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Traffic-Profile and Machine Learning Based
Regional Data Center Design and Operation for 5G
Network

Udita Paul, Jiamo Liu, Sebastian Troia, Olabisi Falowo, and Guido Maier

Abstract: Data center in the fifth generation (5G) network will serve
as a facilitator to move the wireless communication industry from
a proprietary hardware based approach to a more software ori-
ented environment. Techniques such as Software defined network-
ing (SDN) and network function virtualization (NFV) would be
able to deploy network functionalities such as service and packet
gateways as software. These virtual functionalities however would
require computational power from data centers. Therefore, these
data centers need to be properly placed and carefully designed
based on the volume of traffic they are meant to serve. In this work,
we first divide the city of Milan, Italy into different zones using K-
means clustering algorithm. We then analyse the traffic profiles of
these zones in the city using a network operator’s Open Big Data
set. We identify the optimal placement of data centers as a facil-
ity location problem and propose the use of Weiszfeld’s algorithm
to solve it. Furthermore, based on our analysis of traffic profiles
in different zones, we heuristically determine the ideal dimension
of the data center in each zone. Additionally, to aid operation and
facilitate dynamic utilization of data center resources, we use the
state of the art recurrent neural network models to predict the
future traffic demands according to past demand profiles of each
area.

Index Terms: Big data, cellular traffic, data centers, recurrent neu-
ral networks, traffic prediction, 5G.

I. INTRODUCTION

The next evolution of wireless networks is confirmed to be the
5G. Its deployment has been necessitated due to the immense
surge in data demand that the wireless communication sector
has witnessed in recent years. Demand for data is forecast to
reach close to 50 Exabytes per month in the year 2021 [1]. This
demand would be a 7-fold growth from the data that was con-
sumed per month in 2016. The expenditure (capital and opera-
tional) associated with present wireless service providing infras-
tructure would simply be astronomical if this forecast demand is
to be met. Along with traditional users of the mobile broadband
internet, 5SG will involve consumers from other vertical indus-
tries such as automotive, health, energy and other industries. To
meet demands of this diverse clientele, 5G is set to incorporate a
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concept called the ‘network slicing’ that will allow the network
operators to provide dedicated virtual networks with functional-
ity specific to particular services or customers over a common
network infrastructure. Thus it will be able to support the nu-
merous and varied services envisaged in 5G.

Network slicing would enable operators to separate a physical
network into multiple virtual networks tailored to meet require-
ments of different user groups [2]. As the current mobile core
network mainly consists of hardware dependent network func-
tions, flexible and scalable way of providing service becomes
an issue. Two main concepts in form of NFV and SDN have
come to the forefront to aid the transition of the core architec-
ture to a more softwarized domain. NFV allows network func-
tions such as service gateway to be deployed as virtual network
functions (VNFs) implemented in form of software on commer-
cial off the shelf (COTS) hardware (such as servers in data cen-
ters) [3]. This allows service providers to be less dependent on
hardware and aids seamless scaling in case changes are needed
to be made. This further reduces the operator’s expenses asso-
ciated with establishment of the core architecture. SDN [4], on
the other hand splits the control and data plane of the network
functionalities thereby producing a programmable environment
that greatly simplifies network management. SDN allows ser-
vice providers to have more control over the various moving
pieces of a software based network.

Data centers hosting various VNFs are likely going to be
placed at the edge of the current networks to supplement those
deployed in traditional cloud data centers [5]. These edge/mini
data centers would be geographically distributed in different re-
gions and could potentially be located at the point of presence
(PoP) level [6]. These regional data centers would also possess
smaller capacities in terms of storage, networking and compute
resources in comparison to significantly larger data centers de-
ployed by corporations such as Amazon [7]. Fig. 1 shows the
higher level physical infrastructure of 5G networks [8] and il-
lustrates the vital role these mini data centers would play in
in processing the traffic in different regions/zones. Adequate
planning, therefore, needs to take place to determine the opti-
mal positioning and dimensioning of these data centers. Exist-
ing research works either focus on the problem of determining
resource requirements and placement of individual VNFs [9]—
[11], or architectural design of data centers [12]-[14]. The di-
mensioning and placement problem of data centers were ad-
dressed in [15] with the aid of optimization models. However, a
key element in form of cellular traffic that originates from users
is not considered in the design of data centers in the literature.
As 5G will involve different types of subscribers, each data cen-
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Fig. 1. Network slicing and Data Centers in 5 G Networks

ter needs to be designed based on the volume of traffic it will
be required to deal with to guarantee optimal performance. In
addition, to ensure service requests are met within the delay con-
straints, the data centers need to be also optimally located from
the base stations. Furthermore, to guarantee dynamic utilization
of data center resources, accurate prediction models need to be
employed to forecast future traffic demands.

In this work, we exploit the open telecommunications data set
of Telecom Italia (TIM) to first study the data traffic profiles of
different regions of the city of Milan. We process the big data
set and with the aid of K-mean clustering algorithm separate the
city into twenty regions. This iterative algorithm assigns differ-
ent numbers of base stations to various clusters with the aim of
reducing the overall aggregated distance. We propose establish-
ment of a data center in each region to provide computational
power to various NFV and SDN functionalities of one or multi-
ple network operators. These small sized data centers would be
in place to handle the traffic experienced by the base stations in
their vicinity to provide better quality of service to the end users.
Based on the traffic experienced, we evaluate a weight to be as-
signed to each TIM base station within a region. We utilize the
weights of these base stations to heuristically determine the ideal
positioning of a data center within a region. This ensures that
the data centers are located closer to the base stations that expe-
rience the most traffic, while also catering for the requirements
of other base stations. Furthermore, we analyse the hourly traf-
fic pattern within each region under consideration and heuristi-
cally determine the dimension of the data centers in terms of the
number of CPU cores needed to handle the traffic within their
coverage. This analytic approach towards determining the size

of the data centers would incur less cost to the infrastructure
provider while establishing these facilities. Additionally, based
on the traffic pattern and previous information, we employ ma-
chine learning algorithms to forecast the next days’ traffic within
each region under consideration. With the aid of these fore-
cast values, data center’s resource manager (usually a SDN con-
troller) would be able to determine the amount of computational
power that will be needed to handle the future traffic from differ-
ent wireless service providers, in advance. This would greatly
reduce the operational cost for the infrastructure providers and
ensure optimal utilization of data center resources. The main
contributions of this work can be summarised as follows:

« Analytically divide the city of Milan into twenty different re-
gions/zones.

o Conduct a detailed analysis on the cellular traffic dataset of
Telecom Italia (TIM).

o Determine heuristically the ideal placement of a regional data
center according to the traffic handled by different base sta-
tions within that region.

o Determine the overall capacity of a data center based on a
heuristic approach.

o Apply recurrent neural network (RNN) models to the TIM
data set to predict next day’s traffic demand on the considered
regions.

o Validate and compare the performances of different RNN
models in predicting the next-day traffic profile.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the background and work related to the
fields of interest of this work. In Section III, we analyse the data
set that has been used in this work and provide the methodology
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employed in dividing the city into different zones. Section IV
presents a detailed analysis of the traffic profiles of the three
chosen zones from the data set. This is followed by Section V
that presents the design of the data centers. In Section VI, ma-
chine learning algorithms are employed and evaluated to predict
future traffic profiles. Finally, conclusions are presented in Sec-
tion VIIL.

II. BACKGROUND AND RELATED WORK

The literature related to this work can be classified into two
areas. The first area focuses on the traffic analysis and prediction
models that have been proposed in the literature. The second
area is related to the design of various components of the cloud
infrastructure in cellular and wired network.

A. Traffic Analysis and Prediction in Cellular Network

A lot of work has thus far been conducted to determine the
traffic profile that a single or group of base stations experience
over a period of time. Given the proliferation of bandwidth
intensive applications, cellular data trace reveals more related
to network behaviours than traditional voice traffic. Furno et
al.[16] developed a cognitive framework to analyse traffic pro-
files using the TIM and Orange open data sets. The idea behind
this work was to identify anomalies that usually occur while
considering network-wide usages. Wang et al.[17] studied the
traffic experienced by multiple geographically separated base
stations to demonstrate the strong spatial-temporal relationship
that exists in the domain of cellular traffic. Sinusoidal super-
position and log-normal distribution methods were employed to
describe the temporal and spatial traffic variations respectively.
Troia et al.[18] proposed a novel method to identify typical traf-
fic patterns exploiting matrix factorization methods. They were
able to extract typical 24 hours patterns experienced by the mo-
bile network in Milan city. The learning and prediction model
proposed by Li et al. in [19] used a big data set to study the para-
metric differences that exists between different types of cellular
network applications. They further proposed a predictive algo-
rithm to make forecasts related to application-level traffic. The
same authors in [20] used entropy theory to demonstrate the in-
herent pattern that exists in cellular traffic. They also concluded
that the data traffic prediction is solely reliant on temporal and
spatial relevance.

Among tools used in the prediction of traffic pattern in cel-
lular networks, few have been commonly used. Linear mod-
els such as auto-regressive integrated moving average (ARIMA)
and its modified version fractionally- ARIMA (FARIMA)
have been used in [22],[23]. Kalman filtering has been used
in [24],[25] with mobility and network traffic model utilized
in [26],[27]. These shallow learning architectures however, have
proven incapable of accurately modelling deep and complex
non-linear relationships that are usually present in cellular traf-
fic traces. Recently, deep learning-based predictive algorithms
have emerged and proven effective in the prediction of traffic
pattern. Oliveira ef al. in [28] compared the performances of
recurrent neural network (RNN) with stacked auto-encoder to
forecast internet usage. Their analysis showed that RNN is su-
perior to auto-encoder in making accurate prediction in this use
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case. The work in [29] used two state of the art neural network
models: RNN and convolutional neural network (CNN), alone
and in conjunction with each other to forecast maximum, aver-
age and minimum traffic volume of different regions in the TIM
dataset. Their evaluation presented prediction accuracy between
70 to 90 percent. The work in [30] compared the performances
of neural network models and linear models to make network
traffic predictions with neural network models outperforming
others.

The existing literature in the domain of traffic prediction and
analysis, either used models that have proven to be less effective
with complex data or they have not performed hourly time series
analysis with state of the art RNN models. While many form of
statistical tools have been used to perform time series analysis
and predictions in the literature, the recurrent neural network
has demonstrated superior performance over others [31]. RNN
in its architecture contains a recurring loop which allows it to
combine present information with the past. This makes RNN
and its models suitable for analysis of time series sequence. As
cellular traffic is highly dependent upon time, RNN’s ability to
recognize patterns in such data is highly desirable. In addition,
the more recent models of RNN have significantly enhanced the
performance of the simple RNN model. However, the effect
of activation functions on the prediction accuracy of the RNN
models has not gained much attention in the literature. In this
work, we analyse the performances of different RNN models
with activation functions to obtain future traffic demands.

B. Design and operation of Cloud Infrastructure

Dominicini ef al. in [32] designed a NFV oriented architec-
ture for edge data centers. They implemented a server centric
data center architecture that produced better results when com-
pared to traditional network-centric architectures. The authors
of [14] proposed optimization models to reduce the total en-
ergy consumption in both data centers and data center networks.
Gebert et al. proposed potential solutions that accommodates a
sudden increase in traffic demand with the aid of dynamic and
optimal placements of various VNFs [33]. The work in [34] pro-
posed modification on the existing CU algorithms to determine
characteristics of different traffic that a data center network ex-
periences. They validated the proposed algorithm by using a real
data set and achieved improvement on error performance, space
cost and time complexity. The problem of optimal placement
of several VNFs was explored further in [35]. In this work, the
authors proposed mathematical frameworks that determined the
ideal location for several VNFs within the boundaries of net-
work capacity and latency limits. Shi ef al. in [36] combined
a decision making approach with Bayesian learning to dynam-
ically allocate computing cloud resource in data centers to var-
ious NFV components. In [15], the authors proposed an opti-
mization model that addressed the issue of optimal placement
of both SDN and NFV components along with ideal size of data
centers. Their work considered network cost with load to de-
termine the best location for various data centers in the cases of
Germany and USA.

Several work have also been carried out to determine the ca-
pacity that data centers are required to be equipped with to be
able to provide desired performance. The authors in [37] uti-
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Table 1. Symbols and their descriptions

Symbol Description

B Set of base station coordinates

b Total number of base stations

K K-means centroid coordinates

k Total number of clusters

(0] Overall aggregated distance

d Distortion value

Y Established location of Data center

C Base station cluster

W; 2 Weight of the i** base station in zone z

q Total number of base stations in zone z

A, Set of volumes of traffic of each station in zone z

Viz Volume of traffic of the i*" base station in zone z

TjzsYjz Geographical coordinates of the j* candidate location of the data center in zone z

doj Distance between the candidate location of the data center in a zone to a point

V. Design Capacity of the data center in zone z

D, A capacity multiplier between [1, 2] for the data center in zone z

f(std), Corresponding standard deviation value of the hour which has maximum sum of mean and one
standard deviation in zone z

g(mean), Corresponding mean value of the hour which has maximum sum of mean and one standard deviation

in zone z
P, (mean + 1std)),
deviation of the h*" hour
o Capacity design constant, —0.6
Py Capacity design constant, 0.6

lized optimization framework to determine the optimal dimen-
sions of several types of geographically distributed data centers.
Their results demonstrated that key performance metrics such
as latency and cost can be best satisfied if the data centers are
sized and located optimally. In [38], the authors presented an
analytical model to optimize cost while determining the ideal
dimension of a mobile network operator’s data center. Their
proposed model was able to determine the optimal number of
physical machines that a cloud data center would require while
meeting up with different amount of subscriber’s demand. Car-
valho et al. in [39] proposed an admission control mechanism
to determine the minimum capacity for a cloud infrastructure
such as data center. Their results showed that with aid of dif-
ferent service level agreements between infrastructure providers
and subscribers, admission control can be employed to reduce
data center’s capacity, thereby lowering capital and operational
expenditure. In [40], authors employ deep learning techniques
to perform predictions on network traffic experienced in data
centers.

After reviewing the existing research works so far conducted
in this area, we can observe that they do not focus on the design
of data centers using real world cellular traffic. As suggested in
the literature, adaptive utilization and placement of cloud com-
puting resources and functionalities are essential to provide op-
timal services for the end users. As traffic pattern changes with
space and time, it is therefore crucial to determine the traffic
profile that exists in various regions within a geographical area.
With proper analysis and forecast of traffic patterns in differ-
ent locations, data centers can be optimally placed and their re-
sources can be properly utilized. To the best of our knowledge,
no existing literature has studied the TIM data set in this con-
text, which is the main focus of our work. The symbols used

Probability of traffic volume of the h‘" hour in zone z to be less than the sum of mean and on standard

throughout the paper have been listed in Table I.

III. DATASET ANALYSIS & REGION FORMATION

In this section, we first present the dataset utilized for the pur-
pose of our work. We then present the algorithm used in form-
ing various regions within the city to facilitate our design of data
centers.

A. Dataset

The data used in this work was released by Telecom Italia in
2015 and has been made available for public use [41]. It contains
call detail records (CDRs) of different areas over the period of
November 1, 2013 to January 1, 2014 within the Italian city of
Milan and Province of Trento. The data set breaks down the con-
sidered area into 10,000 square cells (geographically located),
with each cell representing an area of 235m by 235m. The CDRs
contain information related to each cell’s different telecommu-
nication activities such as number of calls, sms and internet ac-
tivity within a ten minute period. As internet activities certainly
demand more resources in today’s wireless communication, for
the purpose of this work, we only consider the amount of in-
ternet activities that occur within a cell in a given time frame.
As the data set also contains 62 days worth of records, we sep-
arated the holidays (22 days) from the working days (40 days).
Another important attribute of this data set is in its recording
of the CDRs. Each entry of the internet activity in the dataset
represents the number of times a connection is initiated or ter-
minated. A new CDR is also registered every time a previous
connection exceeds 5 Megabytes (MB) of traffic. Since we can
neither identify exact number of new and terminated internet
connections nor the exact volume of traffic exchanged within a
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connection, we, therefore, assume half of the records to be new
connections with each connection having a volume of 5 MB of
internet traffic. The cells of the TIM data set are presented in
Fig. 2.

9901 | 9902 | 9903 10000
9801 | 9802 | 9803 9900
101 | 102 | 103 200

1 2 3 100

Fig. 2. The cells in TIM dataset

This dataset does not reveal information about the geographi-
cal positions of the base stations in the Milan area. Therefore, we
processed another dataset [42] that collects information about
the base stations of Telecom Italia deployed in Milan. The re-
sults obtained from the analysis of this data set was used to
match the traffic volume information provided in the TIM data
set. By matching these two data sets we were able to obtain fur-
ther information such as: the total number of TIM base stations
in the Milan grid (2554), geographical coordinates of each base
station and hourly number of CDRs experienced by each base
station during the time period the dataset was formulated [18].

B. Region Formation

In order to analyse the mobile internet traffic that different ar-
eas in Milan experience, it is critical to divide the city into differ-
ent zones. The division of zones needs to take into consideration
the distribution of base stations within the city. Certain number
of base stations need to be clustered to form a single zone. To
achieve this clustering of base stations to create different zones
within the city, we employ a popular clustering method known
as the K-means clustering algorithm.

In this work, the objective of the K-means algorithm is to
determine k£ number of centroids which are to be associated
with a certain number of members which would result in least
overall aggregated distance. Depending on the locations of the
members, the positions of these centroids and their members are
changed iteratively to obtain the best possible location for each
centroid. The process is repeated until the membership of each
centroid remains unchanged from previous iteration, resulting
in the algorithm to converge to the local minima of the overall
aggregated distance.

In our case, given a set of base stations B containing the b
(2554) pairs of geographical coordinates (in form of latitude(z)
and longitude (y)), we can assign K as the set containing the
geographical locations of the k clusters’ centroids. These sets
can be represented as:

B ={By, B, ..

- By}, ey

K ={Ky, Ko, ..., K} )

573

The overall aggregated distance, O, associated with & cen-
troids and their members can be represented as:

k
0:2 Z |IB— K> for i=1,2,...,k. (3

i=1 BEK;

0 20 40 60 80
Number of clusters (k)

100

Fig. 3. The relationship between distortion values and number of clusters as
obtained using Elbow
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Fig. 4. Base station locations in the zones formed by K-Means Clustering
in Milan. Locations of zones 6,14 and 19 are annotated.

In order to determine the optimal number of clusters k, we
experimented with different values of k. For each value of &,
we obtained a distortion value, d, which is defined by d = O/k.
The relationship is demonstrated in Fig. 3.

From Fig. 3, it can be seen that even as the value of k in-
creases beyond 20, the value of d does not decrease significantly.
As such, we use 20 as the value of k and thereby divide the base
stations in the city to form 20 zones. For each of these 20 zones,
we propose establishment of a data center to process the traffic
that the base stations within a zone experiences. Fig. 4 shows
the locations of the base stations within different zones in Mi-
lan. Entries of similar color and shape represent the base stations
within a specific zone. For the sake of illustration, zones 6, 14
and 19 are labeled in Fig. 4. Fig. 5 demonstrates the archi-
tecture of our proposed model. Essentially, the proposed model
depicted in Fig. 5 breaks the city down into 20 zones and for
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each zone, designs a location and capacity for a data center that
will be charged with handling the traffic within that zone.

IV. TRAFFIC PROFILE ANALYSIS

In this section, we first choose to present three zones and anal-
yse the traffic profiles in each of these zones. Fig. 6 shows the
total volume of traffic that each of the 20 zones experience in
the duration of time the dataset was formed. It can be observed
from Fig. 6 that among these zones, zone 6 experiences the least
amount of traffic while zone 19 experiences the highest volume
of traffic. Zone 14 can be seen to have average amount of traf-
fic. As such, we present the traffic profile analysis of these three
zones.

8X1‘08‘

o

Volume (MB)
S

N
T

12 3 456 7 8 910111213 14151617 18 19 20
Zone

Fig. 6. Aggregated Traffic Volume in Each Zone formed using K-Means Clus-
tering Algorithm

Based on the aggregated hourly data obtained in the Sec-
tion IIT A, we determine the maximum and average hourly traf-
fic volumes of these zones during holidays and workdays. In
addition, we also present the sum of the mean and one stan-
dard deviation to illustrate the amount of variation in each hour
of traffic. Despite the differences in the traffic profiles of these
zones, there exists some common phenomena among them. The
detailed analysis of the traffic profiles of these zones are pre-
sented below.

Common Characteristics of the Zones: Figs. 7 (a), (c) and
(e) represent the holiday traffic profiles of Zone 6, 14 and 19 re-

spectively. Conversely, (b), (d) and (f) of the same figure present
the workday traffic profiles of these zones. Table VI, X and XIX
in [43] further provide additional information that aid the analy-
sis of traffic profiles of these zones. For both holiday and work-
day traffic, the presence of the ‘tidal effect’ is evident. Traf-
fic is gradually seen to decline during late night hours (starting
from around 8 pm) and the minimum is reached around 4 am.
The traffic consumption is seen to gradually increase from early
morning hours (5 am to 8§ am) in both types of days. The phys-
ical quantity of the standard deviation observed in these traffic
volumes also increases as the traffic volume increases. Another
important quantity of interest is the probability with which the
traffic volumes of past days tend to fall within the sum of the
mean and deviations. It is observed that, in the cases of both
holidays and workdays, the hourly traffic of past days mostly
fall within the sum of the mean and one standard deviation with
a probability of 75 percent and more. However, this probabil-
ity increases to the range of 90 to 100 percent when the sum
of the mean with two standard deviations is considered. This
probability analysis enables us to understand the hourly varia-
tion in traffic volume which would further aid in the subsequent
design of the dimension of the data centers. The inherent traffic
characteristics of each of the three zones are explained below.

Zone 6: This zone experiences the lowest amount of traffic
among all others. The zone is located in the outskirts of the
city and is sparsely populated. Fig. 4 shows the geographical
locations of the base stations that are within this zone. There
are a total of 47 TIM base stations (BSs) within this area. This
relatively low number of BSs highlights the low level of traffic
this zone experiences for both holidays and workdays as seen
from Figs. 7 (a) and 7 (b). Some key features associated with
the traffic volumes in this zone are presented in Table VI in [43].

Zone 14: This zone experiences medium amount of traffic
and covers areas that are somewhat in the center of the city.
There are 166 BSs in this zone which is significantly more when
compared to Zone 6. This is expected given the larger volume
of traffic that is experienced in these areas over time. Figs. 7
(c) and (d) also present some traffic information with Fig. 4 pre-
senting the geographical locations of the BSs within zone 14 .
Table XIV in [43] presents some of the attributes noticed for the
traffic in zone 14.

Zone 19: This zone experiences the highest volumes of traffic
in comparison to others. This zone, as seen from Fig. 4, is in the
heart of Milan and experiences heavy traffic volumes. Services
and financial companies form this predominantly commercial
zone. To meet up with the traffic demands in these areas, there
are 309 TIM base stations located in this area. Figs. 7 (e) and
(f) present some key statistics regarding the traffic experienced
on holiday and workday in this zone. Fig. 4 also illustrate the
locations of these BSs within zone 19 with Table XIX in [43]
presenting some key features of this zone’s traffic volumes.

V. DESIGN OF DATA CENTERS

In this section, we use the locations of the base stations to
first heuristically determine the ideal location for a data center in
each of the considered zones. We then proceed to determine the
dimension of the data center to meet up with the traffic demand
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Fig. 7. Traffic profiles in Zones 6, 14 and 19 during holidays and workdays. The profile displays the average, maximum and average with one standard deviation

traffic volume in the zones.

from the zones.

A. Placement of the Data Centers

One consideration while determining the position of a data
center is its distance from the base stations. Minimizing the
aggregate distances between the data centers and the base sta-
tions would reduce the cost of front haul links and also would
lower the delay in propagation. The problem of determining the
ideal location for such a facility can be identified as the Weber’s
problem which also is a special case of the Facility Location
Problem [44].

The aim of any facility location problem is to determine the
most suitable place to establish one or multiple facilities in the

presence of many candidate locations. The facilities are usually
required to provide services to meet demands that are imposed
by their customers (whose locations are known). In our case,
the facilities are the data centers which provide the base stations
(the customers) with computational power to process the traf-
fic experienced in each base station. The Weber problem looks
to reach a point that ensures that the weighted sum from the
point to the known base stations’ locations reaches its minimum
[45]. Since we are considering the distances of the base stations
from the data center as the parameter to minimize, the following
mathematical model can be employed to represent it:
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argminf(Y, ) = arg min Z w;0(C;,Y), 4
Y eR? i=1

here w; denotes the weights assigned to the i*" base station,
among m base stations, belonging to the base station cluster C'.
The cost function @ in this optimization framework aims to min-
imize the overall distance between the base stations in a particu-
lar cluster C' from a candidate location for data center Y. Some
base stations within a zone often experience significantly higher
volumes of traffic than others. Therefore, it is logical to place
greater weights on the base stations that experience heavier load
and place the data center closer to these base stations. As we
have 20 zones with each having a certain number, ¢, base sta-
tions in it, we can then define a set A, that contains the volume
of traffic of each base station within that zone z. A, therefore
can be represented as:

Az = {Ulz,vgz,...,qu}, (5)

where v;, is the volume of traffic of the i*" base station in zone
z. To determine the weight, w;,, of the it" base station within
zone z, we use the following equation:

max(A,) — v,
max(A,) —min(A,)

Wiy =1— for 1=1,2,...,q. (6)
The values of maxz(A,) and min(A,) are highest and lowest
volume of the traffic that the most and least loaded base station
within the zone z experiences respectively. Knowing the weight
of each base station in a zone, we can utilize Weiszfeld pro-
cedure [46] to determine the data center location in each zone.
We use this algorithm due to its proven efficiency as well as low
computational complexity [47]. Weiszfeld algorithm is based on
the gradient descent algorithm which essentially minimizes the
sum of the weighted /> norm of each element of the base station
group C; and iterates to obtain the best possible location for the
establishment of the data center.

As we consider three zones, each with its own boundaries
in terms of latitude and longitude, the possible location for a
data center in z*" zone has to be contained in a 2-dimensional
vector space, JJ, which also includes the location of all the BSs
within that zone . The algorithm begins at a random coordinate

point having latitude (z1,) and longitude (y;.) and attempts to
locate the optimal point within the set J to minimize the sum of
Euclidean distances from the BSs within that zone. The x and y
values are calculated using the formula:

_ ZjeJ(ijij)/dOj _ Zje](wjzyjz)/doj
ZjeJ(ij)/dOj ’ ZjeJ(ij)/doj 7

where x ;. and y;, represent the jth candidate’s location for the
data centre in zone z with d,; representing the distance between
the candidate location for the data center to a point in set J.
wj, represents the weight assigned to the jth base station in
zone z. The iterations are continued until either a convergence is
reached or if the maximum number of evaluations is completed.

With the aid of this algorithm, we determine the ideal location
for each data center in Zones 6, 14 and 19. The location of the
data centers among the base stations are illustrated in rectangu-
lar boxes in Fig. 8.

@)

B. Dimension of the Data Centers

Once the data center is established, it becomes critically im-
portant to determine its dimension. This largely depends upon
the traffic demand that the data center is expected to cater for.
For the purpose of this work, as we only have the information
of the single mobile operator (TIM), we design the size of the
data centers based on the traffic volumes experienced by its BSs
in the zones under consideration. In a real life design case, it is
expected that the infrastructure providers would lease their ser-
vices to multiple operators and as such would require relevant
information from other operators as well. Also, we only focus
on the resources in terms of the computational power required
to process the traffic in these zones.

The computational power is provided by servers within a data
center. An area with large number of BSs would require higher
amount of computational resources (CPU cores provided by the
servers) to serve the traffic demands as well as to host various
VNFs such as SDN controllers and virtual gateways. We as-
sume that the VNFs for a particular zone are all hosted in a
single centralized data center rather than being distributed all
over. This approach requires less number of servers, and sub-
sequently cores, as opposed to having a distributed VNF ar-
chitecture [15]. VNFs that are intended to serve both data and
control plane functionalities require more computational power
than SDN controllers that deal with only control plane function-
alities. The authors in [48] demonstrated that 20 cores of CPU
processing power are required to handle 1 unit of data traffic de-
mand (i.e. 1 Gbps) and only 6 cores are required by the SDN
controllers. Therefore, their work shows that a total of 26 cores
are needed to process 1Gbps of traffic load and overhead. As
such, in our model, we adopt this specification from [48] to de-
sign the dimensions of each zone’s data center based on the traf-
fic profile analysis conducted previously.

While determining the processing power required by a data
center (data center’s capacity), we need to carefully evaluate the
traffic profiles that the base stations under its coverage experi-
ences. As we have only 62 days worth of data, certain traffic
characteristics might not have been captured within this time
frame. Allocating resources to meet just the maximum of peak-
hour traffic would lead to over provisioning of resources that



UDITA et al.: TRAFFIC-PROFILE AND MACHINE LEARNING BASED ...

would remain underutilized most of the times. Similarly, having
enough servers to meet only the average demand would lead to
shortage of resources during peak demand hours thereby result-
ing in poor quality of services (QoS). Referring to Tables in [43],
we can see that a good metric to determine the volume of traf-
fic that a data center needs to be designed for can be based on
the sum of the average and standard deviations of the traffic vol-
ume. The hourly traffic volume of zones had surpassed the sum
of the mean and one standard deviation in considerable number
of occasions. However, most of these volumes fell well within
the sum of the mean and two standard deviations. The ideal
traffic volume that a data center need to cater for, therefore, lies
somewhere in the range between these two. We therefore heuris-
tically determine that the ideal design capacity, V., of the data
center in zone z to be:

V. =D, x (f(std), + g(mean),), 8)

f(std), and g(mean), are the corresponding values of the stan-
dard deviation and mean for the maximum hourly sum of mean
and one standard deviation for a particular zone z. D, € [1,2]
is the multiplier which aids in determining the maximum traffic
volume, V, that the data center in the z*" zone would be capable
of serving at any given time. This multiplier is inversely propor-
tional to the probability of the h*" hour’s traffic volume to fall
within the sum of the mean and one standard deviation in zone
z, Pp(mean+1std). In this work, the D, value is 1.6 when the
Py, (mean + 1std), is 0.6 and D, is 1 when P, (mean + 1std),
is 1. Then, D, can be obtained using the following heuristically
obtained mathematical relationship:

(max(Pp(mean + 1std)), + a)) X «
1-— P ’

©))
where « for this dataset is —0.6 and P, is 0.6 as mentioned
above. max (P, (mean + 1std)), denotes the probability value
for the hour that demonstrates the highest sum of mean with
one standard deviation (mean + 1std) of traffic volume in that
zone. For example, in zone 6, we can see from Table VI in [43]
that the highest value of mean + 1std is observed for the hour
8 (between 8 am and 9 am) holiday traffic which corresponds
to a Ps(mean + 1std)g value of 0.95. Therefore, to deter-
mine the deviation factor in this zone, we use this value as our
maz (P (mean+ 1std))g. With this, we can then determine the
traffic volume that the data center in zone z needs to be designed
for using equation 8.

As mentioned previously, based on the specification in [48],
to process one unit of traffic i.e 1 Gbps, 26 cores of process-
ing power is required. Given the aggregated nature of the data
set we have, it is not possible to evaluate the demand volume
that is experienced per second for each zone. Therefore, in this
work, we assume that at every second, same amount of demand
is generated resulting in a cumulative volume of V, in the 2"
zone per hour. Note also that the capacity of the front haul links
between the base stations and the data center also play a crucial
role in the processing of the traffic demand. This, however, is
beyond the scope of this work. Using the above equations and
the specifications, we can proceed to determine the capacity of
each data center.

DZ:(l—a)—i—(
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Zone 6 Data Center: This light traffic volume zone, as men-
tioned above, possesses max(Ps(mean + 1std))s value of 0.95
based on the maximum of sum and 1 std that is noticed at the
8" hour. Using equation 9, we obtain the multiplier of zone 6,
Dg, to be 1.07. The corresponding mean and standard deviation
values of this hour’s of traffic are 27, 350.04 MB and 7,237.04
MB respectively. Therefore, using equation 8, we obtain the
value of 37,181 MB (290 Gb) as the maximum volume of traf-
fic that this data center would be required to handle at any given
hour. Note that this value is greater than any of the peak hourly
traffic for both working days and holidays based on the avail-
able data. This value is also much smaller than the sum of mean
and two standard deviation value. As such, it is a value with
ample tolerance to meet the highest traffic demand that might
be encountered in this zone. Using our assumptions and spec-
ifications, we evaluate that the data center for this zone would
require maximum of 2 cores to process the traffic volume for the
TIM subscribers in this zone.

Zone 14 Data Center: Zone 14’s medium level traffic has
a maz(Py(mean + 1std))14 value of 0.8 corresponding to the
18" hour of the workday traffic. The deviation factor of this
zone, D14 is evaluated to be 1.30 using equation 9. With corre-
sponding values of mean and standard deviation of 133, 907.90
MB and 34, 688.45 MB respectively, we determine the maxi-
mum volume of traffic that the data center of this zone would
have to handle at any given hour to be 219, 175 MB (1, 712Gb).
To fulfill this volume of traffic demand, the servers in the data
center in this zone need to have 12 cores of CPU power.

Zone 19 Data Center: Traffic level of this area surpasses
others and possess a max (P, (mean + 1std))19 value and de-
viation factor, D9, of 1 for the 13*" hour of the holiday traffic.
The mean and standard deviation value corresponding to this
hour are 746, 016.40 MB and 225, 068.60 MB respectively. As
expected, the maximum volume of traffic that the data center in
this zone needs to cater for, 971, 085 MB (7, 586 Gb) is also the
highest among all others. To satisfy this level of demand, the
capacity of this data center would also have to greater than oth-
ers. This zone’s data center would require 55 cores to process
the traffic demands from the subscribers.

VI. MACHINE LEARNING BASED TRAFFIC DEMAND
PREDICTION

In this section, we devote to employ several state-of-the-art
recurrent neural network (RNN) models to forecast next day’s
traffic of each zone based on previously collected data. The idea
is to have the future traffic demand of these areas in hand to fa-
cilitate the operation of these data centers. Accurate prediction
models will aid operation of the data centers and can lower the
operational cost of the infrastructure providers as unused capac-
ity of these data centers can be put on sleep mode, resulting in
reduced energy consumption.

RNN has proved to be an effective tool to perform prediction
on time-series data. Given that we have a inherently seasonal
data of hourly aggregated traffic demand of different zones,
RNN models can be used to make forecasts of future demand.
We use two RNN models: long short term memory (LSTM) and
gated recurrent unit (GRU). We also test the fitness of two ac-
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Fig. 9. Recurrent Neural Network architecture

tivation functions : rectified linear unit (ReLU) and hyperbolic
tangent (tanh) to determine the combination that produces the
result with highest accuracy. As the holiday demand is differ-
ent from the workday one, we tested these models on each type
of day for the considered zones. Below we briefly explain the
concepts of RNN and its models that have been utilized for this
section of the work.

A. Recurrent Neural Networks

RNN’s main idea is to capture and store relevant amount of
information from the input in a memory to use it while making a
future prediction for the output. This is a fundamental difference
between RNN and traditional feed forward neural networks that
simply make use of only the present input to produce an out-
put. RNNs are termed as recurrent as they perform the same
operation on every element of a sequence whereby the output of
the present step is heavily impacted by that of previous steps.
Fig. 9 illustrates a typical RNN model and its ability to include
previous input with present one to predict the future output.

RNN takes in the input ¢, captures the hidden state a and pro-
duces an output of o at every time step ¢. The information from
one step to the following is carried on by a loop. The W’s stand
for various weight matrices during the time steps. These matri-
ces are changed during the training phase as the network is ‘un-
rolled’ for a certain number of time steps. As shown in Fig. 9,
this unrolling of network in time steps allow the RNN to learn
information present in sequential data. The computation that
takes place in every time step can be summarised as follows:

1. 7 serves as the input in time step ¢.

2. The hidden state a; at time step t is calculated based on the
previous hidden step and the present input. These two pieces
of information are combined through the use of activation
functions such as ReLU and tanh.

3. The output step at time step ¢ is termed as o;.

With different inputs 7, in different time steps same compu-
tations are performed with unrolled parameters W;,, W,, and
Woo- This attribute of the RNNs makes them extremely useful

RelLU tanh

Fig. 10. Activation functions: ReLU and tanh

for smaller data set by avoiding over fitting. Two common RNN
models in use now are the LSTM and GRU. We provide brief ex-
planation of the working principles of these models along with
the activation functions.

LSTM: The hidden state in traditional RNN does not provide
enough control over how much of the past information should
be kept and this leads to problems such as vanishing and explod-
ing gradients [49]. To overcome such problems, LSTM models
were designed to have two additional gates termed as the input
and forget gates. The gating mechanism allows LSTMs to ade-
quately model long-term dependencies present in complex non
linear data. LSTM essentially learns the optimal parameters for
its gates during the training phase, thereby determining the be-
havior of its memory. Interested readers are addressed to read
[50] for more details on LSTM.

GRU: Due to the presence of both input and forget gates, the
LSTM model often becomes computationally expensive. GRU,
a more recent edition of the RNN models, presents a simpler
architecture where the input and forget gates are combined into
a update gate. The basic idea of capturing and learning long
term dependencies on time series data is however maintained in
GRU as well. Detailed explanation regarding the GRU model
can be found in [51].

Activation functions: the activation functions play an im-
portant role in RNN and its models’ ability to accurately make
future predictions. The two activation functions we have used in
this work are ReLU and tanh. Fig. 10 (a) shows the ReLU acti-
vation function and Fig. 10 (b) demonstrates the tanh activation
function.

We test the fitnesses of the LSTM and GRU models on the
zonal data to predict future demands. We employ these models
with relu and tanh activation functions. We follow a 70 : 30
train-test split convention i.e the first 70 percent of both holiday
and workday data is used for training the neural network and the
rest is used for testing. In addition, we use average hourly traffic
as a baseline for comparison purposes. We use Google’s open
source machine learning platform Tensorflow on a 2.6 GHz, 4
cores and NVDIA GTX 970 graphics card enabled computer
to analyse the performances of these algorithms on holiday and
workday data. The neural network was designed with 2 hidden
layers with each having 50 neurons. The input and the output
dimensions are both 1 x 1 The obtained results are explained
below:

Holiday Prediction: Figs. 11 (a), (c) and (e) demonstrate
the performances of the considered algorithms on holiday data
of zone 6, 14 and 19 for a three-day period respectively. Note
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Fig. 11. Machine learning algorithms’ predictions for Zones 6, 14 and 19 for holiday and workday traffic

that holidays consist of less amount of data points compared
to workdays (528 data points for holidays compared to 960 data
points in workdays). LSTM and GRU models generally perform
well with accuracy of 90 percent and more across all zones with
both activation functions. The average hourly traffic, however,
is clearly seen to be incapable of capturing the traffic trend of
these three day period. Figs. 12 (a) and (c) show the average of
root mean square errors (RMSE) and symmetric mean absolute
percentile error (SMAPE) of these algorithms on holiday data
set. It is also observed different model emerges as the best when

predictions are made across different zones. Therefore, it can be
concluded that no single prediction model can be used to obtain
accurate forecast of future traffic across all zones.

Workday Prediction: The performances of the consid-
ered machine learning algorithms on a slightly larger workday
dataset are presented in Figs. 11 (b), (d) and (f). Once more, the
GRU and LSTM algorithms performed similarly to each other
and were able to forecast traffic with great accuracy. The aver-
age once again can be seen to be insufficient for this purpose.
Figs. 12 (b) and (d) shows the RMSE and SMAPE values of
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Fig. 13. Runtime of the algorithms to predict Holiday and Workday traffic

each algorithm on workday data set. The GRU and LSTM mod-
els predict with least error while maintaining accuracy of greater
than 95 percent on this data set. Similar to holiday prediction,
the prediction model that makes the best prediction varies in dif-
ferent zones.

Figs. 13 (a) and (b) demonstrates the time it takes for each of
these algorithms to complete training and make prediction for

both holiday and workday data respectively. As expected, due
to the presence of additional gate in the LSTM architecture, it
takes slightly longer runtime when compared to a simpler GRU
architecture.

With the aid of machine learning algorithms, it would be pos-
sible for infrastructure providers to determine the hourly de-
mand that will be encountered from a particular MNO within
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a zone. In the absence of an accurate traffic forecasting mech-
anism, allocation of data center resources would be reactive i.e
resources would be allocated once the demand arises. This could
often lead to congestion and degradation of QoS as it is diffi-
cult to allocate proper amount of resources if the allocation is
based on reaction. Furthermore, from the data center’s point of
view, knowing future demand values can aid utilization of its
resources. During hours when relatively low volume of traf-
fic is predicted in a certain zone, its data center can effectively
keep the amount of resources needed to cater for that predicted
volume of traffic operational, with rest being aggressively put
on idle/sleep mode [52],[53]. This eliminates the need to con-
stantly keep the data center resources active during all hours. By
keeping additional resources inactive will lower the energy con-
sumed by the data center and significantly reduce operational
expenses for the infrastructure provider.

VII. CONCLUSION

In this paper, we analysed the open Big data set of Telecom
Italia to determine the traffic profiles that exist in different zones
within the city of Milan. We processed the data set to have a
hourly cellular traffic demand that arises in different parts of the
city during the course of the day. Using K-mean clustering al-
gorithm, we split the city of Milan into 20 zones and from that
isolated three zones (Zone 6, Zone 14, and Zone 19) that demon-
strate the least, medium and most volume of traffic respectively.
Based on the location and traffic handled by each base station in
a zone, we proposed the establishment of a data center to host
the VNFs and SDN controllers in each zone. We identified the
problem of the placement of data center as a facility location
problem which was solved using Weiszfeld’s algorithm. Fur-
thermore, based on the traffic profile of each zone, we heuristi-
cally determined the ideal dimension of a data center that will
be capable of handling the traffic within that zone. Finally, we
used machine learning algorithms to predict the future demand
to enhance the operation of the data center in each of the consid-
ered zones. Results showed the ability of the LSTM and GRU
models to predict future demand values with considerably high
accuracy.
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