the random technique with the load varied from 5 MB and 10
MB. The performance results are shown in Fig. 12 below.

As shown in Fig. 12, the performance of energy saving is con-
sidered in terms of the traffic load with respect to the optimiza-
tion parameter . In the range o« = [0.1,0.4], the impact of
the traffic load is clearly visible: as the load is increased (i.e.,
10 MB), more energy is being saved compared to when there
is less traffic load (i.e., 5 MB). This shows that as more load
is allocated to each VM, energy saving increases owing to the
reduction in the number of VMs required to be turned on. This
means that concentrating the load in fewer VMs saves more en-
ergy than when the load is distributed over more VMs, i.e., when
the load is 5 MB. Another notable observation is that there is
more gain in energy saving with the RL-based technique com-
pared to the random technique when the load is increased from
5 MB to 10 MB. However, in the range o = [0.4, 1], the energy
saving drops for both algorithms, which indicates that as o« — 1
the emphasis is placed on QoS than on energy saving and the
system can allow for short-lived drops in energy saving.

D. Effect of Traffic Load on Server Response Times

In this subsection, the evaluation is based on the effect of the
traffic arrival on server response times and server energy con-
sumption, which in principle means concentrating on the server
computational units’ energy consumption. The results of the
server energy consumption per job processed are illustrated in
Fig. 13 below.

Fig. 13 above illustrates the server energy per packet vs.
packet arrival rate \ as the traffic load p and service rate y are
varied. This evaluation is, in principle, concentrating on the
server computational units’ energy consumption. At first, the
traffic load is varied, while the service rate is kept constant; then
the traffic load is kept constant while the service rate is varied.
In both cases the energy per packet decreases as the packet ar-
rival rate increases. This observation can be explained by the
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Table 3. Training and validation results for the ARIMA.

ARIMA
Training epoch 10 20 30 40 50 60 70 80 90 100 110
Training loss 0.509 0406 0.331 0.254 0.206 0.159 0.131 0.122 0.119 0.113 0.113
Validation loss 0462 0332 0297 0.244 0.203 0.153 0.129 0.121 0.119 0.113 0.113

Table 4. Training and validation results for the LSTM.

LSTM
Training epoch 10 20 30 40 50 60 70 80 90 100 110
Training loss 0.404 0318 0.265 0.209 0.187 0.136 0.122 0.120 0.109 0.101 0.101
Validation loss 0.381 0303 0.249 0.186 0.161 0.124 0.112 0.111 0.108 0.101 0.101

Table 5. Training and validation results for the SAE.
SAE

Training epoch 10 20 30 40 50 60 70 80 90 100 110
Training loss 0.312 0.282 0.228 0.171 0.149 0.116 0.111 0.108 0.107 0.100 0.100
Validation loss 0.281 0.253 0.205 0.151 0.140 0.118 0.111 0.108 0.107 0.100 0.100
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Fig. 13. Server energy consumption per processed job as a function of packet
arrival rates.

fact that in the low packet arrival rate mode, the system expends
more energy in switching ON the servers’ computational units,
leading to higher energy consumption. When the service rate
is kept constant and the traffic load is increased, the energy per
packet is more sensitive to the increase in packet arrival rate.
However, when the service rate is varied and the traffic load is
kept constant, the energy per packet decreases and is less sen-
sitive to the increase in packet arrival rate. This shows that the
server’s energy consumption is more responsive to the traffic
load than it is to the service rate. This observation is consistent
with the results found in [52].

Table 6 and Table 7 show the energy consumption per packet
vs. normalized traffic load as a function of the emphasis placed
on QoS and energy saving, respectively. Table 6 shows the per-
formance of the system when a, which is the importance placed

on QoS, is varied and b, which is the importance placed on en-
ergy consumption, is kept at a minimum of 0.1; the energy con-
sumption is low. This attests to the result obtained in (31), which
shows that the optimum setting of the load p* = A\*E[s] will de-
pend on v(t) Py, (t) + Pix(t) and on the ratio b/a.

Table 7 shows the performance of the system when the em-
phasis is placed on energy consumption b and the QoS priority
is at its minimum. These results illustrate that when the em-
phasis is placed on QoS, the energy consumption will increase,
since the system needs to guarantee QoS by allocating more re-
sources, thus increasing energy consumption and reducing on
energy saving. From these results, it can be noted that when
the priority is the QoS, the energy saving decreases as the traffic
load increases. This is because when the traffic load increases,
the resource consumption efficiency increases as the computa-
tional resources have to stay ON for a long time, which increases
energy consumption, thus reducing energy saving. However,
when the priority is shifted to energy saving, energy consump-
tion is low, as the system ignores the increase in traffic load and
allows some minor QoS degradation. Therefore, fixing one pa-
rameter, either a and varying b or vice versa allows us to scale
the system’s response time and the energy consumption per ap-
plication.

E. Cost of Energy Consumption with Server Mean Slowdown

Here, the variation in energy consumption cost as a function
of the mean arrival rate A for both FCFS and PS scheduling
mechanisms with server MS is evaluated. The number of chan-
nels and the price per joule of energy are kept constant, while the
mean service rate p is varied. The traffic profiles in Table 1 are
regarded as the QoS parameters, where by, represents the size
of the request, which is the maximum required bandwidth, and
bmin represents the benchmark minimum required bandwidth as
defined in (21).
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Table 6. Energy consumption per service, varying a and keeping b at its minimum.

Energy consumption per packet (Joules/bit)

Traffic load 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
a=0.6,b=0.1 63.5562 31.9717 214538 16.1872 129900 10.7812 9.0752 7.6060 6.2019
a=0.7,b=0.1 63.6072 32.0253 21.5100 16.2433 13.0400 10.8141 9.0746 7.5487 6.0569
a=0.8,b=0.1 63.6583 32.0789 21.5662 16.2995 13.0900 10.8471 9.0740 7.4914 509118
a=09,b=0.1 63.7093 32.1325 21.6224 16.3557 13.1400 10.8801 9.0735 7.4340 5.7668
Table 7. Energy consumption per packet, keeping a at its minimum and varying b.
Energy consumption per packet (Joules/bit)
Traffic load 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
a=0.1,b=0.6 379.551 189.954 126.756 95.156 76.190 63.533 54471 47.643 42.288
a=0.1,b=0.7 442.801 221.604 147.873 111.006 88.880 74.116  63.549 55.593 49.361
a=0.1,b=0.8 506.051 253.254 168.990 126.856 101.570 84.700 72.628 63.543 56.433
a=0.1,b=09 569.301 284.904 190.106 142.706 114.260 95.283 81.707 71.493 63.505
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Fig. 14. Cost of energy consumption as a function of mean arrival rates with
n=0.6.

E.1 Mean Slowdown First-come-first-served

The performance evaluation results for the MS FCFS schedul-
ing mechanism for processing rates y = 0.6, p = 0.7, and
1 = 0.8 are shown in Figs. 14, 15, and 16, respectively.

In Figs. 14, 15, and 16 above, there is a noticeable increase
in the energy consumption, since as the rate of job arrivals in-
crease, more energy is expended in pushing them out of the sys-
tem within their deadlines. The video conferencing application
has the lowest cost on the system compared to the other appli-
cations, owing to the difference between the by,;, and by,,x, as
seen in Table 1. A greater difference between these values gives
a large value of b;, and the lower the value of the resource
consumption efficiency becomes as can be seen in (22). How-
ever, the cost of energy consumption decrease by 0.43% when
the service rate is increased from p = 0.6 to p = 0.8. Thus, for
an FCFS scheduling scheme with server MS, the cost of energy
consumption varies inversely with the service rate, which shows
the variation in the cost of energy consumption as a function of

Mean arrival rate (\)

Fig. 15. Cost of energy consumption as a function of Mean arrival rates with
pn=0.7.

arrival rate for the MS FCFS scheduling mechanism. The effect
of increasing the arrival rate on energy consumption is inves-
tigated, keeping the number of VMs, service rate, and size of
requests constant.

E.2 Mean Slowdown Processor Sharing

The performance evaluation results for the MS PS schedul-
ing mechanism for processing rates p 0.6, o = 0.7 and
1 = 0.8 are shown in Figs. 17, 18, and 19, respectively. When
the scheduling scheme used is the MS PS, the cost of energy
consumption is reduced, as shown in Fig. 17 below.

Figs. 17, 18, and 19 above show the variation in the cost of
energy consumption as a function of an increasing arrival rate
for the PS scheduling mechanism with MS. The energy con-
sumption and its cost increase as the mean arrival rate increases,
but it is not sensitive to a changing processing rate, hence the
performance remains the same. It can be observed that there is
substantial energy saving with the MS PS compared to the MS
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Fig. 17. Cost of energy consumption as a function of mean arrival rates with
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FCFS, with MS PS achieving higher energy saving without the
cost of energy consumption increasing much as the mean arrival
rate increases. This is because there is almost no queuing delay
with the PS system, since all packets are served simultaneously
such that the traffic load as the incoming traffic rate is never
greater than its outgoing capacity. Except for the fact that MS is
more energy efficient, which applies to both FCFS and PS, PS is
an even more efficient scheduling scheme, since it concentrates
job processing within a few computational units instead of dis-
tributing the workload across all processing units. With a few
VMs commissioned, less energy is consumed and hence there is
substantial energy saving when the MS PS scheduling mecha-
nism is used compared to MS FCFS.

Detailed results for energy saving between the two workload
scheduling schemes are tabulated in Table 8 and Table 9 below.

The results shown in Table 8 and Table 9 show that a de-
crease in the b;,, is also a decrease in the percentage energy
saving. This can be explained based on the fact that as the dif-
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Fig. 19. Cost of energy consumption as a function of mean arrival rates with
pn=0.8.

ference between the required long-term resources by,;, and the
the maximum required bandwidth becomes large, more packet
processing units are required. However, one striking observa-
tion is that as the packet arrival rates increase, the system energy
efficiency also increases. This means that the energy consump-
tion per packet decreases, as observed in Table 6 and Table 7.
However, in this case it is the packet-service discipline that im-
proves the performance. Regarding packet service discipline,
the central issue that has been addressed is the notion of fair-
ness, by realizing that different packets consume energy differ-
ently. In essence, the question is what packet-service discipline
is deemed energy-fair. The answer to this question remains in
the server itself, where traffic flows require different services
and the scheduling properties that are required. The MS PS
packet-service discipline offers significant energy savings that
MS FCEFS as justified by a study in [53].
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Table 8. Percentage energy saving using MS FCFS scheduling mechanism.

FCFS with server slowdown

A Pkts/sec 10 15 20 25 30 35 40 45 50 55 60
VolIP 0.118 0414 0.869 1.482 2253 3.182 4269 5515 6919 8481 10201 %
Online gaming 0.095 0.268 0.527 0.870 1.296 1.807 2.403 3.083 3.848 4.696 5.630 %
Buffered video 0.001 0.002 0.004 0.007 0.010 0.013 0.017 0.022 0.027 0.033 0.039 %
Video conferencing  0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 %
Table 9. Percentage energy saving using MS PS scheduling mechanism.
PS with server slowdown
A Pkts/sec 10 15 20 25 30 35 40 45 50 55 60
VoIP 0.810 1.215 1.620 2.025 2.430 2.835 3.240 3.645 4.050 4455 4860 %
Online gaming 0.675 1.013 1350 1.688 2.025 2363 2.700 3.038 3375 3.713 4.050 %
Buffered video 0.009 0.014 0.018 0.023 0.027 0.032 0.036 0.041 0.045 0.050 0.054 %
Video conferencing 0.001 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.007 0.007 0.008 %
X. CONCLUSION APPENDIX A

In this paper, a QoS provisioning and energy saving scheme
for single BS management where CRs run real-time services
was proposed, with design expectations in line with the IMT-
2020 and beyond requirement specifications. Since QoS con-
straints need to be satisfied, energy efficiency becomes a critical
concern and energy management issues need to be addressed
from a single BS perspective. Firstly, a distributed dynamic
RA based on a resource reservation protocol was proposed to
reserve resources to give SUs a high probability of complet-
ing their transmissions. The optimal RA solution was obtained
through weighted bipartite matching with a polynomial com-
plexity of O(K?3) compared to the O(K'!) of integer program-
ming. Resource consumption efficiency obtained through bipar-
tite matching was then used to solve as weighted cost function
in which power consumption was added together with differ-
ent weights reflecting their contribution to BS power consump-
tion. Using the derived control actions, workload arrival patterns
were estimated and used by the DL model to predict the future
behavior over a finite horizon, 7T'. Using the output of the SAE,
which is simply a regression between the previous and current
system states, appropriate packet processing schemes were cho-
sen between MS FCFS and MS PS. The simulation results ob-
tained indicate that the predictive control achieves better energy
saving as the traffic load increases, owing to a few VMs com-
missioned to serve the traffic load. This shows that concentrat-
ing the workload on a few computational resources saves energy
owing to fewer VMs being turned on. Moreover, using the MS
PS packet processing achieves 6.89924% more energy energy
saving compared to MS FCFS. This shows that communication
systems with PS represent adequate models for resource shar-
ing, e.g., the bandwidth of communication systems, and can be
adopted for balancing QoS provisioning and energy saving in
future mobile and wireless network design.

SOLUTION OF THE COST FUNCTION

Let (¢ + At) be the actual state when the sample-and-hold
controllers {u(t),---,u(t + At)} are applied. Moreover, let
J(x(t+AT)) be the optimal cost obtained by solving (13) based
on the new current state x(¢t + AT'), provided the current cost
function has decreased. Then, the condition that determines the
next transmission time ¢ + 1 is obtained by checking if the opti-
mal cost (i.e., the current cost function) regarded as a Lyapunov
candidate is guaranteed to decrease, i.e.,

J(:c(t +AT)) — J(x(t)) <0.

For more details in deriving this condition, considering Lemma
3 in [46], the following result holds:

(32)

t+AT
J* (@ (t+ AT)) — J*(z(t)) < —/ o (z*(s),u*(s))ds,
t (33)
where J*(x*(t + AT)) is the optimal cost obtained by solving
(13) if the current state at ¢t + AT is z*(t+ AT). This means that
the optimal cost would be guaranteed to decrease if the actual

state followed the optimal state trajectory z(s) = z*(s) for s €
[t,t + AT]. From (33), we obtain

T (a*(t + AT)) — J* (x(t)) < J* ((t + AT))

t+AT (34)

— J*(z*(t + AT)) —/ ¢(z*(s),u*(s))ds,
t

where ¢(x*(s), u*(s)) (as in (6)) is known at ¢ when the solution
is obtained. Once solved, the control action that needs to be ap-
plied in the next time-slot, ¢ + 1, is ¢(t) £ (v(t), p(t)). Because
the next time-slot is taken as the next transmission time, it is also
the next decision time. The decision on the trade-off between
QoS and energy saving is taken based on the value of the opti-
mal cost function J* (2*(t+AT')) computed for the current state
x*(t+ AT) at time t + AT. Then the system state vector is de-
noted x(t) = (I(t), E(t)), which contains the number of avail-
able VMs and the energy levels. Therefore, ¢(t) 2 (v(t), p(t))
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is the vector that determines the system behavior at time slot ¢
such that the system evolution is described using the discrete-
time state-space equation in (23).
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