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Bandwidth Partition and Allocation for Efficient
Spectrum Utilization in Cognitive Communications

Song Huang, Di Yuan, and Anthony Ephremides

Abstract: Conventional cognitive communications rely heavily on
the smartness of secondary (unlicensed) users (SUs) to achieve high
spectrum utilization, which involves the optimization of the SUs’
policies and behaviors for dynamic spectrum access, power alloca-
tion among multiple channels, etc. Due to the inherent randomness
of the primary users’ (PUs’) transmission, those efforts inevitably
increase the implementation complexity and sensing overheads of
the SUs, and in turn lower the spectrum utilization efficiency. In
this paper, we try to change the focus from SU to PU. A cooperative
traffic allocation strategy for PU, together with the non-uniform
bandwidth partition, is employed to regularize the PU’s resource
occupancy pattern without compromising its performance, and to
maximize the spare bandwidth for the SU at the same time. We
first study the capacity based optimization problem (COP) together
with the fully polynomial time approximation scheme (FPTAS) for
an approximation guarantee of the global optimum. Then we an-
alyze the subcarrier based optimization problem as the surrogate
problem of COP, which can be solved by a greedy algorithm ex-
actly. Both the theoretical analysis and the numerical simulations
demonstrate the effectiveness of those methods to achieve the per-
formance that almost identical to that of the global optimum solu-
tion.

Index Terms: Cognitive communication, FPTAS, non-uniform
bandwidth partition.

I. INTRODUCTION AND MOTIVATION

WITH the proliferation of wireless services, most of the
available spectrum has fully been allocated, which re-

sults in the spectrum scarcity problem. However, a large por-
tion of the licensed spectrum experiences low utilization [1]. As
the spectrum scarcity is mainly caused by the inefficient and
inflexible spectrum allocation policies, dynamic spectrum ac-
cess (DSA) [2] has been proposed as an alternative policy to
improve the spectrum efficiency. Cognitive radio [3]–[5], as one
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of the enabling technologies of DSA, allows unlicensed users to
communicate using the licensed spectrum dynamically. Under
the basic model of cognitive radio networks, secondary users
(SUs) employ white spaces that are not used by the primary
users (PUs) under the condition of not interfering with active
PUs. Most existing literature concentrates on the optimization
of SUs’ policies and behaviors for dynamic spectrum sensing
and access, power allocation among multiple channels, or band-
width allocation to multiple SUs [6]–[9]. Due to the inherent
randomness of the PU transmission, those efforts inevitably in-
crease the implementation complexity and sensing overheads of
the SUs, and in turn lower the spectrum utilization efficiency.

In this paper, we try to improve the spectrum utilization by
regularizing the resource occupancy pattern of PU without com-
promising its performance. To this end, the overall bandwidth
is first partitioned into subcarriers, which are then grouped into
channels. The PU traffic allocation is based on multiple chan-
nels, and is designed to leave as much bandwidth resource to
SUs after satisfying the PU’s bandwidth demand. During this
process, in order to minimize the capacity loss due to spectrum
fragmentation, a non-uniform grouping scheme of the subcarri-
ers [10] is employed. As a result of bandwidth partitioning and
subcarrier grouping, spectrum sensing applies to the channels
instead of all the individual subcarriers. Such a design inher-
ently reduces the sensing overheads of SUs.

From the conventional viewpoint of cognitive radio, there is
no restriction on resource allocation for a PU. However, that
does not prohibit interaction and cooperation between PU and
SU, with the aim of improving the utilization efficiency of the
overall spectrum. Existing literature on cooperative cognitive
radio networks has studied various schemes of spectrum sub-
leasing and auctions [11]–[13]. The PU has privileges in achiev-
ing its traffic requirements and thus is more willing to sublease
its power and sub-channels to obtain additional revenue rather
than enhancing the performance. In return, the SU helps to re-
lay the PU’s packets.

Similarly, our proposal takes an approach by regulating the
PU’s resource allocation pattern (without denying its band-
width demand) and thereby increasing the resource available to
SU. In [10], we have demonstrated that under the non-uniform
scheme, the average amount of sensing was reduced and the ca-
pacity loss due to spectrum fragmentation during the allocation
of the PU traffic was far less than that of the uniform parti-
tion schemes. However, that discussion mainly focused on the
non-fading situation. In this paper, we give a detailed discussion
upon the non-uniform scheme under frequency selective fading.

Spectrum occupancy is usually defined as the probability that
a measured signal is above a predefined power threshold within
a certain bandwidth and a specific time span [14]. The occu-
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pancy power threshold can be set at the measured noise floor
plus some margin to account for the variations of the momen-
tary noise power. This margin must be large enough to reduce
the false alarm rate due to the temporal noise variation which
could result in overestimating the spectral occupancy. On the
other hand, this margin cannot be too large, otherwise the tem-
poral signal variation due to the fading effects can cause missed
detections which in turn results in underestimating the spectral
occupancy.

The main contributions of this paper are as follows:
1) By assuming the channel state information (CSI) of the

SU under selective fading being known to the PU, we model
the problem of maximizing the throughput of the SU as the
Capacity-based Optimization Problem (COP) and prove that
COP is NP-hard.

2) A fully polynomial time approximation scheme (FPTAS)
is proposed for COP, which provides a guaranteed approxima-
tion to the global optimal solution to COP. By changing the ap-
proximation parameter, we can get any desired approximation
accuracy.

3) For the case in which CSI of the SU is unavailable to
the PU, we further propose the Subcarrier-based Optimization
Problem (SOP) as the surrogate problem of COP, with the aim
of maximizing the total number of spare subcarriers for the SU.
We prove that SOP can be exactly solved by a greedy algorithm
with a polynomial-time complexity.

The remainder of this paper is organized as follows. In Sec-
tion II, related work is discussed. In Section III, we introduce the
system model, and define the effective capacity of a channel. In
Section IV, COP is presented and is proved to be NP-hard. The
FPTAS algorithm is proposed to approximate the global optimal
solution. In Section V, we propose SOP as the surrogate prob-
lem of COP. A greedy algorithm for SOP is given and its global
optimality is proved. In Section VI, we present the simulated
performance of several approaches, including the optimal solu-
tion to COP, the FPTAS to COP, and the greedy algorithm to
SOP. For the sake of comparison, the outcome of the uniform
scheme is given as well. In Section VII, we summarize our con-
clusions.

II. RELATED WORK

A cognitive radio (CR) is a concept that was first defined
in [2] as a radio device that can adapt its transmitter parame-
ters to the operating environment. It is based on the concept
of software defined radio [15] that can alter parameters such
as frequency band, transmission power, and modulation scheme
through changes in software. SUs can detect and utilize white
spaces (also known as spectrum holes [16]) that are not fully
used by PUs but must avoid interfering with active PUs [17].

There are three main cognitive radio network paradigms [4],
namely underlay, overlay, and interweave. The underlay
paradigm mandates that concurrent noncognitive and cognitive
transmissions may occur only if the interference generated by
the SU devices at the PU receivers is below some acceptable
threshold, which is also referred to as the interference tempera-
ture [1]. Since the interference constraints in underlay systems
are typically quite restrictive, this usually limits the SUs to short

range communications.
The second paradigm, namely the overlay model, requires

that the SU transmitter has the knowledge of codebook and mes-
sages of the PU. Under that model, the knowledge of the PU’s
message and/or its codebook need to be exploited to either can-
cel or mitigate the interference seen at receivers of the SU and
the PU. Therefore, it is assumed the PU’s message is known at
the SU transmitter when the PU begins its transmission. How-
ever, that assumption is usually impractical for an initial trans-
mission.

In this paper, we focus on the interweave model, which is
based on the idea of opportunistic spectrum access (OSA) and
is also referred to as spectrum overlay in [18]. By following
the OSA strategy, the SU carries out spectrum sensing to detect
white spaces, and reconfigures its transmission parameters (e.g.,
carrier frequency, bandwidth, and modulation scheme) to oper-
ate in the identified spectrum band. In addition, the SU needs to
keep monitoring the spectrum on which it operates and quickly
vacates the band whenever the PU becomes active.

To enable the SU to efficiently fill the spectral holes left by the
PU without causing unacceptable interference, an OFDM-like
reconfigurable subcarrier structure is usually employed. How-
ever, the adoption of OFDM structure in cognitive communi-
cation inevitably leads to dozens or even hundreds of subcarri-
ers, which could significantly increase the sensing overheads of
the SU. To address that problem, subcarrier grouping [19], [20]
can be employed, which bundles the subcarriers into groups and
manages each subcarrier group as a channel in traffic alloca-
tion. To acquire the occupancy status of a channel, only a repre-
sentative subcarrier of the channel needs to be sensed. Such
a channel-based sensing strategy can significantly reduce the
amount of sensing required.

The subcarrier grouping can be either uniform or non-
uniform. Under the uniform grouping scheme, all channels have
equal number of subcarriers. As the PU’s data rate is not always
an integer multiple of the channel capacity, there is a gap be-
tween the total channel capacity offered to the PU and the actual
spectrum it actually requires. That gap could inevitably reduce
the capacity available to the SU, and will lower the spectrum
utilization. Here we refer to the gap as the capacity loss due to
fragmentation. A larger group size creates less number of chan-
nels, which enables the less amount of sensing. However, it may
lead to more capacity loss due to fragmentation. In contrast, a
smaller group size can reduce the capacity loss due to fragmen-
tation, but it creates more channels, which unavoidably results
in more sensing overheads.

To address that conflict, we have proposed a non-uniform
bandwidth partition and traffic allocation scheme in [10], in
which the numbers of subcarriers within the channels form a
geometric sequence. Such a grouping scheme can achieve rela-
tively low sensing overheads and diminishing capacity loss due
to fragmentation simultaneously. The scheme we proposed has
neither restrictions nor influence on the PU’s traffic profile, such
as power of transmission, preambles, midambles and pilot pat-
terns. Thus most existing spectrum sensing methods [21]–[25]
can be adopted without altering their implementations or their
properties. However, our discussion in [10] about the non-
uniform scheme mainly focused on the non-fading situation. In
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this paper, we concentrate on how to maximize the SU through-
put of the non-uniform scheme under fading.

In [26], we have proved the NP-hardness of COP, and have
presented the greedy algorithm for SOP. In the current paper,
the novelties consist of the following aspects: 1) The FPTAS
is derived for COP as an approximation solution, and is mod-
eled as a knapsack problem with non-integer weight constraints.
2) As conventional dynamic programming methods cannot be
employed directly, we propose a novel dynamic programming
algorithm for the FPTAS. 3) Additional simulations have been
made to illustrate the performance differences between the FP-
TAS and the greedy algorithm.

Under frequency selective fading, the effective capacity of
channels varies across different bands and time slots. To max-
imize the spectrum utilization, we have to allocate spectrum to
the PU adaptively according to its current traffic volume and
the instant effective capacity of the channels, which is essen-
tially a process of spectrum adaptation. Although the spectrum
adaptation approaches have been broadly adopted in wireless
communications in varies forms, such as fine-grained channel
access [27], flexible channelization [28], spectrum slicing [29],
channel assembling and fragmentation [30], [31], etc., there
are significant differences between the spectrum adaptation ap-
proach we employed and those of existing literature, which are
listed as follows:

First, our spectrum adaptation is designed for the interweave
paradigm, in which the PU and the SU share no channel. The SU
keeps sensing and monitoring the channels and vacates any of
them that will be used by the PU. Within an idle time-spectrum
block, the SU can maximize its transmission power and data
rates as long as its transmission does not interference the adja-
cent channels. In contrast, the channel assembling and fragmen-
tation of [31] aim to distribute the PU traffic flow evenly across
all available channels. That strategy actually forms an underlay
paradigm, and unavoidably limits the SU’s communication dis-
tance and data rate.

Secondly, our spectrum adaptation scheme is based on the
cooperation between the PU and the SU. The PU optimizes its
bandwidth occupancy to minimize the capacity loss due to frag-
mentation and to leave as much idle bandwidth to the SU as pos-
sible. Such a cooperative strategy for traffic allocation can effec-
tively lower the sensing overheads of the SU. In contrast, con-
ventional spectrum adaptation requires no cooperation from the
PU. It is all up to the SU to perform spectrum sensing and mon-
itoring. The randomly generated spectrum holes, which varies
in size and position, inevitably make the design and implemen-
tation of the SU complex [17].

The performance of cognitive radio networks highly depends
upon the activity of primary radio users. By modeling PU’s ac-
tivity, SUs can predict the future state of PUs by learning from
the history of their spectrum utilization, and then assign best
available spectrum bands for their communication. The PU ac-
tivity models employed in CRN can be classified into several
categories: Markov process, queuing theory, time series, and
ON/OFF periods, etc [32]–[35]. In prediction-based spectrum
sensing, a CR user can skip the sensing duty on some channels
that are predicted to be busy, thus reducing the sensing time and
energy consumption.

As for the relationship between our scheme and PU activity
models, the key points are summarized as follows: First, our
scheme is based on spectrum occupancy regulation. The mod-
eling of PU activity is a method for spectrum occupancy pre-
diction. They are independent to each other and can be used
cooperatively in practice. On one hand, our scheme aims to
regulate the PU traffic allocation. That will make the spectrum
occupancy become more concentrated by reducing the number
of partially occupied channels, and will eventually leave more
completely fully idle channels to SUs. The regulation of spec-
trum occupancy can ease the adoption of PU activity models.
On the other hand, it is also feasible to use PU activity models
to improve the performance of our scheme. At least, the corre-
lation among the PU traffic sequences can be used to decrease
the number of sensing operations. However, a detailed discus-
sion about the design, implementation, and benefits is beyond
the scope of the current work.

There are various efforts trying to maximize SU through-
puts in CRN. In [36], the coexistence problem under interfer-
ence from multiple heterogeneous and independent secondary
networks (SNs) was studied. An optimal coexistence strategy
that can maximize the throughput achievable by an arbitrary SN
was proposed. In [37], the problem of capacity maximization in
CRNs was modeled as a link scheduling problem with the goal
of selecting a maximum cardinality set of links including all the
primary ones (with priority) and a subset of the secondary ones
to transmit concurrently without causing interference to each
other. All those problems were proved to be NP-hard, and poly-
nomial time approximation algorithms were presented for better
computation efficiency. However, there are evident differences
between the methods of those cases and that of our scheme. For
instance, both [36] and [37] focus on scheduling SUs’ activities,
while our scheme aims to regularize PU’s activities and poses no
constraints on SUs’ behaviors and policies. By minimizing the
PU’s spectrum occupancy and the bandwidth loss due to frag-
mentation, we aim to maximize the amount of spare spectrum
for SUs.

III. SYSTEM MODEL

We assume that the data transmissions of PUs and SUs are
time slot based. For a particular spectrum band, we consider
the scenario composed of a PU transmitter and multiple PU re-
ceivers. If there are more than one PU transmitters, we consider
the one that is authorized for data transmission in the current
time slot, either by the assignment of a negotiator or through a
competition among the candidates.

As for the SUs, there is no restriction on how to utilize the idle
spectrum. Thus the SUs can be organized either in a group with
a centralized negotiator, or in a distributed ad-hoc manner. How-
ever, to make our discussion more tractable, we define a virtual
SU on behalf of the actual SUs to perform spectrum sensing and
access in the current time slot. The performance of the virtual
SU, e.g., the SU throughput, is equal to the sum of the through-
put of all members it represents. In this way, we can simplify
the model in a time slot to be composed of one PU and one SU,
and focus on the optimization of the PU traffic allocation.

As our work focuses on spectrum partition and PU traffic al-
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location, the system model we adopt actually makes no assump-
tion on either the method for spectrum sensing or the model of
reporting channels. Therefore, for COP, any viable channel re-
porting mechanism, including the temporal dispersive reporting
channels used in [38], can be employed by the SUs. However,
any reporting mechanism would impose some overhead in the
communications.

A. Bandwidth Partition

The entire bandwidth is denoted by Bw (in Hz) with the
maximum average data rate being denoted by W (in bps) un-
der additive white Gaussian noise (AWGN). The overall band-
width is firstly partitioned equally into 2M − 1 subcarriers
as {α0, · · ·, α2M−2}. Then the subcarriers are non-uniformly
grouped to M channels to form the set

B = {β0, β1, · · ·, βM−1}, (1)

where βk is composed of 2k (k ∈ [0,M − 1]) subcarriers. The
channel nominal capacity (in bps) is denoted by:

β̂k =
2k

2M − 1
W, 0 ≤ k ≤M − 1. (2)

Here we assume that an OFDM-like structure is employed in
the physical layer. That enables the channels to be composed of
both the adjacent and non-adjacent subcarriers.

The numbers of subcarriers of the channel set {β0, · · ·βM−1}
form a binary geometric sequence with the sum of 2M − 1. It
is also possible to use other integer sequences for the spectrum
partition and subcarrier grouping. For instance, Fibonacci se-
quence, or even more generally, any complete sequence [39]
is viable for that purpose. However, it is evident that the bi-
nary geometric sequence has the least length, which is helpful
to minimize the amount of sensing of SUs.

B. Effective Capacity

Under the non-fading situation, since the maximum average
data rate is W (bps), we have the capacity formula as follows:

W = Bw log2(1 +
P t
σ2
n

), (3)

where P t is the average input power at the transmit antenna, and
σ2
n is the white noise power of the channel.
Now we consider the frequency selective fading effect. We

assume OFDM-like structures are adopted in the physical lay-
ers of both the PU and the SU, and the fading effect is ap-
proximately flat within each subcarrier. We further assume that
the average transmission power is allocated to each subcarrier.
Thus, by denoting the channel gain of the ith subcarrier in the
nth time slot by hi(n), the ergodic capacity of the ith subcarrier
is

c(αi, n) = B0 log2(1 +
P t
σ2
n

|hi(n)|2), (4)

where

B0 =
Bw

2M − 1
=

W

(2M − 1) log2(1 + P t

σ2
n

)
. (5)

By assuming that the effective capacity of βk is the sum of the
ergodic capacity of all its subcarriers, we have

c(βk, n) =

2k∑
i=1

c(αi, n) (6a)

= B0

2k∑
i=1

log2(1 +
P t
σ2
n

|hi(n)|2) (6b)

=

∑2k

i=1 log2(1 + P t

σ2
n
|hi(n)|2)

2k log2(1 + P t

σ2
n

)
β̂k. (6c)

By setting

η(k, n) = 1−
∑2k

i=1 log2(1 + P t

σ2
n
|hi(n)|2)

2k log2(1 + P t

σ2
n

)
, (7)

we have

c(βk, n) = (1− η(k, n))β̂k, 0 ≤ k ≤M − 1. (8)

The value of η(k, n) denotes the ratio of capacity loss of βk in
the nth time slot due to fading effect. Since all channels are sub-
ject to block fading, although in general η(k, n) is time varying
and channel dependent, its value can be considered to be ap-
proximately a constant for any particular channel in every time
slot.

In addition, since our methods are designed to run in every
time slot, in the following-up discussion, we simplify the nota-
tions c(βk, n) to c(βk), and η(k, n) to η(k) respectively. Thus
(8) can be rewritten as:

c(βk) = (1− η(k))β̂k, 0 ≤ k ≤M − 1. (9)

Here we stress that the simplified expression shown above is
merely for abbreviation, which will never change the time vary-
ing property of either c(βk) or η(k).

As for the cases where the PU and the SU are subject to dif-
ferent fading effects, we further denote the capacity reduction
factors of βk for the PU and the SU by ηp(k) and ηs(k). Accord-
ingly, the effective capacity of the PU and the SU are denoted
by cp(βk) and cs(βk) respectively.

C. PU Traffic Allocation

The PU traffic allocation is channel based. A channel as a
whole is either allocated to the PU entirely or remains unused.
Denoting the PU traffic in any time slot under consideration by
R(n), and the channel subset allocated to the PU by B

(n)
p , a

feasible PU traffic allocation should satisfy the following con-
straint:

cp(B
(n)
p ) ≥ R(n). (10)

Since our methods are designed to be executed in every time
slot, the variable n is not necessarily to appear in the above equa-
tion. Thus the simplified formula can be written as follows:

cp(Bp) ≥ R. (11)
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Here we stress that the simplified notations do not alter the time
varying property of c(·), R and Bp at all. The capacity loss due
to bandwidth fragmentation caused by the PU traffic allocation
is defined as the difference between R and its actual allocated
bandwidth, which is denoted as follows.

∆(Bp) = cp(Bp)− R. (12)

The selection of Bp should ensure that cp(Bp) meets the band-
width demand of R. That makes ∆(Bp) > 0 . In case the value
of R is greater than the maximum available bandwidth, the ex-
cessive part denoted by ∆(R) = R − cp(Bp) can be buffered,
and its transmission can be postponed until the following time
slot.

Here we assume that the PU transmitter has perfect feedback
of CSI from the PU receiver. Thereby the PU transmitter can
estimate the current effective capacity of the channel, namely
cp(βk), within a time slot accurately and optimizes its traffic
allocation accordingly.

D. Spectrum Sensing and Access

At the beginning of each time slot, the SU senses the status of
a subcarrier to determine the status of the corresponding chan-
nel. If there is no PU transmission, the SU can utilize the time
slot for its own transmission. Since all the subcarriers grouped
into a channel share the same occupancy status, the SU only
needs to sense any selected subcarrier in each channel and infers
the entire channel’s occupancy status. In this way the overheads
of sensing can be reduced significantly.

IV. MAXIMIZATION OF CAPACITY

We assume that the SU bandwidth demand is large, which can
always use up all the spare capacity left by the PU. Therefore
we have Bs = B \ Bp, where Bs is the set of all idle channels
available to the SU. Our objective is to maximize cs(Bs) by op-
timizing Bp. As cs(Bs) represents the effective capacity of Bs,
the problem is referred to as COP (Capacity-based Optimization
Problem) and is formulated as follows:

max
Bs⊆B

cs(Bs) s.t. cp(Bp) ≥ R, (13)

where cs(Bs) =
∑
βi∈Bs

cs(βi), cp(Bp) =
∑
βj∈Bp

cp(βj),
and R is the PU traffic in any time slot under consideration. On
the computational complexity, we have the following conclu-
sion.

Theorem 1: COP is NP-hard.
Proof: See Appendix A. 2

Since COP is an NP-hard problem, there is no effective way
to find the global optimal solution to it. A viable alternative is to
resort to approximation methods. Among all existing approxi-
mation algorithms, FPTAS (Fully Polynomial-Time Approxima-
tion Scheme) is the best type that one can hope for an NP-hard
optimization problem, if assuming P 6= NP [40]. To employ
the FPTAS algorithm, we first introduce some definitions as fol-
lows [41].

Definition 1 (PTAS) A polynomial-time approximation scheme
(PTAS) is a type of algorithm Aε such that for each ε > 0, Aε is

a (1 + ε)-approximation algorithm (for minimization problems)
or a (1− ε)-approximation (for maximization problems).

Definition 2 (FPTAS) A fully polynomial-time approxima-
tion scheme (FPTAS) is a PTAS such that the time complexity
of Aε is bounded by a polynomial in the problem size and 1/ε.

From Bs = B \Bp, we have

cp(Bp) = cp(B)− cp(Bs). (14)

Thus (13) can be equivalently written as follows:

max
Bs⊆B

cs(Bs) s.t. cp(Bs) ≤ cp(B)−R, (15)

where cs(Bs) =
∑
βi∈Bs

cs(βi), cp(Bs) =
∑
βj∈Bs

cp(βj),
and R is the PU traffic in any time slot under consideration. In
the following, we use B∗s to denote the optimal solution to (15).

For a particular channel βi, if we define cs(βi) as the value
and cp(βi) as the weight, (15) is obviously a 0-1 knapsack prob-
lem with the total weight limit as cp(B)−R. The basic steps of
the FPTAS for a knap-sack problem are as follows.

We first use a greedy algorithm with the time complexity
of O(M) to obtain a solution to (15). The greedy algorithm
goes through all the channels of B and chooses the one with
the largest cs(βi)/cp(βi) iteratively, under the constraint that
cp(Bs) ≤ cp(B) − R. We denote the outcome by B(g)

s . It is
evident that cs(B

(g)
s ) ≤ cs(B∗s ).

Then we set µ = (ε/M)cs
(
B

(g)
s

)
, where ε > 0 andM = |B|

is the total number of channels. We round each value cs(βi)
down to the nearest integer multiples of µ and define c′s(βi) =⌊
cs(βi)/µ

⌋
(0 ≤ i < M). With the new integer value c′s(βi)

and the non-integer weight cp(βi), a new knapsack problem as
an approximation for COP is as follows.

max
B′s⊆B

{
c′s(B

′
s)
}

s.t. cp(B′s) ≤ cp(B)−R. (16)

The conventional method for solving a knapsack problem is
based on dynamic programming. However, dynamic program-
ming can not be employed directly, because the knapsack prob-
lem in (16) is based on a non-integer weight constraint. Here
we provide an alternative dynamic programming algorithm in
Algorithm 1.

On the correctness of Algorithm 1, we have the following
conclusion.

Lemma 1: Algorithm 1 always gives the optimal solution to
the optimization problem of (16).

Proof: See Appendix B. 2

Lemma 2: The time complexity of Algorithm 1 isO(M2bMε c).
Proof: The time complexity of the first for-loop of Al-

gorithm 1, shown in Lines 3 to 5, is O(V ). Since V =∑M
i=1 c

′
s(βi) and c′s(βi) =

⌊
cs(βi)/µ

⌋
, we have O(V ) =

O(M
⌊
cs(βi)/µ

⌋
). For the second loop of Lines 6 to 15 the

time complexity is O(MV ) = O(M2
⌊
cs(βi)/µ

⌋
). For the

third one of Lines 17 to 23, because the time complexity of
Line 18 is O(V ), the total time complexity is O(MV ) =
O(M2

⌊
cs(βi)/µ

⌋
).

From all above, the time complexity of Algorithm 1 is
O(M2bcs(βi)/µc), or equivalently O(M2bM/εc). 2
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Algorithm 1 An approximation scheme for COP.
Input: M , ε, cs(βi) (0 ≤ i ≤M − 1)
Output: B′∗s
1: V ←

∑M
i=1 c

′
s(βi−1), where ε > 0, µ := ε

M cs
(
B

(g)
s

)
and

c′s(βi) :=
⌊ cs(βi)

µ

⌋
2: w[0, 0]← 0
3: for k := 1 to V do
4: w[0, k]←∞
5: end for
6: for i := 1 to M do
7: for k := 0 to V do
8: if k ≤ c′s(βi−1) then
9: w[i, k]← min{w[i− 1, k], cp(βi−1)}
10: else
11: w[i, k]← min{w[i− 1, k], cp(βi−1)
12: +w[i− 1, k − c′s(βi−1)]}
13: end if
14: end for
15: end for
16: U ← cp(B)−R, B′∗s ← ∅
17: for i := M down to 1 do
18: k ← arg max

z
{w[i, z] |w[i, z] ≤ U}

19: if w[i, k] 6= w[i− 1, k] then
20: U ← U − cp(βi−1)
21: B′∗s ← B′∗s ∪ βi−1
22: end if
23: end for
24: return (B′∗s )

Theorem 2: Algorithm 1 is an FPTAS for COP, i.e.,

cs(B
′∗
s ) > (1− ε)cs(B∗s ), (17)

where B′∗s is the output of Algorithm 1, and B∗s is the optimal
solution to COP.

The proof is omitted as it is similar to that of Theorem 3.5
in [41].

V. MAXIMIZATION OF SUBCARRIERS

Solving COP requires the PU to have the fading information
of the SU. This is usually impractical, which may incur signifi-
cant communication overheads and leads to implementation is-
sues. In addition, as shown in Theorem 1, even if the SU fading
information is known to the PU, COP is still an NP-hard prob-
lem. To address the complexity, we propose another surrogate
problem as follows.

A. Subcarrier based Optimization Problem

If we target at maximizing the nominal capacity made avail-
able to SU, the problem reads

max
Bs⊆B

B̂s s.t. cp(Bp) ≥ R, (18)

where B̂s =
∑
βi∈Bs

β̂i and cp(Bp) =
∑
βj∈Bp

cp(βj). As

β̂i = 2iβ̂0, the above optimization essentially maximizes the

number of subcarriers for the SU, and we term it Subcarrier
based Optimization Problem (SOP).

For SOP, we show a greedy algorithms in Algorithm 2 that
achieves the global optimum with its complexity being O(M),
or O(M logM) if the sort operation is taken into account.

Algorithm 2 Greedy method for PU traffic allocation for SOP.
Input: M , R, cp(βi) (0 ≤ i ≤M − 1)
Output: B∗s
1: xi ← 1 (∀i, 0 ≤ i ≤M − 1), w ← cp(B)
2: for i := M − 1 down to 0 do
3: if w − cp(βi) < R then
4: continue
5: else
6: w ←

(
w − cp(βi)

)
, xi ← 0

7: if w −R = 0 then
8: break
9: end if
10: end if
11: end for
12: B∗s ← {βi |xi = 0, 0 ≤ i ≤M − 1}
13: return (B∗s )

Theorem 3: Algorithm 2 gives the global optimal solution to
SOP.

Proof: We useN(·) to denote the number of subcarriers of
a channel or a channel set. Algorithm 2 starts its iteration from
βM−1 and goes through the channels in descending order of the
number of their subcarriers as B = {βM−1, βM−2, · · ·, β0},
where βM−1 is the widest channel and β0 the narrowest one.
Because the numbers of subcarriers of all channels are all pow-
ers of two, we have, for channel set B, the following inequality
for any integer k ∈ [1,M − 1]:

N(βk) >

k−1∑
j=0

N(βj). (19)

For any given R, Algorithm 2 partitions the channel set B into
two disjoint subsets Bp and Bs. Suppose Bs has m elements.
We sort the channels ofBs in descending order of their numbers
of subcarriers: Bs =

{
β
(km−1)
m−1 , β

(km−2)
m−2 , · · ·, β(k0)

0

}
, where

ki (0 ≤ i ≤ m− 1) is the original index of β(ki)
i in B. Thus for

all i and j, 0 ≤ i < j ≤ m−1, we haveN
(
β
(ki)
i

)
< N

(
β
(kj)
j

)
.

Now we assume that there exists a better solution of l ele-
ments, denoted by

B′s =
{
β
(k′l−1)

l−1 , β
(k′l−2)

l−2 , · · ·, β(k′0)
0

}
⊆ B,

which contains more subcarriers than Bs though still satisfies
the PU demandR, where k′j (0 ≤ j ≤ l−1) is the original index

of β
(k′j)

j in B. The channels of B′s are also sorted in descending
order in the number of subcarriers.

If k′l−1 ≤ km−1, then by the property stated in (19), the total
number of subcarriers in Bs is at least as large as that of B′s,
contradicting the assumption that the latter is a better solution.
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Suppose therefore k′l−1 > km−1. For solution B′s, the capac-
ity by channels from B \B′s meets the PU demand R, otherwise
B′s is not a valid solution. Consider now the step in which Algo-

rithm 2 examines β
(k′l−1)

l−1 . Note that, as k′l−1 > km−1, set Bs is
empty at this stage, i.e., no channel has been taken by the SU and
hence all channels considered prior to k′l−1 have been allocated

to the PU by the algorithm. Because B \ B′s ⊆ B \ {β(k′l−1)

l−1 },
the channel subset {βj : 0 ≤ j < k′l−1}, together with the chan-

nels allocated prior to β
(k′l−1)

l−1 , can accommodate the PU demand

R. Hence Algorithm 2 would have selected β
(k′l−1)

l−1 to be in Bs,
contradicting that k′l−1 > km−1, and the theorem follows. 2

Theorem 3 shows that SOP can be solved by a greedy algo-
rithm, with the time complexity of O(M logM) at most.

B. Equivalence to COP under Flat Fading

Under flat fading, the PU and the SU are subject to the same
percent of capacity loss for every channel. For this specific situ-
ation, we have the following conclusion.

Corollary 1: COP is equivalent to SOP under flat fading.
Proof: Under flat fading, η(k) is uniform for all channels.

From (9), the problem of (13) becomes identical to that of (18),
which makes COP equivalent to SOP. 2

Therefore under flat fading, the solution to SOP achieved by
Algorithm 2 is exactly the global optimal solution to COP.

In practice, as the channel fading is usually frequency selec-
tive, Algorithm 2 does not necessarily bring us the optimal solu-
tion to COP. We will evaluate the actual performance of Algo-
rithm 2 and compare it to the optimal solution to COP later in
the simulation part.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the FPTAS for
COP and the greedy algorithm for SOP by simulations. The ef-
fective capacity of the SU obtained by the FPTAS and the greedy
algorithm is calculated and then compared with that of the opti-
mal solution to COP. As COP is NP-hard, the exhaustive search
method is adopted to find the optimal allocation of the PU traf-
fic. The SU throughput under the conventional subcarrier equal
grouping scheme with the sequential allocation approach is also
presented for the purpose of comparison.

As a typical and popular subcarrier grouping scheme, equal
grouping has been widely adopted in the existing literature. For
example, in [42], a cyclic strategy was adopted to allocate all the
subcarriers evenly to the users, with the aim of spreading each
user’s subcarriers as far as possible. The effect of the cyclic
strategy was actually identical to dividing and grouping the sub-
carriers evenly. Similarly, in [19], a subcarrier selector matrix
was defined for each group to divide the set of all subcarriers
evenly into n groups, each of which was composed by P flat
subcarriers. In [43], subcarriers were split evenly into q groups
each of which was composed by n subcarriers. Compared with
existing subcarrier grouping schemes, the main outcome of our
scheme lies in the following aspects: 1) decreasing the sensing
amount needed by SU, 2) reducing the spectrum waste due to
fragmentation as much as possible. Although the equal group-
ing scheme can reduce the sensing amount as well, it cannot

achieve 1) and 2) at the same time.
As for the implementation of the equal grouping scheme,

since we pose neither restriction on its group composition, nor
on the sequence of sensing, a subcarrier group may consist of
both adjacent subcarriers and non-adjacent ones, and the spec-
trum sensing operations can be performed either sequentially or
randomly. These aspects allow the equal grouping scheme to
represent a broad category of spectrum allocation cases.

Some parameters for the simulations are as follows. The to-
tal licensed bandwidth in Hz is set to Bw = 1MHz, with its
maximum data rate being W = 7.5Mbps. The PU traffic series
is generated by following a truncated Poisson distribution on
[0,W ] with the parameter λ. The value of λ is set to 0.35W and
0.65W for the light and heavy PU traffic patterns respectively.
The number of PU traffic samples is set to be 600.

The channels are supposed to being subject to white Gaussian
noise of N(0, σ2

n). From (3), we have the signal to noise ratio
as Pt/σ2

n ≈ 23 dB. We use Rayleigh fading to emulate the chan-
nel fading. The probability distribution function of the channel
response envelop is f(ν; b) = ν

b2 exp (−ν2/2b2). Varying the
value of parameter b generates different levels of fading sever-
ity. A smaller value of b makes the fading impact more severe.
As h(k, n) ∼ f(ν; b), we first construct the effective capacity
data set for the subcarriers from (4). Then we obtain the ef-
fective capacity of the channels by following different grouping
schemes.

Fig. 1 (a)–(c) show the variations of the average effective ca-
pacity of the SU with regard to the numbers of channels. The
abbreviations used are as follows: 1) COP-opt, the exhaustive
search method for COP; 2) COP-fpt, the FPTAS for COP; 3)
SOP-gdy, the greedy algorithm for SOP. 4) Eq-grp, the conven-
tional equal grouping together with the sequential bandwidth al-
location method.

We note that all curves in Fig. 1 (a)–(c) basically follow the
same trend. With the growth of M , the curves of the average
effective capacity first grow rapidly, then decelerate gradually,
and finally approach the maximum value. As COP-opt is the
global optimal solution, its curve represents the upper bound for
the other methods.

The reason of the zig-zag curves of Eq-grp lies in the capacity
loss due to spectrum fragmentation caused by the equal group-
ing of subcarriers. As we assume that the SU always vacates
the channels occupied by PU, the spectrum fragments left by
the PU lead to waste of bandwidth, because such fragments can
not be utilized by either the PU or the SU. With the increase of
the channel number, the zig-zag behavior of the uniform scheme
becomes diminishing due to the finer bandwidth partition gran-
ularity.

Under the light PU traffic (λ = 0.35W ), the outcome of COP-
opt for the largest number of channels considered is around
0.415W , indicating the maximum value of the average effec-
tive capacity of the SU under Rayleigh fading (b = 0.5). The
difference between the value of W and the sum of the average
bandwidth consumption of the PU and the SU is due to the ca-
pacity loss caused by channel fading.

When the number of channels is small, e.g. M ≤ 6, the
value of COP-opt is clearly below 0.415W . The difference is
due to the capacity loss caused by bandwidth fragmentation, i.e.,
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Fig. 1. Effective capacity of SU under Rayleigh fading: (a) b = 0.5, ε = 0.8, λ = 0.35W , (b) b = 0.5, ε = 0.4, λ = 0.35W , (c) b = 0.5, ε = 0.1,
λ = 0.35W , (d) b = 0.3, ε = 0.1, λ = 0.35W , (e) b = 0.7, ε = 0.1, λ = 0.35W , and (f) b = 0.5, ε = 0.1, λ = 0.65W .

∆(Bp), which was defined in (12). With the growth of M , the
value of ∆(Bp) decreases rapidly, and the curve of COP-opt
rises quickly. The growing effective capacity illustrates the ca-
pacity gain obtained from the finer partition granularity. How-
ever, the capacity gain quickly becomes diminishing when M
keeps growing. When M ≥ 8, the partition granularity is quite
small (i.e., 1/256W ≈ 0.39%W ) and the gain almost disap-
pears.

Although the curve of COP-fpt resembles that of COP-opt,
there are apparent gaps between the curves of COP-fpt and
COP-opt in the cases of ε = 0.8 and ε = 0.4. Reducing the
value of ε decreases the gap and improves the approximation
accuracy accordingly. When ε = 0.1, the curves of COP-fpt
and COP-opt are quite close.

As for SOP-gdy, its curve is almost overlapping with that
of COP-opt. In the zoom-in boxes, it is evident that the gaps
between SOP-gdy and COP-opt is very little and even negligi-
ble. That feature demonstrates the good performance of SOP-
gdy. A reason for the good performance of SOP-gdy lies in the
averaging effect. In the simulations, the effective capacity of
each channel is obtained by summing up those of its subcarri-
ers. Although the subcarrier capacity varies significantly under
frequency-selective fading, the variation of the channel capacity
is counterbalanced by the offsetting effect among its subcarri-
ers. In addition, the variation is further flatted by the averaging
effect over time.

Unlike the FPTAS, the greedy algorithm for SOP does not re-
quire the PU to acquire the channel fading information of the
SU. Besides that, its time complexity is O(M), or O(M logM)
if counting into the sorting operations. This is much better than

that of the FPTAS, which is at least O(M3). However, the
greedy algorithm does not provide any performance guarantee.

In Fig. 1(d) and (e), we change the parameter b of Rayleigh
fading from 0.5 to 0.3 and 0.7 respectively to illustrate the im-
pact of severer or milder channel fading on the effective capac-
ity. The parameter setting is identical to that of Fig. 1 (c) except
the value of parameter b. It is clear that the general trend of
the curves keeps the same, although the average effective capac-
ity decreases or increases respectively. For the Rayleigh fading
model, a larger value of the parameter b of the Rayleigh model
leads to relatively less fading impact, which results in a higher
SU throughput.

In Fig. 1(f), we further simulate the effective capacity under
the heavy PU traffic by setting λ = 0.65W with the rest pa-
rameters being unchanged. The curves keep the similar shape as
well, except that the maximum effective capacity becomes obvi-
ously lower. All the results demonstrate the robustness of both
COP-fpt and SOP-gdy with regard to various fading severity and
different levels of PU traffic.

To sum up, from the simulation results, it is clear that the
outputs of both the FPTAS and the greedy algorithm resemble
that of the optimal solution closely. Moreover, under the non-
uniform bandwidth partition scheme, the greedy algorithm is su-
perior to the FPTAS because it does not require any fading in-
formation of the SU. In addition to that, it also has much lower
time complexity than the FPTAS. In contrast, the FPTAS is su-
perior to the greedy one for its strict approximation guarantee.
By tuning the value of ε, we can get any desired approximation
accuracy. Besides that, the FPTAS has a much wider applica-
bility. It can be used not only for the particular non-uniform
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bandwidth partition scheme in this paper, but also for more gen-
eral multiple-channel communication cases.

However, when using the FPTAS, the number of channels
does matter. A small number of channels may cause significant
capacity loss due to bandwidth fragmentation, while an overly
large number of channels may unnecessarily increase the time
complexity. Thus a tradeoff between the accuracy and complex-
ity needs to be considered carefully.

VII. CONCLUDING SUMMARY

In this paper, bandwidth partition and allocation are studied to
optimize the spectrum utilization in cognitive communications
under the interweave paradigm. We formalize the optimization
of the spectrum utilization as a problem of optimizing the PU
traffic allocation, namely COP. In addition, we further study the
problem of maximizing the spare subcarriers, namely SOP, as
the surrogate problem of COP.

By theoretical analysis and numerical simulations, the out-
comes of both the FPTAS and the greedy algorithm are quite
close to the optimal solution. The advantages of the FPTAS for
COP include its approximation guarantee and wide applicabil-
ity. The greedy algorithm is good at its high approximation per-
formance under low time complexity and its non-requirement
for fading information.

FPTAS has clearly higher complexity than the greedy algo-
rithm; however this comes with the advantage of performance
guarantee. Moreover, because the complexity is a polynomial,
by algorithm theory [40], [41] it is scalable, unlike exponential-
time algorithms. As for the greedy algorithm for SOP, although
it performs quite well in our simulations, its effect relies heav-
ily on the spectrum partition based on the geometric sequence,
which makes its applicability highly limited.

Our discussions in this work focus on a geometric structure
based non-uniform partition scheme. In our future work, the
discussion would be extended to more general non-uniform par-
tition schemes.

APPENDIX A
PROOF OF THEOREM 1

We derive a proof via a polynomial-time reduction from the
partition problem [44], which is known to be NP-complete.
Given a set of positive integers a1, a2, . . . , aL, the partition
problem is to determine whether or not the set can be partitioned
into two subsets with equal sum. Without any loss of generality,
we can assume that the sum of all elements,

∑L
k=1 ak, is an even

number, because otherwise the problem has the trivial answer of
no. Thus if the partition problem has a solution, then each of the
two subsets has sum

∑L
k=1 ak/2.

We define an instance of problem in (13) as follows. There
are M = L channels 0, . . . ,M −1. For channel k, 0 ≤ k ≤M ,
c(βk) = ak, the PU traffic demandR =

∑L
k=1 ak/2. Moreover,

the special case of identical fading for PU and SU is considered,
i.e., ηs(k) = ηp(k) = η (1 ≤ k ≤ M − 1). In this case,
cs(·) is simplified as c(·), and the expression of c(Bs) reads
c(Bs) =

∑
βk∈Bs

c(βk) = W −
∑M−1
k=0 ηβ̂k −

∑
βk∈Bp

c(βk).
Note that the first two terms are constants (i.e., not dependent on
the PU traffic allocation).

For the instance of (13) defined above, consider the follow-
ing recognization version: Is there a PU traffic allocation Bp,
such that the total capacity of SU is at least W −

∑M−1
k=0 ηβ̂k −∑L

k=1 ak/2? Note that to satisfy the PU traffic demand, the
corresponding constraint reads

∑
βk∈Bp

ak ≥
∑L
k=1 ak/2. At

the same time, if c(Bs) can be at least W −
∑M−1
k=0 ηβ̂k −∑L

k=1 ak/2, then
∑
βk∈Bp

ak ≤
∑L
k=1 ak/2. Therefore, the

recognition version is equivalent to answering whether or not
Bp can be chosen such that

∑
βk∈Bp

ak =
∑L
k=1 ak/2, which

is in fact the partition problem. Hence the recognition version of
(13) is NP-complete, and consequently the optimization version
is NP-hard. 2

APPENDIX B
PROOF OF LEMMA 1

Let

Bi = {βj−1 | 0 < j ≤ i} (1 ≤ i ≤M). (20)

Bi represents the channel set composed of the first i channels of
B. We first prove that w[i, k] obtained in Algorithm 1 represents
the minimal weight for any channel set X (X ⊆ Bi) with the
value being constrained by k, i.e.,

w[i, k] = min
X⊆Bi

{cp(X) | c′s(X) ≥ k}, (21)

where 1 ≤ i ≤M and 0 ≤ k ≤ V (V =
∑M
i=1 c

′
s(βi−1)). Here

we prove it by induction.
For i = 0, we define B0 to be the empty set. As shown in

Algorithm 1, w[0, 0] is set to zero and w[0, k] (0 < k ≤ V )
is set to ∞. Here ∞ represents the weight of a non-existing
solution. Now we prove that the right hand side of (21) gives
exactly the same results as that of Algorithm 1. We consider two
subcases as follows.

(a) For i = 0 and k = 0, since B0 = ∅, we have

min
X⊆B0

{cp(X) | c′s(X) ≥ 0} = cp(∅) = 0. (22)

(b) For i = 0 and k > 0, since B0 = ∅, there is no valid
solution that can satisfy the non-zero value constraint. Thus we
have

min
X⊆B0

{cp(X) | c′s(X) ≥ k} =∞ (∀k ∈ [1, V ]). (23)

From (a) and (b), we can conclude that (21) holds for i = 0.
We further consider the case of i = 1. By following Algo-

rithm 1, we have

w[1, k] =


min{w[0, 0], cp(β0)}, k = 0;

min{w[0, k], cp(β0)}, 0 < k ≤ c′s(β0);

min{w[0, k], cp(β0)+

w[0, k − c′s(β0)}, k > c′s(β0);

(24a)

=


0, k = 0;

cp(β0), 0 < k ≤ c′s(β0);

∞, k > c′s(β0).

(24b)
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As for the right hand side of (21), i = 1 implies thatB1 = {β0}.
Based on that, we consider three situations as follows.

(1a) If k = 0, the empty set is clearly the optimal set. From
cp(∅) = 0, we have

min
X⊆B1

{cp(X) | c′s(X) ≥ k}
∣∣
k=0

= cp(∅) = 0. (25)

(1b) If 0 < k ≤ c′s(β0), there is only one set {β0} that can
meet the value constraint. Thus we have

min
X⊆B1

{cp(X) | c′s(X) ≥ k}
∣∣
0<k≤c′s(β0)

= cp(β0). (26)

(1c) If k > c′s(β0), neither ∅ nor {β0} can satisfy the value
constraint. Thus we have

min
X⊆B1

{cp(X) | c′s(X) ≥ k}
∣∣
k>c′s(β0)

=∞. (27)

From (1a), (1b) and (1c), it is clear that (21) holds for i = 1.
Suppose (21) holds for i = n− 1, namely w[n− 1, k] is the

minimal weight for any channel set X (X ⊆ Bn−1) under the
value constraint of k, i.e.,

w[n− 1, k] = min
X⊆Bn−1

{cp(X)| c′s(X) ≥ k}. (28)

Now we prove (21) holds for i = n, namely

w[n, k] = min
X⊆Bn

{cp(X)| c′s(X) ≥ k}, (29)

where Bn = Bn−1 ∪ {βn−1} (1 ≤ n ≤ M). We make the
discussion under two situations as follows.

(2a) If k ≤ c′s(βn−1), we further consider two subcases, i.e.,
whether or not βn−1 belongs to the optimal channel set for i =
n. If it does, as βn−1 can satisfy the value constraint of k on
its own and no other channels are needed, the optimal channel
set must be {βn−1}, and the minimal weight is cp(βn−1). On
the contrary, if βn−1 is not within the optimal set, since Bn \
{βn−1} = Bn−1, the weight optimization performed on Bn is
equivalent to that on Bn−1, which has been defined by (28).
Thus the minimal weight must be the smaller outcome of these
two subcases, i.e.,

min
X⊆Bn

{cp(X) | c′s(X) ≥ k} (30a)

= min{ min
X⊆Bn−1

{cp(X) | c′s(X) ≥ k}, cp(βn−1)} (30b)

= min{w[n− 1, k], cp(βn−1)}. (30c)

(2b) If k > c′s(βn−1), channel βn−1 can not solely match
the value constraint. We again consider two subcases as fol-
lows. If βn−1 is within the optimal channel set for i = n, since
βn−1 contributes the value of c′s(βn−1), the remaining part of
the channel set has to meet the value constraint of k−c′s(βn−1).
Then the optimization becomes

min
X⊆Bn

{cp(X) | c′s(X) ≥ k} (31a)

= cp(βn−1) + min
X⊆Bn−1

{cp(X) | c′s(X) ≥ k − c′s(βn)} (31b)

= cp(βn−1) + w[n− 1, k − c′s(βn−1)]. (31c)

If βn−1 is not part of the optimal solution, we just make the
optimization on Bn−1 under the original value constraint, i.e.,

min
X⊆Bn

{cp(X) | c′s(X) ≥ k} (32a)

= min
X⊆Bn−1

{cp(X) | c′s(X) ≥ k} (32b)

= w[n− 1, k]. (32c)

By combining those two subcases, we have the final expression
as follows.

min
X⊆Bn

{cp(X) | c′s(X) ≥ k} = min{w[n− 1, k],

cp(βn−1) + w[n− 1, k − c′s(βn−1)]}. (33)

From the results of (2a) and (2b), it is clear that (30a)
and (33) give the identical definition of w[i, k] as in Algo-
rithm 1 (Lines 9,11 and 12)). Thus (29) holds for i = n. By
using the principle of induction, we know that (21) holds.

Next we prove that the output of Algorithm 1 is the optimal
set to (16), namely c′s(B

′∗
s ) being the maximal value under the

weight constraint of cp(B)−R. We prove that by contradiction.
Suppose there exists an optimal channel set B′′s other than

B′∗s , whose value is c′s(B
′′
s ). We assume c′s(B

′′
s ) is better than

that of B′∗s , i.e.,

c′s(B
′′
s ) > c′s(B

′∗
s ). (34)

As all values are integers, without loss of generality, we further
set

c′s(B
′′
s ) = c′s(B

′∗
s ) + 1. (35)

By following Algorithm 1 (Lines 17 to 23), we have

c′s(B
′∗
s ) = arg max

z
{w[M, z]

∣∣w[M, z] ≤ cp(B)−R}. (36)

From the above equation we immediately have

w[M, c′s(B
′∗
s )] ≤ cp(B)−R. (37)

By considering the monotonicity of w[M,k] with respect to k,
it is easy to get

w[M, c′s(B
′∗
s ) + 1] > cp(B)−R. (38)

By applying (21) to w[M, c′s(B
′′
s )], we have

w[M, c′s(B
′′
s )] = min

X⊆B
{cp(X) | c′s(X) ≥ c′s(B′′s )}. (39)

From the above equation, we immediately have

cp(B
′′
s ) ≥ w[M, c′s(B

′′
s )] (40a)

= w[M, c′s(B
′∗
s ) + 1] (40b)

> cp(B)−R. (40c)

It is clear that B′′s violates the weight constraint. Thus the as-
sumption of (34) must be incorrect, and the result follows. 2



HUANG et al.: BANDWIDTH PARTITION AND ALLOCATION FOR EFFICIENT ... 363

REFERENCES
[1] Federal Communications Commission: FCC, ET Docket No. 03-289

“Notice of inquiry and notice of proposed Rulemaking,” Tech. Rep., Nov.
2003.

[2] J. Mitola and G. Q. Maguire Jr., “Cognitive radio: Making software radios
more personal,” IEEE Pers. Commun, vol. 6, no. 4, pp. 13–18, Aug. 1999.

[3] I. F. Akyildiz, W. Y. Lee, M.C. Vuran, and S. Mohanty, “Next genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A sur-
vey,” Comput. Netw., vol. 50, no. 13, pp. 2127–2159, Sept. 2006.

[4] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: An information theoretic perspective,” in
Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[5] Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive radio net-
working and communications: An overview,” IEEE Trans. Veh. Technol.,
vol. 60, no. 7, pp. 3386–3407, Sept. 2011.

[6] A. S. Alfa, B. T. Maharaj, S. Lall, and S. Pal, “Mixed-integer program-
ming based techniques for resource allocation in underlay cognitive radio
networks: A survey,” J. Commun. Netw., vol. 18, no. 5, pp. 744–761, Oct.
2016.

[7] Y. Wang, Y. Xu, L. Shen, C. Xu, and Y. Cheng, “Two-dimensional
POMDP-based opportunistic spectrum access in time-varying environ-
ment with fading channels,” J. Commun. Netw., vol. 16, no. 2, pp. 217–
226, Apr. 2014.

[8] S. Wang, B. T. Maharaj, and A. S. Alfa, “A maximum throughput channel
allocation protocol in multi-channel multi-user cognitive radio network,”
J. Commun. Netw., vol. 20, no. 2, pp. 111-121, Apr. 2018.

[9] H. Kim, G. P. Villardi, and J. Ma, “Energy efficient dynamic resource
allocation for wireless systems using receiver puncturing technique,” J.
Commun. Netw., vol. 20, no. 4, pp. 366–373, Aug. 2018.

[10] S. Huang, A. Ephremides, and D. Yuan, “Improving the cognitive access
efficiency by non-uniform bandwidth allocation,” IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6435–6447, Nov. 2015.

[11] M. D. P. Guirao, A. Wilzeck, A. Schmidt, K. Septinus, and C. Thein, “Lo-
cally and temporary shared spectrum as opportunity for vertical sectors in
5g,” IEEE Netw., vol. 31, no. 6, pp. 24–31, Nov. 2017.

[12] W. Dong, S. Rallapalli, L. Qiu, K. Ramakrishnan, and Y. Zhang, “Dou-
ble auctions for dynamic spectrum allocation,” IEEE/ACM Trans. Netw.,
vol. 24, no. 4, pp. 2485–2497, Oct. 2016.

[13] M. Tao and Y. Liu, “Spectrum leasing and cooperative resource alloca-
tion in cognitive OFDMA networks,” J. Commun. Netw., vol. 15, no. 1,
pp. 102–110, Feb. 2013.

[14] R. I. C. Chiang, G. B. Rowe, and K. W. Sowerby, “A quantitative analysis
of spectral occupancy measurements for cognitive radio,” in Proc. IEEE
VTC, Apr. 2007, pp. 3016–3020.

[15] F. K. Jondral, “Software-defined radio: Basics and evolution to cognitive
radio,” EURASIP J. Wireless Commun. Netw., vol. 2005, no. 3, pp. 275–
283, Aug. 2005.

[16] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on
spectrum management in cognitive radio networks,” IEEE Commun. Mag.,
vol. 46, no. 4, pp. 40–48, Apr. 2008.

[17] E. Coffman, P. Robert, F. Simatos, S. Tarumi, and G. Zussman, “Channel
fragmentation in dynamic spectrum access systems: A theoretical study,”
in Proc. ACM SIGMETRICS, June 2010, pp. 333–344.

[18] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE
Signal Process. Mag., vol. 24, no. 3, pp. 79–89, May 2007.

[19] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for
ofdm with maximum multipath diversity and coding gains,” IEEE Trans.
Commun., vol. 51, no. 3, pp. 416–427, Apr. 2003.

[20] F. Jin, G. Sahin, A. Arora, and H. A. Choi, “The effects of the subcarrier
grouping on multi-carrier channel aware scheduling,” in Proc. BroadNets,
Oct. 2004, pp. 632–640.

[21] N. Khambekar, L. Dong, and V. Chaudhary, “Utilizing ofdm guard interval
for spectrum sensing,” in Proc. IEEE Wireless Commun. Netw., Mar. 2007,
pp. 38–42.

[22] W. Hu, D. Willkomm, M. Abusubaih, J. Gross, G. Vlantis, M. Gerla, and
A. Wolisz, “Cognitive radios for dynamic spectrum access-dynamic fre-
quency hopping communities for efficient ieee 802.22 operation,” IEEE
Commun. Mag., vol. 45, no. 5, pp. 80–87, May 2007.

[23] N. S. Shankar, C. Cordeiro, and K. Challapali, “Spectrum agile radios:
Utilization and sensing architectures,” in Proc. IEEE DySPAN, Nov. 2005,
pp. 160–169.

[24] A. Ghasemi and E. S. Sousa, “Optimization of spectrum sensing for op-
portunistic spectrum access in cognitive radio networks,” in Proc. IEEE
Consum. Commun. Netw., Jan. 2007, pp. 1022–1026.

[25] D. Datla, R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, “Parametric
adaptive spectrum sensing framework for dynamic spectrum access net-
works,” in Proc. IEEE DySPAN, Apr. 2007, pp. 482–485.

[26] S. Huang, A. Ephremides, and D. Yuan, “Optimal allocation of non-
uniformly partitioned bandwidth for cognitive communications under fad-
ing conditions,” in Proc. IEEE ICC, May 2016, pp. 1–6.

[27] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi,J. Zhang, and Y. Zhang, “Fine-
grained channel access in wireless LAN,” in Proc. ACM SIGCOMM, Aug.
2010, pp. 147–158.

[28] S. Rayanchu, V. Shrivastava, S. Banerjee, R. Chandra, “FLUID: Improving
throughputs in enterprise wireless lans through flexible channelization,”
IEEE Trans. Mobile Comput., vol. 11, no. 9, pp. 1455–1469, Sept. 2012.

[29] S. S. Hong, J. Mehlman, and S. Katti, “Picasso: Flexible RF and spectrum
slicing,” in Proc. ACM SIGCOMM , 2012, pp. 37–48.

[30] L. Jiao, F .Y. Li, and V. Pla, “Modeling and performance analysis of chan-
nel assembling in multichannel cognitive radio networks with spectrum
adaptation,” IEEE Trans. Veh. Technol., vol. 61, no. 6, pp. 2686–2697,
July 2012.

[31] L. Jiao, I. A. Balapuwaduge, F. Y. Li, and V. Pla, “On the performance of
channel assembling and fragmentation in cognitive radio networks, ” IEEE
Trans. Wireless Commun., vol. 13, no. 10, pp. 5661–5675, Oct. 2014.

[32] Y. Chen and H-S. Oh, “A Survey of Measurement-Based Spectrum Oc-
cupancy Modeling for Cognitive Radios,” IEEE Commun. Surv. Tuts.,
vol. 18, no. 1, pp. 848–859, Jan. 2016.

[33] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum predic-
tion in cognitive radio networks,” IEEE Wireless Commun., vol. 20, no. 2,
pp. 90–96, Apr. 2013.

[34] Y. Saleem and M. H. Rehmani, “Primary radio user activity models for
cognitive radio networks: A survey,” J. Netw. Comput. Appl., vol. 43,
pp. 1–16, Aug. 2014.

[35] M. Höyhtyä, A. Mämmelä, M. Eskola, et al., “Spectrum Occupancy Mea-
surements: A Survey and Use of Interference Maps,” IEEE Commun. Surv.
Tuts., vol. 18, no. 4, pp. 2386–2414, Nov. 2016.

[36] A. S. Cacciapuoti, M. Caleffi, and L. Paura, “Optimal strategy design for
enabling the coexistence of heterogeneous networks in TV white space,”
IEEE Trans. Veh. Technol., vol. 65, no. 9, pp. 7361–7373, Sept. 2016.

[37] M. Brown, C. Marshall, D. Yang, M. Li, J. Lin, and G. Xue, “Maximizing
capacity in cognitive radio networks under physical interference model,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3003–3015, Oct. 2017.

[38] A. S. Cacciapuoti, M. Caleffi, D. Izzo, and L. Paura, “Cooperative spec-
trum sensing techniques with temporal dispersive reporting channels, ”
IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3392–3402, Oct. 2011.

[39] J. L. Brown, “Note on complete sequences of integers, ” Amer. Math.
Monthly., vol. 68, no. 6, pp. 557–560, 1961.

[40] V. V. Vazirani, Approximation algorithms, Springer Science & Business
Media, 2013.

[41] D. P. Williamson and D. B. Shmoys, The design of approximation algo-
rithms, Cambridge, U.K.: Cambridge Univ. Press, 2011.

[42] Z. Wang and G. B. Georgios, “Wireless multicarrier communications,”
IEEE Signal Process Mag., vol. 17, no. 3, pp. 29–48, 2000.

[43] N. Prasad, L. Venturino, and X. Wang, “Diversity-multiplexing tradeoff
analysis for OFDM systems with subcarrier grouping, linear precoding,
and linear detection,” IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6078–
6096, 2010.

[44] M. Garey and D. Johnson, “Computers and intractability: A guide to the
theory of NP-completeness”, in W. H. Freeman, San Fr, 1979.



364 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 4, AUGUST 2019

Song Huang received his PhD degree in Communi-
cations and Information Systems from South China
University of Technology (SCUT) in 2007. He is a
lecturer with the School of Computer Science and En-
gineering, SCUT. From Nov. 2013 to Dec. 2014, he
was a visiting researcher at University of Maryland,
College Park, MD, USA. His research interests in-
clude cognitive communication and network informa-
tion theory.

Di Yuan received his MSc degree in Computer Sci-
ence and Engineering, and PhD degree in Optimiza-
tion at Linköping Institute of Technology in 1996 and
2001, respectively. He is full professor in telecom-
munications at the Department of Science and Tech-
nology, Linköping University, and head of a research
group in mobile telecommunications. At present he
is Visiting Professor at University of Maryland, Col-
lege Park, MD, USA. His current research mainly ad-
dresses network optimization of 4G and 5G systems,
and capacity optimization of wireless networks. Dr

Yuan has been guest professor at the Technical University of Milan (Politec-
nico di Milano), Italy, in 2008, and senior visiting scientist at Ranplan Wireless
Network Design Ltd, United Kingdom, in 2009 and 2012. In 2011 and 2013
he has been part time with Ericsson Research, Sweden. He is an area editor of
the Computer Networks journal. He has been in the management committee of
four European Cooperation in field of Scientific and Technical Research (COST)
actions, invited lecturer of European Network of Excellence EuroNF, and Prin-
cipal Investigator of several European FP7 and Horizon 2020 projects. He is a
co-recipient of IEEE ICC’12 Best Paper Award, and supervisor of the Best Stu-
dent Journal Paper Award by the IEEE Sweden Joint VT-COM-IT Chapter in
2014. He is a Senior Member of IEEE.

Anthony Ephremides holds the Cynthia Kim Profes-
sorship of Information Technology at the Electrical
and Computer Engineering Department of the Univer-
sity of Maryland in College Park where he is a Distin-
guished University Professor and has a joint appoint-
ment at the Institute for Systems Research, of which
he was among the founding members in 1986. He ob-
tained his PhD in Electrical Engineering from Prince-
ton University in 1971 and has been with the Uni-
versity of Maryland ever since. He has been recently
named Distinguished University Professor.

He has held various visiting positions at other Institutions (including MIT,
UC Berkeley, ETH Zurich, INRIA, etc) and co-founded and co-directed a
NASA-funded Center on Satellite and Hybrid Communication Networks in
1991. He has been the President of Pontos, Inc, since 1980 and has served as
President of the IEEE Information Theory Society in 1987 and as a member of
the IEEE Board of Directors in 1989 and 1990. He has been the General Chair
and/or the Technical Program Chair of several technical conferences (includ-
ing the IEEE Information Theory Symposium in1991, 2000, and 2011,the IEEE
Conference on Decision and Control in 1986, the ACM Mobihoc in 2003, and
the IEEE Infocom in 1999). He has served on the Editorial Board of numerous
journals and was the Founding Director of the Fairchild Scholars and Doctoral
Fellows Program, a University-Industry Partnership from 1981 to 1985.

He has received the IEEE Donald E. Fink Prize Paper Award in 1991 and
the first ACM Achievement Award for Contributions to Wireless Networking
in 1996, as well as the 2000 Fred W. Ellersick MILCOM Best Paper Award,
the IEEE Third Millennium Medal, the 2000 Outstanding Systems Engineering
Faculty Award from the Institute for Systems Research, and the Kirwan Faculty
Research and Scholarship Prize from the University of Maryland in 2001, and
a few other official recognitions of his work. He also received the 2006 Aaron
Wyner Award for Exceptional Service and Leadership to the IEEE Information
Theory Society.

He is the author of several hundred papers, conference presentations, and
patents, and his research interests lie in the areas of Communication Systems
and Networks and all related disciplines, such as Information Theory, Control
and Optimization, Satellite Systems, Queueing Models, Signal Processing, etc.
He is especially interested in Wireless Networks and Energy Efficient Systems.


