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Deep Learning-based Channel Estimation and
Tracking for Millimeter-wave Vehicular
Communications

Sangmi Moon, Hyunsung Kim, and Intac Hwang

Abstract: The application of millimeter-wave (mmWave) frequen-
cies is a potential technology for satisfying the continuously in-
creasing need for handling data traffic in highly advanced wireless
communications. A substantial challenge presented in mmWave
communications is the high path loss. mmWave systems adopt
beamforming techniques to overcome this issue. These require ro-
bust channel estimation and tracking algorithm for maintenance
of an adequate quality of service. In this study, we propose a deep
learning-based channel estimation and tracking algorithm for ve-
hicular mmWave communications. More specifically, a deep neu-
ral network is leveraged to learn the mapping function between the
received omni-beam patterns and mmWave channel with negligi-
ble overhead. Following the channel estimation, long short-term
memory is leveraged to track the channel. The simulation results
demonstrate that the proposed algorithm estimates and tracks the
mmWave channel efficiently with negligible training overhead.

Index Terms: Channel estimation, channel tracking, deep learning,
deep neural network, long short-term memory, mmWave.

I. INTRODUCTION

HE use of millimeter-wave (mmWave) frequencies is a po-

tential technology for supporting high data rates for highly
advanced wireless communications [1], [2]. However, mmWave
communications exhibit shortcomings such as signal attenuation
and reduced transmission distance owing to their short wave-
lengths (high frequencies) [3], [4]. However, mmWaves are suit-
able for use in massive multiple-input—-multiple-output (MIMO)
systems, wherein multiple antennas are installed within a small
space. Based on these features, many studies have been per-
formed to overcome the large path losses encountered in
mmWave bands via a highly directional beamforming tech-
nique [5]-[7]. To perform high directional beamforming, it is
necessary to estimate and track channels for all the transmitter
and receiver antenna pairs. In this study, we develop a novel

Manuscript received December 20, 2019; revised March 30, 2020; approved
for publication by Chan Byoung Chae, Guest Editor, May 24, 2020.

This research was supported by the Ministry of Science and ICT (MSIT),
Korea, under the Information Technology Research Center (ITRC) support
program (IITP-2020-2016-0-00314) supervised by the Institute for Informa-
tion & communications Technology Planning & Evaluation (IITP). This work
was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT: Ministry of Science and ICT)
(2018R1A2B6002255).

S. Moon, H. Kim, and I.-T. Hwang are with the Department of Elec-
tronic Engineering, Chonnam National University, email: msm0804 @jnu.ac kr,
hsk940127 @naver.com, hit@jnu.ac.kr.

I.-T. Hwang is the corresponding author.

Digital Object Identifier: 10.1109/JCN.2020.000012

algorithm for channel estimation and tracking by leveraging a
deep learning tool for mmWave communications.

A. Prior Work

Beam training based on grid-of-beams is the de facto ap-
proach for configuring transmitted and received beams. Its vari-
ations are used in IEEE 802.11ad systems [8], [9] and 5G [10].
However, the dependence of its performance on the grid reso-
lution results in high complexity, significant training overhead,
and access delays. To reduce the training overhead, Berger [11]
leveraged the sparse nature of the mmWave channels and devel-
oped compressed sensing-based channel estimation. Although
the training overhead that these techniques generally incur is
less than that incurred by exhaustive search solutions, it is still
large for massive array systems. Moreover, it scales with the
number of antennas. Furthermore, compressed sensing-based
estimation techniques generally make difficult assumptions on
the exact sparsity of the channels. This decreases their practi-
cal feasibility. For fast-changing environments such as mov-
ing vehicles, following channel estimation, fast beam-tracking
methods are required to prolong the duration of communication
between the transmitter and receiver. The classical Kalman fil-
ter can be employed to track the non-line-of-sight (NLOS) paths
by first eliminating their influence [12]. In [13], the concept of
a Kalman filter was also exploited while designing algorithms
for angle-tracking and abrupt change detection. In [14], the ex-
tended Kalman filter was used to track a channel’s angles of
departure (AoDs) and angles of arrival (AoAs) via the measure-
ment of only one beam pair. However, the angle-tracking algo-
rithms developed in [12]-[14] depended on specific modeling of
the geometric relationship between the base stations (BSs) and
user equipment (UE) and the angle variations.

For a long time, machine learning techniques have been
known to be highly effective tools for classification and regres-
sion (prediction) problems. More recently, deep learning has
emerged with more advanced tools capable of constructing uni-
versal classifiers and/or approximate general functions. Typi-
cal problems/scenarios where machine learning methods have
been successfully applied include, but are not limited to, im-
age restoration and identification, natural language processing,
network security, customer segmentation, and predictive main-
tenance (e.g., for machinery in industrial plants). Over the past
two decades, the application of machine learning/deep learn-
ing techniques to communication problems has been, to a large
extent, confined to the field of wireless communication sys-
tems. In [15], a deep learning-based coordinated beamform-
ing was proposed. Here, orthogonal frequency-division multi-
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plexing (OFDM) symbols received from multiple BSs consti-
tute the input to a deep neural network (DNN). In [16], deep
learning-based selection of mmWave beam by using the chan-
nel state information (CSI) of a sub-6-GHz channel was pro-
posed. DNN-based beam selection using power delay profile
(PDP) was proposed in [17]. An artificial neural network-based
channel modeling was proposed for molecular MIMO commu-
nication in [18]. In [19], deep learning was used successfully in
joint channel estimation and signal detection of OFDM systems
with interference and nonlinear distortions. In [20], the authors
proposed a deep learning-based scheme for achieving super-
resolution direction-of-arrival (DOA) estimation and channel es-
timation in a massive MIMO system. In [21], to reduce the CSI
feedback overhead of a frequency duplex division (FDD) mas-
sive MIMO system, deep learning has been employed to com-
press the channel into a low-dimensional codeword and then
achieve recovery with high accuracy. The authors of [22] con-
structed the prediction model based on a long short-term mem-
ory (LSTM) structure to track the channel in a vehicular sce-
nario. Importantly, the advantages of the deep learning-based
communications solutions are demonstrated briefly in the afore-
mentioned work.

B. Contribution

In this study, we propose a novel deep learning-based al-
gorithm for channel estimation and tracking for mmWave ve-
hicular communications. In accordance with [15], the devel-
oped channel estimation would require the UE to transmit only
one uplink training sequence that is received jointly by multi-
ple BSs using omni-directional beam patterns, i.e., with negligi-
ble training overhead. These received training signals represent
the radio-frequency (RF) signature of both the environment and
transmitter/receiver locations. A DNN is then leveraged to learn
the implicit mapping function between the received training sig-
nals and mmWave channel. After the channel estimation, LSTM
is leveraged to track the channel. The main contributions of this
study can be summarized as follows:

o Asis established, the conventional channel estimation tech-

niques such as beam training and compressed sensing incur
a large training overhead for massive MIMO systems. Fur-
thermore, the overhead scales with the number of antennas.
Therefore, in this study, the signals received at the coordi-
nating BSs with only omni-beam pattern are considered, so
that the proposed algorithm requires negligible time over-
head for estimating the channel.

« We propose a method algorithm integrating deep learning
and channel estimation/tracking, and develop its deep learn-
ing modeling. Here, the DNN can obtain the estimated chan-
nel using an omni-beam pattern, with negligible overhead.
Then, we track the channel using LSTM, which employs the
past channel to promote the prediction of the user’s channel.

« We conduct a performance analysis of the proposed deep
learning algorithm of massive MIMO in vehicular commu-
nications. Specifically, we simulate the normalized mean
square error (NMSE) for assessing the accuracy of the
channel estimation and tracking. In addition, the effective
achievable rate demonstrated the efficiency of the proposed
algorithm with negligible training overhead, rendering it a
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Central/cloud mmWave BS

processor unit

Fig. 1. Tllustration of the considered coordinated mmWave system, where N
BSs serve a vehicular UE. Each BS is equipped with M antennas and one RF
chain, and applies analog-only beamforming/combining during the down-
link/uplink transmission. The UE has only one antenna.

potential enabling-solution for fast-changing environments.
The remainder of this paper is organized as follows: In section
II, we introduce the system and channel models for mmWave
vehicular communications. In section III, we describe the pro-
posed channel estimation and tracking. The simulation results
are presented in section IV. Finally, the paper is concluded in
section V.

II. SYSTEM AND CHANNEL MODEL

In this section, we describe the adopted coordinated mmWave
system and channel models.

A. System Model

Because of the large path loss in mmWave communications,
the service range of mmWave BSs is smaller than that of 4G
BSs. This results in the dense coverage of mmWave BSs. In
similar cases, a solution for enhancing the coverage of dense
mmWave systems is to coordinate the transmission between
multiple BSs to serve the same UE simultaneously [23], [24].
We consider a coordinated mmWave communication system,
where N BSs serve a vehicular UE simultaneously, as illus-
trated in Fig. 1. Each BS is equipped with M (= M), x M,)
antennas, whereby a uniform planar array (UPA) is formed. The
UE has only one antenna. The BSs are assumed to be con-
nected to each other so that they can share the uplink training
signals received from the mobile user. For simplicity, we as-
sume that each BS has only one radio-frequency (RF) chain and
applies analog-only beamforming/combining through a network
of phase shifters during the downlink/uplink transmission [5].
Extensions of this system to more sophisticated mmWave beam-
forming architectures at the BSs, such as hybrid beamform-
ing [6], [7] are also topics of interest for future research. The
results of this study can be straightforwardly extended to the
case of multi-antenna users.
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Fig. 2. The overall structure of the proposed channel estimation and tracking. We first estimate the channel using DNN. Then, the channel is tracked by LSTM

using the estimated channel that is outputted by the DNN.

For channel estimation and tracking with uplink beam train-
ing, a vehicular UE transmits the known symbol spiioc = 1, and
each BS estimates the channel using the received signal. Denot-
ing the channel vector h,, € CM*1 between the vehicular UE
and nth BS, the post-combining received signal at nth BS can
then be expressed as

7 = £ h, Spitor + £ Vi, (1)

where f, € CM*! is the analog beamforming vector and
v, ~ CN(0,0?) is the receiver noise at the nth BS. In the
downlink transmission, the data symbol sg,, € C is pre-coded
using beamforming vector f,, at the nth BS. The received signal
at the vehicular UE can be expressed as

N
y=> hlfsu+0, )

n=1

where v ~ CN(0, o%1) is the receiver noise at the vehicular UE.

B. Channel Model

A wideband geometric channel model with L clusters is
adopted for our mmWave system. In this model, each of the
clusters contributes a ray that has a time delay, 7,, ¢, and an AoA,
0n,0. Denotes the pulse-shaping function by p(t), the delay-d
channel vector between the user and nth BS can be expressed as

L
M
_E gn,fp(de
P (=1

where p denotes the path loss between nth BS and the user. g,, ;
is the complex gain for the [th path. a, (0, ¢,) is the array re-
sponse vector of the nth BS for the Ith path and is defined as

an (e, 00) = a,(00) @ an(de, 0), “4)

where a, (-) and ay,(+) are the BS array response vectors in the
vertical and horizontal directions, respectively. These are repre-
sented as

— Tno)an(¢e, 00), 3

1 . . o
a, (9) = 7 [17 ejodsm(Q)’ e e](MV—l)ZTdSln(Q)]T, (5)
1
ah(¢, 0) — [1 6] 2x dsin(¢) cos(@)

g

(6)

ej(MH—l)zT"d sin(¢) cos(@)]T.

III. DEEP LEARNING-BASED CHANNEL ESTIMATION
AND TRACKING

In this section, we present our deep learning-based mmWave
channel estimation and tracking algorithm, as illustrated in
Fig. 2. We first estimate the channel using DNN. Then, the
channel is tracked by LSTM using the estimated channel that
is outputted by the DNN.

A. DNN-based Channel Estimation

The key challenge in estimating and tracking a channel in
highly mobile mmWave applications is the large training over-
head in terms of time. This time-wise overhead is caused by the
large number of antennas at the transmitters and receivers. Prior
research in mmWave channel estimation and tracking repeated
the estimation process each time the channel varied. In addi-
tion, the system did not utilize the previous observations of this
estimation process. However, the channels are perceptibly func-
tions of the various elements of the environment, including the
transmitter/receiver locations and scatterer positions. The chal-
lenge is that these functions are difficult to characterize analyt-
ically as they generally involve many physical interactions and
are unique to each environmental setup. Therefore, we leveraged
the exceptional capability of deep learning models to learn this
mapping function and to enable the prediction of an mmWave
channel that can be conveniently estimated with low training
overhead.

In [15], the authors demonstrated that when the uplink
training pilots are received simultaneously by multiple dis-
tributed BSs using omni-directional antenna patterns, these
omni-received signals draw a defining signature for the UE loca-
tion and its interaction with the surrounding environment. This
is highly noteworthy as no beam training is required to acquire
these omni-received signals. This reduces the training overhead
significantly. Inspired by this observation, we adopt a model
in which the uplink training pilots are received only via omni-
directional patterns. Furthermore, we train the deep learning
model to learn the mapping between these omni-received sig-
nals and estimated channel. The omni-received signal at the nth
BS can be expressed as

oM — £, spitor + £L Vi, 7
= [17 Oa Y

where the beamforming vector is set to f, 0], Vn,
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Fig. 3. Structure of the DNN. W/ is the n; X n;_1 weight matrix associated
with the (I — 1)th and Ith layers, and c; is the bias vector for the [th layer.
x(v) and y(v) represent the input and labels, respectively, at v.

i.e., by activating only the first receiving antenna element at each
BS.

For the DNN-based channel estimation, we need to explain
DNN structure. DNN is an artificial neural network with multi-
ple hidden layers between the input and output layers [25]. Each
hidden layer is equipped with multiple neurons. The output is
the weighted sum of these neurons with a nonlinear function.
The DNN is processed by activation to realize a recognition
and representation operation. In general, the sigmoid function
and rectified linear unit (ReLU) function are used almost uni-
versally in the nonlinear operation. These can be expressed as
fs(x) = 1/(1 4+ e ) and fr(x) = max (0, z), respectively.
In the proposed DNN-based channel estimation, we choose no
activation function for neurons in the output layer and ReLU
functions for neurons in the rest of layers.

The proposed DNN architecture for channel estimation is il-
lustrated in Fig. 3. We adopt a fully connected feedforward DNN
with £ layers: an input layer, £ — 2 hidden layers, and an out-
put layer. W is the n; X n;_; weight matrix associated with
the (I — 1)th and Ith layers, and b is the bias vector for the /th
layer. Because a single execution of the deep learning algorithm
is based on a batch of data, we denote V and v(0 < v <V —1)
as the batch size and serial index, respectively. Let x(v) and
y(v) represent the input and labels, respectively, of the DNN at
v. The output of the DNN is the estimate of y(»), which can be
mathematically expressed as

Y(v) =91 (91 (2(v);61);0,-1), ®

where 8, 2 {W, b, } represents the parameters of the /th layer.
The input number corresponds to the number of BSs. The omni-
received signal, r°™™, is the input feature and is defined as

I‘omni _ [,'ncl)mni7 . r(])\l}nni]. (9)
It is collected from all the coordinating BSs. Thus, the estimated
mmWave channel collected from all the coordinating BSs, h =
[hy, -, hy] can be obtained.

For simplicity, we define § £ {05}5;11 as the set of param-
eters to be optimized. The optimal @ can be obtained by mini-
mizing the loss function Loss (8) through training. Loss (@) can
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Fig. 5. Structure of the Bi-LSTM with three hidden layers and three time slots.
The Bi-LSTM contains a forward LSTM layer and a backward LSTM layer.

be expressed as

V-1
Loss (6) = o S0 ~y()?,  (10)
Y v=0

where L, is the length of the vector y(v).

B. LSTM-based Channel Tracking

LSTM is an artificial recurrent neural network (RNN) archi-
tecture that effectively overcomes the vanishing gradient issue
in a naively designed RNN [26]. The LSTM cell has the input
layer, x;, and the output layer, y;, during time slot ¢. An LSTM
is composed of a memory cell, an input gate, an output gate and
a forget gate. The cell stores values over arbitrary time intervals.
The three gates regulate the flow of information into and out of
the cell. The architecture of the LSTM model is illustrated in
Fig. 4. The forget gate, f;, input gate, i;, and output gate, o;, are
calculated as

f; ZCT(foXt—Fthht_l +bf), (11)
i = c(Wiex: + Wirhy 1 +by), (12)
Oy = J(Woa:xt +Weorhi o + bo)~ (13)
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Based on the results of the above equations, the cell state, c;,
and output, y;, are updated by the following equation

¢, =f ®ciq1 + i ® tanh(We,dy + Weryi—1 + be), (14)

v+ = 0; ® tanh(cy), (15)

where W denotes a weight matrix and b denotes a bias vector.

A bidirectional LSTM (Bi-LSTM) has two hidden layers by
forward and backward processes, which then feed forward to the
same output layer [27]. The function of this hidden layer can be
defined as follows [28]:

—o(Bad& 16
yi=0(p ). (16)
Note that notations — and < denote the forward and backward
processes, respectively. Both the forward and backward layer
outputs are calculated using the standard LSTM updating equa-
tions: Egs. (11)—(15). The Bi-LSTM layer generates an output
vector in which each element is calculated by Eq. (16).

For the channel tracking system considered by us, the
sequence of the most recent 7' channel estimation results,
hi_71,- -, hy, is the input of the Bi-LSTM. Furthermore, the
next time slot-estimated channel h;y; is the desired output,
which correspond to x; and the desired output y;, respectively,
in the Bi-LSTM model. In the Bi-LSTM training procedure, the
prediction results are improved continuously based on advanced
memory, by discarding some of the ineffective information from
the past. The predicted channel vector h; 1) after the training is
the output of the Bi-LSTM. The difference between this vector
and the actual channel vector at the next time h(;; ) is negli-
gible. Fig. 5 illustrates an example of the Bi-LSTM structure
with three hidden layers and three time slots for the estimated
channel sequence.

C. Implementation of the deep learning-based Channel Estima-
tion and Tracking

The proposed deep learning-based algorithm has two phases:
the deep learning training phase and deployment phase.

e Deep learning training phase: In this phase, the mmWave
channel is estimated using the omni-received signal and a
conventional algorithm such as an exhaustive beam train-
ing or compressed sensing. Then, a new data point r°™ is
added to the deep learning dataset. We collect a large num-
ber of data points and then use this dataset to train the deep
learning model. This is described in detail in Section III-A.

¢ Deep learning deployment phase: Once the deep learning
model is trained, the BS uses it to directly estimate and track
the mmWave channel using the omni-received signal. More
specifically, this phase requires the user to send only an up-
link pilot to estimate the mmWave channels. This channel
is passed to the deep learning model. This saves the train-
ing overhead associated with the mmWave exhaustive beam
training or compressed sensing process.

It is important to note that the dataset collection process and
deep learning training are performed without affecting the clas-
sical mmWave system operation. Hence, it is feasible to collect
a large dataset for capturing the dynamics in the environment
because it does not interfere with the classical system operation.
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Table 1. The Deep MIMO dataset parameters.

Parameter Values
Carrier frequency 60 GHz
System bandwidth 500 MHz

Active BS 5,6,7,8

From row R1100 to R2000
Number of BS antennas My =1, My =8 M. =4
Number of user antennas My=1,My=1,M, =1

Antenna spacing (in wavelength) 0.5

Number of paths 5

Active users

D. Complexity Analysis

In this subsection, we analyze the computational complex-
ity of the proposed deep learning-based channel estimation and
tracking approach in the testing stage. For the proposed ap-
proach, the computational complexity originates from the DNN
processing for channel estimation and the LSTM processing for
channel tracking. Since the fully connected layer for channel
estimation is implemented as a matrix-matrix multiplication and
addition, the computational complexity of the DNN for channel

estimation, ignoring the biases, is Cpxy ~ O (Zf;ll ni_1ing ).
The total number of parameters /N in the of LSTM for channel

tracking with one cell, ignoring the biases, can be calculated as
follows:

N=n,xnex4d+n; xn.x4+n.xn,+n.x3, (17)

where n. is the number of memory cell, n; is the number of
input units, and n, is the number of output units. The learning
time for a network with a relatively small number of inputs is
dominated by the the n. X (n.+ n,) factor [29]. Therefore,
the complexity of the deep learning-based algorithm can be ex-
pressed as

L—-1

Cpi-based ~ O (Z W—mtz) + O (ne X (ne+np)). (18)

(=1

IV. SIMULATION RESULTS

In this section, we describe the simulation setup in detail (in-
cluding the channel models and dataset generation) and present
the simulation results.

A. Simulation Setup

The simulation setup was based on the publicly-available
generic DeepMIMO [30] dataset with the parameters described
in Table 1. These parameters are constructed using the 3D ray-
tracing software Wireless Insite [31], which captures the channel
dependence on the frequency. The development of the system
model and channel model is described in Section II. The chan-
nel vector was constructed by using parameters such as AoA,
AoD, and path loss. More specifically, we set the frequency of
the mmWave at 60 GHz. In addition, the four BSs were dis-
tributed on top of a building with a height of 50 m. Each BS
was equipped with a UPA antenna with M = 8 x 4 antennas.
The user was equipped with one antenna. To predict the channel
vector of vehicular mobile users, we constructed a few random
routes with moving rates ranging from 10 m/s to 30 m/s.
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Fig. 6. Simulation environment. The users are the black dots, which are ran-
domly distributed to simulate the movement of vehicle. The four BSs are
coordinately designed and built on different buildings.

Table 2. DNN training hyper-parameters.

Parameter Values
Optimizer Adam
Learning rate 0.001
Dropout 0.9
Regularization lo
Max. number of epochs 100
Data size 50,000
Dataset split 80:20

The specific simulation environment is illustrated in Fig. 6.
The figure shows that the four BSs were placed on different
buildings. They covered all the user’s movements. The loca-
tion of the vehicular UE is selected randomly from a uniform
x-y grid of candidate locations. For the channel tracking, the
dots represent the movement of the vehicular UE. Two tracks
are apparent in the figure. Each BS received an omni-directional
signal, as described in Section III, which was sent to the same
cloud as the dataset for the deep learning model. In the cloud,
the omni-directional signals of all the BSs were combined, and
the final input was r°™. The nth BS was equipped with a UPA
antenna array with M = 32 antennas. Therefore, with N = 4
BSs serving the same user simultaneously, the dimension of the
integrated omni-directional signal r°™ equaled 128 x 1. Before
training the neural network, r°™ was normalized by the max-
imum and minimum values of the vector. In the deep learning
simulation, we adopt the DNN described in Section III-A, with
L= 3,4,---,7 and n; = 2048 neurons per layer. This DNN is
trained using the datasets for the channel estimation. The other
hyper-parameters are summarized in Table 2. In the LSTM, the
learning rate is set to 0.001, and the batch size is 30. We con-
struct our DNN and LSTM network in Keras [32] with a tensor-
Flow [33] backend. The rest of the simulation is implemented
on MATLAB.

B. Simulation Results

We adopt the NMSE to test the difference between the esti-
mated channel vector and predicted channel vector and thereby
evaluated the performance of the proposed machine learning
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Fig. 7. The NMSE performance of the DNN-based channel estimation. This
shows that the performance first improves and then degrades as the number

of layers L increases. The optimal number of layers is £ = 6, which is the
default value of £ in our simulations.
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Number of epoches

Fig. 8. The NMSE performance of the Uni-LSTM and Bi-LSTM with three
hidden layer and three time slots. The results show that Bi-LSTM causes
the LSTM to converge faster.

system. It is defined as

Ih — >

NMSE = ——
[[h]

) 19)

where h is the predicted channel vector and h is the actual chan-
nel vector.

In Fig. 7, we investigate the performance of the DNN-based
channel estimation with different number of layers. The perfor-
mance first improves and then degrades as the number of layers
L increases. Fig. 6 shows that the optimal number of layers is
L=6, which is the default value of £ in our simulations. The-
oretically, the learning capability of the DNN improves as the
number of layers increases. Owing to the vanishing gradient and
pathology degradation, the training of the DNN becomes more
challenging as the network deepens [34].

Fig. 8 illustrates our investigation of the performance of
the LSTM-based channel tracking with a different type of
LSTM (with three hidden layers and three time slots) for the
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Fig. 9. The NMSE performance of Bi-LSTM with different number of time
slots. This figure shows that the time slots of the Bi-LSTM input shorten as
the vehicular UE speeds up. Furthermore, the performance degrades as the
time slot of Bi-LSTM increases, even for high vehicular UE speed.

estimated channel sequence. Based on Fig. 8, we adopt Bi-
LSTM rather than unidirectional LSTM (Uni-LSTM) because
Bi-LSTM causes the LSTM to converge faster.

Fig. 9 shows the NMSE performance of Bi-LSTM with differ-
ent numbers of time slots. The time slots of the Bi-LSTM input
shorten as the vehicular UE speeds up. Furthermore, the perfor-
mance degrades as the time slot of Bi-LSTM increases, even for
high vehicular UE speed. This is because the estimated chan-
nel was outdated and the long-predictions inaccurate. Based on
Fig. 9, we adopt the numbers of time slots according to the ve-
hicular environment. For example, Bi-LSTM adopts one time
slot in a high-speed environment such as a freeway, and three
time slots in a dense urban environment.

To demonstrate that our algorithm can reduce the pilot over-
head, we introduce the beam coherence time and effective
achievable rate, which is a recent concept in mmWave commu-
nications to represent the average beam training time [15]. The
effective achievable rate can be characterized as

N 2

> hlf,
n=1

g

(20)

N, T,
Reﬁ- = <1_T'Bp) 1Og2 14 2 ’

where Ny, T}, and T are the number of training pilot, beam
training pilot sequence time, and beam coherence time, respec-
tively. We compare our algorithm to a prior work [22]. The
algorithm in [22] estimates the channel vectors using the tra-
ditional method and then designs the beamformer in the first
beam coherence time. Rather than estimating the channel vec-
tors, the BSs design the beamformer using our proposed sys-
tem in the second beam coherence time. They reduced the over-
head of two beam coherence times to half of the original value.
Fig. 10 shows the achievable rate. The algorithm in [22], which
incurs a higher overhead, has a lower effective achievable rate
than that of our algorithm. When the number of training pilots
is increased, the performance difference increases. This clearly
illustrates the capability of the proposed deep learning-based al-
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Fig. 10. The effective achievable rate performance. This clearly illustrates
the capability of the proposed deep learning-based algorithm in supporting
highly-mobile mmWave applications with negligible training overhead.

gorithm in supporting highly-mobile mmWave applications with
negligible training overhead.

V. CONCLUSION

In this study, we proposed a novel method integrating deep
learning and channel estimation/tracking, and develop its deep
learning modeling for vehicular mmWave communications.
More specifically, a DNN was leveraged to learn the mapping
function between an omni-beam pattern and mmWave channel,
with negligible overhead. Following the channel estimation, Bi-
LSTM was leveraged to track the channel. Bi-LSTM employes
the past channel to promote the prediction of the user’s chan-
nel. We use accurate 3D ray-tracing to analyze a performance
of the proposed deep learning algorithm of massive MIMO in
vehicular communications. The simulation results demonstrated
that the proposed algorithm estimated and tracked the mmWave
channel efficiently, incurring a negligible training overhead.
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